Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95.025
Filter
1.
J Neuroinflammation ; 21(1): 169, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961424

ABSTRACT

BACKGROUND: Understanding the mechanism behind sepsis-associated encephalopathy (SAE) remains a formidable task. This study endeavors to shed light on the complex cellular and molecular alterations that occur in the brains of a mouse model with SAE, ultimately unraveling the underlying mechanisms of this condition. METHODS: We established a murine model using intraperitoneal injection of lipopolysaccharide (LPS) in wild type and Anxa1-/- mice and collected brain tissues for analysis at 0-hour, 12-hour, 24-hour, and 72-hour post-injection. Utilizing advanced techniques such as single-nucleus RNA sequencing (snRNA-seq) and Stereo-seq, we conducted a comprehensive characterization of the cellular responses and molecular patterns within the brain. RESULTS: Our study uncovered notable temporal differences in the response to LPS challenge between Anxa1-/- (annexin A1 knockout) and wild type mice, specifically at the 12-hour and 24-hour time points following injection. We observed a significant increase in the proportion of Astro-2 and Micro-2 cells in these mice. These cells exhibited a colocalization pattern with the vascular subtype Vas-1, forming a distinct region known as V1A2M2, where Astro-2 and Micro-2 cells surrounded Vas-1. Moreover, through further analysis, we discovered significant upregulation of ligands and receptors such as Timp1-Cd63, Timp1-Itgb1, Timp1-Lrp1, as well as Ccl2-Ackr1 and Cxcl2-Ackr1 within this region. In addition, we observed a notable increase in the expression of Cd14-Itgb1, Cd14-Tlr2, and Cd14-C3ar1 in regions enriched with Micro-2 cells. Additionally, Cxcl10-Sdc4 showed broad upregulation in brain regions containing both Micro-2 and Astro-2 cells. Notably, upon LPS challenge, there was an observed increase in Anxa1 expression in the mouse brain. Furthermore, our study revealed a noteworthy increase in mortality rates following Anxa1 knockdown. However, we did not observe substantial differences in the types, numbers, or distribution of other brain cells between Anxa1-/- and wildtype mice over time. Nevertheless, when comparing the 24-hour post LPS injection time point, we observed a significant decrease in the proportion and distribution of Micro-2 and Astro-2 cells in the vicinity of blood vessels in Anxa1-/- mice. Additionally, we noted reduced expression levels of several ligand-receptor pairs including Cd14-Tlr2, Cd14-C3ar1, Cd14-Itgb1, Cxcl10-Sdc4, Ccl2-Ackr1, and Cxcl2-Ackr1. CONCLUSIONS: By combining snRNA-seq and Stereo-seq techniques, our study successfully identified a distinctive cellular colocalization, referred to as a special pathological niche, comprising Astro-2, Micro-2, and Vas-1 cells. Furthermore, we observed an upregulation of ligand-receptor pairs within this niche. These findings suggest a potential association between this cellular arrangement and the underlying mechanisms contributing to SAE or the increased mortality observed in Anxa1 knockdown mice.


Subject(s)
Astrocytes , Brain , Disease Models, Animal , Lipopolysaccharides , Mice, Knockout , Microglia , Sepsis-Associated Encephalopathy , Animals , Mice , Lipopolysaccharides/toxicity , Sepsis-Associated Encephalopathy/pathology , Sepsis-Associated Encephalopathy/genetics , Sepsis-Associated Encephalopathy/metabolism , Microglia/metabolism , Microