Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.333
Filter
1.
Int J Mol Med ; 54(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38963051

ABSTRACT

Lipid metabolism disorders are a major cause of several chronic metabolic diseases which seriously affect public health. Salusin­α, a vasoactive peptide, has been shown to attenuate lipid metabolism disorders, although its mechanism of action has not been reported. To investigate the effects and potential mechanisms of Salusin­α on lipid metabolism, Salusin­α was overexpressed or knocked down using lentiviral vectors. Hepatocyte steatosis was induced by free fatty acid (FFA) after lentiviral transfection into HepG2 cells. The degree of lipid accumulation was assessed using Oil Red O staining and by measuring several biochemical indices. Subsequently, bioinformatics was used to analyze the signaling pathways that may have been involved in lipid metabolism disorders. Finally, semi­quantitative PCR and western blotting were used to verify the involvement of the liver kinase B1 (LKB1)/AMPK pathway. Compound C, an inhibitor of AMPK, was used to confirm this mechanism's involvement further. The results showed that Salusin­α significantly attenuated lipid accumulation, inflammation and oxidative stress. In addition, Salusin­α increased the levels of LKB1 and AMPK, which inhibited the expression of sterol regulatory element binding protein­1c, fatty acid synthase and acetyl­CoA carboxylase. The addition of Compound C abrogated the Salusin­α­mediated regulation of AMPK on downstream signaling molecules. In summary, overexpression of Salusin­α activated the LKB1/AMPK pathway, which in turn inhibited lipid accumulation in HepG2 cells. This provides insights into the potential mechanism underlying the mechanism by which Salusin­α ameliorates lipid metabolism disorders while identifying a potential therapeutic target.


Subject(s)
AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Lipogenesis , Protein Serine-Threonine Kinases , Signal Transduction , Humans , Lipogenesis/genetics , Lipogenesis/drug effects , AMP-Activated Protein Kinases/metabolism , Hep G2 Cells , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , AMP-Activated Protein Kinase Kinases/genetics , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/genetics , Lipid Metabolism Disorders/drug therapy , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Oxidative Stress/drug effects , Gene Expression Regulation/drug effects
2.
Proc Natl Acad Sci U S A ; 121(28): e2322066121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968125

ABSTRACT

The Wnt/Wingless signaling pathway plays critical roles in metazoan development and energy metabolism, but its role in regulating lipid homeostasis remains not fully understood. Here, we report that the activation of canonical Wnt/Wg signaling promotes lipolysis while concurrently inhibiting lipogenesis and fatty acid ß-oxidation in both larval and adult adipocytes, as well as cultured S2R+ cells, in Drosophila. Using RNA-sequencing and CUT&RUN (Cleavage Under Targets & Release Using Nuclease) assays, we identified a set of Wnt target genes responsible for intracellular lipid homeostasis. Notably, active Wnt signaling directly represses the transcription of these genes, resulting in decreased de novo lipogenesis and fatty acid ß-oxidation, but increased lipolysis. These changes lead to elevated free fatty acids and reduced triglyceride (TG) accumulation in adipocytes with active Wnt signaling. Conversely, downregulation of Wnt signaling in the fat body promotes TG accumulation in both larval and adult adipocytes. The attenuation of Wnt signaling also increases the expression of specific lipid metabolism-related genes in larval adipocytes, wing discs, and adult intestines. Taken together, these findings suggest that Wnt signaling-induced transcriptional repression plays an important role in regulating lipid homeostasis by enhancing lipolysis while simultaneously suppressing lipogenesis and fatty acid ß-oxidation.


Subject(s)
Drosophila Proteins , Wnt Signaling Pathway , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Adipocytes/metabolism , Lipid Mobilization , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Wnt1 Protein/metabolism , Wnt1 Protein/genetics , Lipolysis , Lipogenesis/genetics , Triglycerides/metabolism , Lipid Metabolism/genetics , Larva/metabolism , Larva/genetics , Transcription, Genetic , Homeostasis
3.
Cell Death Dis ; 15(7): 474, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38956060

ABSTRACT

Colorectal cancer (CRC) is one of the most common tumors of the digestive system worldwide. KRAS mutations limit the use of anti-EGFR antibodies in combination with chemotherapy for the treatment of CRC. Therefore, novel targeted therapies are needed to overcome the KRAS-induced oncogenesis. Recent evidence suggests that inhibition of PI3K led to ferroptosis, a nonapoptotic cell death closely related to KRAS-mutant cells. Here, we showed that a selective PI3Kδ inhibitor TYM-3-98 can suppress the AKT/mTOR signaling and activate the ferroptosis pathway in KRAS-mutant CRC cells in a concentration-dependent manner. This was evidenced by the lipid peroxidation, iron accumulation, and depletion of GSH. Moreover, the overexpression of the sterol regulatory element-binding protein 1 (SREBP1), a downstream transcription factor regulating lipid metabolism, conferred CRC cells greater resistance to ferroptosis induced by TYM-3-98. In addition, the effect of TYM-3-98 was confirmed in a xenograft mouse model, which demonstrated significant tumor suppression without obvious hepatoxicity or renal toxicity. Taken together, our work demonstrated that the induction of ferroptosis contributed to the PI3Kδ inhibitor-induced cell death via the suppression of AKT/mTOR/SREBP1-mediated lipogenesis, thus displaying a promising therapeutic effect of TYM-3-98 in CRC treatment.


Subject(s)
Colorectal Neoplasms , Ferroptosis , Lipogenesis , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Sterol Regulatory Element Binding Protein 1 , TOR Serine-Threonine Kinases , Ferroptosis/drug effects , Ferroptosis/genetics , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , TOR Serine-Threonine Kinases/metabolism , Animals , Proto-Oncogene Proteins c-akt/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Lipogenesis/drug effects , Lipogenesis/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Mice , Signal Transduction/drug effects , Mice, Nude , Cell Line, Tumor , Mutation/genetics , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors/pharmacology
4.
FASEB J ; 38(13): e23806, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38970404

ABSTRACT

Atherosclerosis refers to a disease characterized by the formation of lipid plaque deposits within arterial walls, leading to reduced blood flow or blockage of blood outflow. The process of endothelial injury induced by oxidized low-density lipoprotein (ox-LDL) is considered the initial stage of atherosclerosis. Ferroptosis is a form of iron-dependent, non-apoptotic cell death, and current research suggests its association with coronary artery disease (CAD). In this study, we observed a correlation between reduced expression of SREBP-1 and the occurrence of stable CAD. Additionally, during the process of endothelial injury induced by ox-LDL, we also noted decreased expression of the SREBP-1/SCD1/FADS2 and involvement in the ferroptosis process. Mechanistically, ox-LDL induced endothelial injury by inhibiting the lipid biosynthesis process mediated by the SREBP-1/SCD1/FADS2, thereby inducing lipid peroxidation and ferroptosis. On the contrary, overexpression of SREBP-1 or supplementation with monounsaturated fatty acids counteracted iron accumulation, mitochondrial damage, and lipid peroxidation-induced ferroptosis, thereby improving endothelial injury. Our study indicated that the decreased expression of peripheral blood SREBP-1 mRNA is an independent risk factor for stable CAD. Furthermore, in endothelial cells, the lipid biosynthesis process mediated by SREBP-1 could ameliorate endothelial injury by resisting ferroptosis. The study has been registered with the Chinese Clinical Trial Registry, which serves as a primary registry in the World Health Organization International Clinical Trials Registry Platform (ChiCTR2300074315, August 3rd, 2023).


Subject(s)
Ferroptosis , Lipogenesis , Lipoproteins, LDL , Sterol Regulatory Element Binding Protein 1 , Humans , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Male , Lipoproteins, LDL/metabolism , Female , Lipid Peroxidation , Human Umbilical Vein Endothelial Cells/metabolism , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Middle Aged , Endothelial Cells/metabolism , Atherosclerosis/metabolism , Atherosclerosis/pathology , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Aged
5.
Mol Nutr Food Res ; 68(12): e2300833, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850176

ABSTRACT

SCOPE: Alcoholic liver disease (ALD) is a global public health concern. Nobiletin, a polymethoxyflavone abundant in citrus fruits, enhances circadian rhythms and ameliorates diet-induced hepatic steatosis, but its influences on ALD are unknown. This study investigates the role of brain and muscle Arnt-like protein-1 (Bmal1), a key regulator of the circadian clock, in nobiletin-alleviated ALD. METHODS AND RESULTS: This study uses chronic ethanol feeding plus an ethanol binge to establish ALD models in Bmal1flox/flox and Bmal1 liver-specific knockout (Bmal1LKO) mice. Nobiletin mitigates ethanol-induced liver injury (alanine aminotransferase [ALT]), glucose intolerance, hepatic apoptosis, and lipid deposition (triglyceride [TG], total cholesterol [TC]) in Bmal1flox/flox mice. Nobiletin fails to modulated liver injury (ALT, aspartate aminotransferase [AST]), apoptosis, and TG accumulation in Bmal1LKO mice. The expression of lipogenic genes (acetyl-CoA carboxylase alpha [Acaca], fatty acid synthase [Fasn]) and fatty acid oxidative genes (carnitine pamitoyltransferase [Cpt1a], cytochrome P450, family 4, subfamily a, polypeptide 10 [Cyp4a10], and cytochrome P450, family4, subfamily a, polypeptide 14 [Cyp4a14]) is inhibited, and the expression of proapoptotic genes (Bcl2 inteacting mediator of cell death [Bim]) is enhanced by ethanol in Bmal1flox/flox mice. Nobiletin antagonizes the expression of these genes in Bmal1flox/flox mice and not in Bmal1LKO mice. Nobiletin activates protein kinase B (PKB, also known as AKT) phosphorylation, increases the levels of the carbohydrate response element binding protein (ChREBP), ACC1, and FASN, and reduces the level of sterol-regulatory element binding protein 1 (SREBP1) and phosphorylation of ACC1 in a Bmal1-dependent manner. CONCLUSION: Nobiletin alleviates ALD by increasing the expression of genes involved in fatty acid oxidation by increasing AKT phosphorylation and lipogenesis in a Bmal1-dependent manner.


Subject(s)
ARNTL Transcription Factors , Flavones , Lipogenesis , Liver Diseases, Alcoholic , Mice, Knockout , Proto-Oncogene Proteins c-akt , Animals , Flavones/pharmacology , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Lipogenesis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Male , Liver/drug effects , Liver/metabolism , Mice, Inbred C57BL , Mice , Protective Agents/pharmacology , Ethanol , Signal Transduction/drug effects , Apoptosis/drug effects
6.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892255

ABSTRACT

The disruption of circadian rhythms (CRs) has been linked to metabolic disorders, yet the role of hepatic BMAL1, a key circadian regulator, in the whole-body metabolism and the associated lipid metabolic phenotype in the liver remains unclear. Bmal1 floxed (Bmal1f/f) and hepatocyte-specific Bmal1 knockout (Bmal1hep-/-) C57BL/6J mice underwent a regular feeding regimen. Hepatic CR, lipid content, mitochondrial function, and systemic metabolism were assessed at zeitgeber time (ZT) 0 and ZT12. Relevant molecules were examined to elucidate the metabolic phenotype. Hepatocyte-specific knockout of Bmal1 disrupted the expression of rhythmic genes in the liver. Bmal1hep-/- mice exhibited decreased hepatic TG content at ZT0, primarily due to enhanced lipolysis, reduced lipogenesis, and diminished lipid uptake. The ß-oxidation function of liver mitochondria decreased at both ZT0 and ZT12. Our findings on the metabolic profile and associated hepatic lipid metabolism in the absence of Bmal1 in hepatocytes provides new insights into metabolic syndromes from the perspective of liver CR disturbances.


Subject(s)
ARNTL Transcription Factors , Circadian Rhythm , Hepatocytes , Lipid Metabolism , Liver , Mice, Inbred C57BL , Mice, Knockout , Animals , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Lipid Metabolism/genetics , Mice , Liver/metabolism , Circadian Rhythm/genetics , Hepatocytes/metabolism , Phenotype , Male , Metabolome , Gene Deletion , Lipogenesis/genetics
7.
Prostaglandins Other Lipid Mediat ; 173: 106840, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830399

ABSTRACT

We have previously demonstrated that the glucocorticoid receptor ß (GRß) isoform induces hepatic steatosis in mice fed a normal chow diet. The GRß isoform inhibits the glucocorticoid-binding isoform GRα, reducing responsiveness and inducing glucocorticoid resistance. We hypothesized that GRß regulates lipids that cause metabolic dysfunction. To determine the effect of GRß on hepatic lipid classes and molecular species, we overexpressed GRß (GRß-Ad) and vector (Vec-Ad) using adenovirus delivery, as we previously described. We fed the mice a normal chow diet for 5 days and harvested the livers. We utilized liquid chromatography-mass spectrometry (LC-MS) analyses of the livers to determine the lipid species driven by GRß. The most significant changes in the lipidome were monoacylglycerides and cholesterol esters. There was also increased gene expression in the GRß-Ad mice for lipogenesis, eicosanoid synthesis, and inflammatory pathways. These indicate that GRß-induced glucocorticoid resistance may drive hepatic fat accumulation, providing new therapeutic advantages.


Subject(s)
Eicosanoids , Glucocorticoids , Inflammation , Lipogenesis , Liver , Receptors, Glucocorticoid , Animals , Mice , Liver/metabolism , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Eicosanoids/metabolism , Glucocorticoids/metabolism , Inflammation/metabolism , Male , Mice, Inbred C57BL , Lipid Metabolism
8.
Mil Med Res ; 11(1): 41, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937853

ABSTRACT

BACKGROUND: Extracellular adenosine triphosphate (ATP) is an important signal molecule. In previous studies, intensive research had revealed the crucial roles of family with sequence similarity 3 member A (FAM3A) in controlling hepatic glucolipid metabolism, islet ß cell function, adipocyte differentiation, blood pressure, and other biological and pathophysiological processes. Although mitochondrial protein FAM3A plays crucial roles in the regulation of glucolipid metabolism via stimulating ATP release to activate P2 receptor pathways, its mechanism in promoting ATP release in hepatocytes remains unrevealed. METHODS: db/db, high-fat diet (HFD)-fed, and global pannexin 1 (PANX1) knockout mice, as well as liver sections of individuals, were used in this study. Adenoviruses and adeno-associated viruses were utilized for in vivo gene overexpression or inhibition. To evaluate the metabolic status in mice, oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT), insulin tolerance test (ITT), and magnetic resonance imaging (MRI) were conducted. Protein-protein interactions were determined by coimmunoprecipitation with mass spectrometry (MS) assays. RESULTS: In livers of individuals and mice with steatosis, the expression of ATP-permeable channel PANX1 was increased (P < 0.01). Hepatic PANX1 overexpression ameliorated the dysregulated glucolipid metabolism in obese mice. Mice with hepatic PANX1 knockdown or global PANX1 knockout exhibited disturbed glucolipid metabolism. Restoration of hepatic PANX1 rescued the metabolic disorders of PANX1-deficient mice (P < 0.05). Mechanistically, ATP release is mediated by the PANX1-activated protein kinase B-forkhead box protein O1 (Akt-FOXO1) pathway to inhibit gluconeogenesis via P2Y receptors in hepatocytes. PANX1-mediated ATP release also activated calmodulin (CaM) (P < 0.01), which interacted with c-Jun N-terminal kinase (JNK) to inhibit its activity, thereby deactivating the transcription factor activator protein-1 (AP1) and repressing fatty acid synthase (FAS) expression and lipid synthesis (P < 0.05). FAM3A stimulated the expression of PANX1 via heat shock factor 1 (HSF1) in hepatocytes (P < 0.05). Notably, FAM3A overexpression failed to promote ATP release, inhibit the expression of gluconeogenic and lipogenic genes, and suppress gluconeogenesis and lipid deposition in PANX1-deficient hepatocytes and livers. CONCLUSIONS: PANX1-mediated release of ATP plays a crucial role in maintaining hepatic glucolipid homeostasis, and it confers FAM3A's suppressive effects on hepatic gluconeogenesis and lipogenesis.


Subject(s)
Adenosine Triphosphate , Connexins , Gluconeogenesis , Lipogenesis , Liver , Nerve Tissue Proteins , Animals , Connexins/metabolism , Mice , Gluconeogenesis/physiology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Adenosine Triphosphate/metabolism , Lipogenesis/physiology , Liver/metabolism , Mice, Knockout , Male , Humans , Diet, High-Fat/adverse effects , Cytokines
9.
PLoS One ; 19(6): e0303191, 2024.
Article in English | MEDLINE | ID: mdl-38924032

ABSTRACT

BACKGROUND: Gallbladder disease in people is frequently associated with disorders of lipid metabolism and metabolic syndrome. A recently emergent gallbladder disease of dogs, referred to as mucocele formation, is characterized by secretion of abnormal mucus by the gallbladder epithelium and is similarly associated with hyperlipidemia, endocrinopathy, and metabolic dysfunction. The cause of gallbladder mucocele formation in dogs is unknown. METHODS: A prospective case-controlled study was conducted to gain insight into disease pathogenesis by characterization of plasma lipid abnormalities in 18 dogs with gallbladder mucocele formation and 18 age and breed matched control dogs using direct infusion mass spectrometry for complex plasma lipid analysis. This analysis was complemented by histochemical and ultrastructural examination of gallbladder mucosa from dogs with gallbladder mucocele formation and control dogs for evidence of altered lipid homeostasis of the gallbladder epithelium. RESULTS: Gallbladder mucocele formation in dogs carried a unique lipidomic signature of increased lipogenesis impacting 50% of lipid classes, 36% of esterified fatty acid species, and 11% of complex lipid species. Broad enrichment of complex lipids with palmitoleic acid (16:1) and decreased abundance within complex lipids of presumptive omega-3 fatty acids eicosapentaenoic (20:5) and docosahexaenoic (22:6) was significant. Severe lipidosis of gallbladder epithelium pinpoints the gallbladder as involved causally or consequently in abnormal lipid metabolism. CONCLUSION: Our study supports a primary increase in lipogenesis in dogs with mucocele formation and abnormal gallbladder lipid metabolism in disease pathogenesis.


Subject(s)
Dog Diseases , Gallbladder Diseases , Gallbladder , Lipogenesis , Mucocele , Animals , Dogs , Mucocele/metabolism , Mucocele/pathology , Gallbladder/metabolism , Gallbladder/pathology , Dog Diseases/metabolism , Dog Diseases/pathology , Gallbladder Diseases/metabolism , Gallbladder Diseases/pathology , Gallbladder Diseases/veterinary , Female , Case-Control Studies , Male , Lipidoses/metabolism , Lipidoses/pathology , Prospective Studies , Epithelium/metabolism , Epithelium/pathology , Lipid Metabolism
10.
Life Sci ; 351: 122843, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880168

ABSTRACT

AIMS: Carbohydrate-responsive element-binding protein (ChREBP) is a transcription factor that regulates several metabolic genes, including the lipogenic enzymes necessary for the metabolic conversion of carbohydrates into lipids. Although the crucial role of ChREBP in the liver, the primary site of de novo lipogenesis, has been studied, its functional role in adipose tissues, particularly brown adipose tissue (BAT), remains unclear. In this study, we investigated the role of ChREBP in BAT under conditions of a high-carbohydrate diet (HCD) and ketogenic diet (KD), represented by extremely low carbohydrate intake. MAIN METHODS: Using an adeno-associated virus and Cas9 knock-in mice, we rapidly generated Chrebp brown adipocyte-specific knock-out (B-KO) mice, bypassing the necessity for prolonged breeding by using the Cre-Lox system. KEY FINDINGS: We demonstrated that ChREBP is essential for glucose metabolism and lipogenic gene expression in BAT under HCD conditions in Chrebp B-KO mice. After nutrient intake, Chrebp B-KO attenuated the KD-induced expression of several inflammatory genes in BAT. SIGNIFICANCE: Our results indicated that ChREBP, a nutrient-sensing regulator, is indispensable for expressing a diverse range of metabolic genes in BAT.


Subject(s)
Adipose Tissue, Brown , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Gene Expression Regulation , Lipogenesis , Mice, Knockout , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Adipose Tissue, Brown/metabolism , Mice , Lipogenesis/genetics , Male , Glucose/metabolism , Mice, Inbred C57BL , Diet, Ketogenic , Nutrients/metabolism
11.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791103

ABSTRACT

Menopause is characterized by a reduction in sex hormones in women and is associated with metabolic changes, including fatty liver and insulin resistance. Lifestyle changes, including a balanced diet and physical exercise, are necessary to prevent these undesirable changes. Strength training (ST) has been widely used because of the muscle and metabolic benefits it provides. Our study aims to evaluate the effects of ST on hepatic steatosis and insulin resistance in ovariectomized mice fed a high-fat diet (HFD) divided into four groups as follows: simulated sedentary surgery (SHAM-SED), trained simulated surgery (SHAM-EXE), sedentary ovariectomy (OVX-SED), and trained ovariectomy (OVX-EXE). They were fed an HFD for 9 weeks. ST was performed thrice a week. ST efficiently reduced body weight and fat percentage and increased lean mass in OVX mice. Furthermore, ST reduced the accumulation of ectopic hepatic lipids, increased AMPK phosphorylation, and inhibited the de novo lipogenesis pathway. OVX-EXE mice also showed a better glycemic profile, associated with greater insulin sensitivity identified by the euglycemic-hyperinsulinemic clamp, and reduced markers of hepatic oxidative stress compared with sedentary animals. Our data support the idea that ST can be indicated as a non-pharmacological treatment approach to mitigate metabolic changes resulting from menopause.


Subject(s)
Diet, High-Fat , Fatty Liver , Insulin Resistance , Ovariectomy , Resistance Training , Animals , Female , Ovariectomy/adverse effects , Diet, High-Fat/adverse effects , Mice , Fatty Liver/metabolism , Fatty Liver/prevention & control , Physical Conditioning, Animal , Oxidative Stress , Liver/metabolism , Mice, Inbred C57BL , Body Weight , Lipogenesis
12.
Metabolism ; 157: 155938, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795769

ABSTRACT

BACKGROUND AND AIMS: Hepatic lipogenesis is elevated in nutrient abundant conditions to convert the excess carbohydrate into triacylglycerol (TAG). Fatty acyl moiety of TAG is eventually transported into adipose tissues by very low density lipoprotein, leading to the accumulation of TAG as a preferred storage form of excess energy. Disruption of the balance between TAG clearance and synthesis leads to the accumulation of lipids in the liver, leading to the progression of non-alcoholic fatty liver disease (NAFLD) including non-alcoholic steatohepatitis. Protein arginine methyltransferase (PRMT) 6 has been linked to the various metabolic processes including hepatic gluconeogenesis, muscle atrophy and lipodystrophy in mouse models. However, the role of PRMT6 in the control of hepatic lipogenesis has not been elucidated to date. METHODS: We assessed the interaction between PRMT6 and LXR alpha by using co-immunoprecipitation assay. The specific arginine residue of LXR alpha that is methylated by PRMT6 was assessed by LC-MS/MS assay and the functional consequences of LXR alpha methylation was explored by mSREBP-1c luciferase assay. The effect of PRMT6 on hepatic lipogenesis was assessed by adenovirus-mediated ectopic expression of PRMT6 or knockdown of PRMT6 via shRNA in hepatocytes. Finally, the role of PRMT6 in hepatic lipid metabolism in vivo was explored by either ectopic expression of LXR alpha mutant that is defective in PRMT6-mediated arginine methylation or knockdown of PRMT6 in liver. RESULTS: We found that promoter activity of sterol regulatory element binding protein (SREBP) 1c is robustly activated by PRMT6. Interestingly, we demonstrated that PRMT6 binds to LXR alpha, a transcription factor for SREBP-1c, via its LXXLL motif, leading to the asymmetric dimethylation of an arginine residue and activation of this protein. Indeed, ectopic expression of PRMT6 in hepatocytes led to the enhanced expression of LXR alpha target genes in the lipogenic pathway. Conversely, genetic or pharmacological inhibition of PRMT6 diminished expression of lipogenic genes and the lipid accumulation in primary hepatocytes. Mechanistically, we found that asymmetric dimethylation of LXR alpha led to the dissociation of small heterodimer partner (SHP), a transcriptional co-inhibitor of this factor, resulting in the activation of LXR alpha-mediated transcriptional process. Finally, we showed that disruption of asymmetric dimethylation of LXR alpha in the liver led to the diminished expression of genes in the lipogenesis, resulting in the reduced hepatic lipid accumulation in high fat diet-fed mice in vivo. CONCLUSIONS: We showed that PRMT6 modulates LXR alpha activity by conferring asymmetric dimethylation of arginine 253, thus blocking SHP-mediated inhibition and promoting hepatic lipid accumulation. These results suggest that PRMT6 is critical in the control of lipid homeostasis by regulation of LXR alpha-mediated lipogenesis in the liver.


Subject(s)
Arginine , Lipogenesis , Liver X Receptors , Liver , Protein-Arginine N-Methyltransferases , Lipogenesis/genetics , Lipogenesis/physiology , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Animals , Mice , Methylation , Liver/metabolism , Arginine/metabolism , Liver X Receptors/metabolism , Liver X Receptors/genetics , Male , Humans , Hepatocytes/metabolism , Mice, Inbred C57BL , Hep G2 Cells , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
13.
Cell Signal ; 120: 111232, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763183

ABSTRACT

Aging affects lipid metabolism and can cause obesity as it is closely related to the disorder of many lipogenic regulatory factors. LncRNAs have been recognized as pivotal regulators across diverse biological processes, but their effects on lipogenesis in aging remain to be further studied. In this work, using RNA sequencing (RNA-Seq), we found that the expression of lncRNA AI504432 was significantly upregulated in the eWAT (epididymal white adipose tissue) of aging mice, and the knockdown of AI504432 notably reduced the expression of several adipogenic genes (e.g., Cebp/α, Srebp-1c, Fasn, Acaca, and Scd1) in senescent adipocytes. The bioinformatics investigation revealed that AI504432 possessed a binding site for miR-1a-3p, and the discovery was verified by the luciferase reporter assay. The expression of Fasn was increased upon the inhibition of miR-1a-3p but restored upon the simultaneous silencing of AI504432. Taken together, our results suggested that AI504432 controlled lipogenesis through the miR-1a-3p/Fasn signaling pathway. The findings may inspire new therapeutic approaches to target imbalanced lipid homeostasis due to aging.


Subject(s)
Adipocytes , Cellular Senescence , Fatty Acid Synthase, Type I , Lipogenesis , MicroRNAs , RNA, Long Noncoding , Up-Regulation , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Lipogenesis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , Adipocytes/metabolism , Fatty Acid Synthase, Type I/metabolism , Fatty Acid Synthase, Type I/genetics , Up-Regulation/drug effects , Male , Mice, Inbred C57BL , Aging/metabolism , Aging/genetics
14.
Poult Sci ; 103(7): 103766, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759567

ABSTRACT

Previously, we reported that glucagon-like peptide-1 (GLP-1) and its analog liraglutide could inhibit fat de novo synthesis in the liver and reduce abdominal fat accumulation in broiler chickens. Nevertheless, the impact of GLP-1 on adipocyte fat deposition remains enigmatic. This study aimed to investigate the effects of GLP-1, via its analog liraglutide, on chicken chicken adipocytes in vitro. Chemical assays, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot were employed to assess the proliferation, differentiation, and fat deposition of chicken adipocytes. Our findings indicated that liraglutide significantly suppressed cell proliferation and promoted preadipocyte differentiation in comparison to the control group. This was evidenced by elevated triglyceride (TG) content and upregulated mRNA expression of lipogenesis-related enzymes, such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), as well as regulators including peroxisome proliferator-activated receptor γ (PPARγ), sterol regulatory element binding protein-1 (SREBP1) and CCAAT/enhancer binding protein α (CEBPα). In mature adipocytes, liraglutide attenuated fat deposition by inhibiting fat de novo synthesis, evidenced by decreased mRNA expression of ACC, FAS, PPARγ, C/EBPα, and SREBP1, and concurrent upregulation of phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated ACC (p-ACC). This resulted in reduced accumulation of lipid droplets and TG content in mature adipocytes. Collectively, our findings indicate that liraglutide suppresses the proliferation of preadipocytes, enhances their differentiation, and concurrently inhibits de novo lipogenesis in mature adipocytes. This observation offers profound insights into the mechanisms that underlie liraglutide's anti-adipogenic effects, which could have significant implications for the treatment of obesity in broiler chickens.


Subject(s)
Adipocytes , Chickens , Liraglutide , Animals , Liraglutide/pharmacology , Adipocytes/drug effects , Adipocytes/metabolism , Glucagon-Like Peptide 1/metabolism , Lipogenesis/drug effects , Adipogenesis/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism
15.
Cell Metab ; 36(5): 947-968, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38718757

ABSTRACT

Insulin resistance (IR) is a major pathogenic factor in the progression of MASLD. In the liver, insulin suppresses gluconeogenesis and enhances de novo lipogenesis (DNL). During IR, there is a defect in insulin-mediated suppression of gluconeogenesis, but an unrestrained increase in hepatic lipogenesis persists. The mechanism of increased hepatic steatosis in IR is unclear and remains controversial. The key discrepancy is whether insulin retains its ability to directly regulate hepatic lipogenesis. Blocking insulin/IRS/AKT signaling reduces liver lipid deposition in IR, suggesting insulin can still regulate lipid metabolism; hepatic glucose metabolism that bypasses insulin's action may contribute to lipogenesis; and due to peripheral IR, other tissues are likely to impact liver lipid deposition. We here review the current understanding of insulin's action in governing different aspects of hepatic lipid metabolism under normal and IR states, with the purpose of highlighting the essential issues that remain unsettled.


Subject(s)
Fatty Liver , Insulin Resistance , Insulin , Liver , Signal Transduction , Humans , Insulin/metabolism , Liver/metabolism , Fatty Liver/metabolism , Animals , Lipid Metabolism , Lipogenesis
16.
J Diabetes Res ; 2024: 5511454, 2024.
Article in English | MEDLINE | ID: mdl-38736904

ABSTRACT

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Subject(s)
Adipogenesis , Lipase , Animals , Male , Mice , Acyltransferases , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Diet, High-Fat , Fibroblast Growth Factors/metabolism , Lipase/metabolism , Lipase/genetics , Lipogenesis , Lipolysis , Mice, Inbred C57BL , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Uncoupling Protein 1/metabolism
17.
Chem Biol Interact ; 397: 111046, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38735451

ABSTRACT

Cylindrospermopsin, a potent hepatotoxin produced by harmful cyanobacterial blooms, poses environmental and human health concerns. We used a 3D human liver in vitro model based on spheroids of HepG2 cells, in combination with molecular and biochemical assays, automated imaging, targeted LC-MS-based proteomics, and lipidomics, to explore cylindrospermopsin effects on lipid metabolism and the processes implicated in hepatic steatosis. Cylindrospermopsin (1 µM, 48 h) did not significantly affect cell viability but partially reduced albumin secretion. However, it increased neutral lipid accumulation in HepG2 spheroids while decreasing phospholipid levels. Simultaneously, cylindrospermopsin upregulated genes for lipogenesis regulation (SREBF1) and triacylglycerol synthesis (DGAT1/2) and downregulated genes for fatty acid synthesis (ACLY, ACCA, FASN, SCD1). Fatty acid uptake, oxidation, and lipid efflux genes were not significantly affected. Targeted proteomics revealed increased levels of perilipin 2 (adipophilin), a major hepatocyte lipid droplet-associated protein. Lipid profiling quantified 246 lipid species in the spheroids, with 28 significantly enriched and 15 downregulated by cylindrospermopsin. Upregulated species included neutral lipids, sphingolipids (e.g., ceramides and dihexosylceramides), and some glycerophospholipids (phosphatidylethanolamines, phosphatidylserines), while phosphatidylcholines and phosphatidylinositols were mostly reduced. It suggests that cylindrospermopsin exposures might contribute to developing and progressing towards hepatic steatosis or metabolic dysfunction-associated steatotic liver disease (MASLD).


Subject(s)
Alkaloids , Bacterial Toxins , Cyanobacteria Toxins , Lipid Metabolism , Liver , Uracil , Humans , Alkaloids/pharmacology , Bacterial Toxins/metabolism , Uracil/analogs & derivatives , Uracil/metabolism , Lipid Metabolism/drug effects , Hep G2 Cells , Liver/metabolism , Liver/drug effects , Homeostasis/drug effects , Cell Survival/drug effects , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Proteomics , Lipidomics , Lipogenesis/drug effects
18.
J Agric Food Chem ; 72(22): 12582-12595, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788215

ABSTRACT

Renal tubular ectopic lipid deposition (ELD) plays a significant role in the development of chronic kidney disease, posing a great threat to human health. The present work aimed to explore the intervention effect and potential molecular mechanism of a purified tea polysaccharide (TPS3A) on renal tubular ELD. The results demonstrated that TPS3A effectively improved kidney function and slowed the progression of tubulointerstitial fibrosis in high-fat-diet (HFD)-exposed ApoE-/- mice. Additionally, TPS3A notably suppressed lipogenesis and enhanced lipolysis, as shown by the downregulation of lipogenesis markers (SREBP-1 and FAS) and the upregulation of lipolysis markers (HSL and ATGL), thereby reducing renal tubular ELD in HFD-fed ApoE-/- mice and palmitic-acid-stimulated HK-2 cells. The AMPK-SIRT1-FoxO1 axis is a core signal pathway in regulating lipid deposition. Consistently, TPS3A significantly increased the levels of phosphorylated-AMPK, SIRT1, and deacetylation of Ac-FoxO1. However, these effects of TPS3A on lipogenesis and lipolysis were abolished by AMPK siRNA, SIRT1 siRNA, and FoxO1 inhibitor, resulting in exacerbated lipid deposition. Taken together, TPS3A shows promise in ameliorating renal tubular ELD by inhibiting lipogenesis and promoting lipolysis through the AMPK-SIRT1-FoxO1 signaling pathway.


Subject(s)
Diet, High-Fat , Lipogenesis , Lipolysis , Mice, Inbred C57BL , Polysaccharides , Animals , Lipogenesis/drug effects , Mice , Lipolysis/drug effects , Male , Diet, High-Fat/adverse effects , Humans , Polysaccharides/pharmacology , Polysaccharides/administration & dosage , Sirtuin 1/metabolism , Sirtuin 1/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Kidney Tubules/metabolism , Kidney Tubules/drug effects , Camellia sinensis/chemistry , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Tea/chemistry , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
19.
Eur J Pharmacol ; 975: 176644, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754535

ABSTRACT

Metabolic dysfunction-associated fatty liver disease is a metabolic disease caused by abnormal lipid accumulation in the liver. Excessive lipid accumulation results in liver inflammation and fibrosis. Previous studies have demonstrated that the chalcone licochalcone D, which is isolated from Glycyrrhiza inflata Batal, has anti-tumor and anti-inflammatory effects. The present study explored whether licochalcone D can regulate lipid accumulation in fatty liver cells. FL83B hepatocytes were incubated with oleic acid to establish a fatty liver cell model, and then treated with licochalcone D to evaluate the molecular mechanisms underlying the regulation of lipid metabolism. In addition, male C57BL/6 mice were fed a methionine/choline-deficient diet to induce an animal model of metabolic dysfunction-associated steatohepatitis (MASH) and given 5 mg/kg licochalcone D by intraperitoneal injection. In cell experiments, licochalcone D significantly reduced lipid accumulation in fatty liver cells and reduced sterol regulatory element-binding protein 1c expression, blocking fatty acid synthase production. Licochalcone D increased adipose triglyceride lipase and carnitine palmitoyltransferase 1 expression, enhancing lipolysis and fatty acid ß-oxidation, respectively. Licochalcone D also significantly increased SIRT-1 and AMPK phosphorylation, reducing acetyl-CoA carboxylase phosphorylation and inhibiting fatty acid synthesis. Licochalcone D also increased the fusion of autophagosomes and lysosomes to promote autophagy, reducing oil droplet accumulation in fatty liver cells. In the animal experiments, licochalcone D effectively reduced the number of lipid vacuoles and degree of fibrosis in liver tissue and inhibited liver inflammation. Thus, licochalcone D can improve MASH by reducing lipid accumulation, inhibiting inflammation, and increasing autophagy.


Subject(s)
Autophagy , Chalcones , Hepatocytes , Lipid Metabolism , Lipogenesis , Mice, Inbred C57BL , Animals , Autophagy/drug effects , Chalcones/pharmacology , Lipogenesis/drug effects , Male , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Mice , Lipid Metabolism/drug effects , Cell Line , Fatty Liver/drug therapy , Fatty Liver/metabolism , Fatty Liver/pathology
20.
Phytomedicine ; 129: 155702, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749344

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease with therapeutic options on the horizon. Picrorhiza kurroa, enriched with iridoid glycosides like picroside I and picroside II is known for its hepatoprotective activity and anti-inflammatory properties. Androsin, the other phytochemical present in P. kurroa has been shown to have anti-inflammatory and anti-asthmatic properties. However, its role in NAFLD is yet to be investigated. PURPOSE: This study aims to identify the potent hepatoprotective agent from P. kurroa that can attenuate NAFLD in HFrD-fed ApoE-/- mice, and elucidate the underlying mechanisms governing its effects. METHODS: Classical purification methods were used to isolate seven compounds, including picroside I, picroside II and androsin from the roots of P. kurroa. NAFLD-induced ApoE-/- mice were administered orally with either picroside I, picroside II, or androsin for 7 weeks. Animals were scanned non-invasively by ultrasonography at 1st and 14th week. Gross histomorphometry was examined by HE and Sirius red staining. mRNA transcript and protein profile associated with autophagy, lipogenesis, inflammation, and fibrosis was done through RT-PCR and Western blot analysis. RESULTS: In-vitro and in-vivo studies revealed that among the seven evaluated compounds, androsin shows the most potent in-vitro activity. Oral dosing of androsin (10 mg/kg) protected the liver against HFrD-induced NAFLD in ApoE-/- mice model. Biochemical analysis revealed a reduction in ALT and AST enzymes and a significant reduction in cholesterol levels. Hepatocyte ballooning, hepatic lipid deposition, inflammation, and fibrosis were reduced. Androsin treatment significantly reduced fibrosis (α-SMA, collagens, TGF-ß) and inflammation (ILs, TNF-α, NFκB) in ApoE-/- mice. Mechanistically, androsin activated AMPKα and down-regulated the expression of SREBP-1c, resulting in ameliorating hepatic lipogenesis. CONCLUSION: Our results support autophagy as one of the therapeutic strategies to reduce steatosis and hepatic damage. We found that androsin treatment significantly ameliorated hepatic steatosis, serum lipid levels, and hepatic injury in ApoE-/- induced by HFrD. Androsin administration mitigated lipogenesis by inhibiting SREBP1c/FASN pathway and activating autophagy through AMPKα/PI3K/Beclin1/LC3 pathway.


Subject(s)
Autophagy , Iridoid Glucosides , Lipogenesis , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Lipogenesis/drug effects , Autophagy/drug effects , Male , Mice , Iridoid Glucosides/pharmacology , Cinnamates/pharmacology , Liver/drug effects , Picrorhiza/chemistry , Hep G2 Cells , Mice, Inbred C57BL , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...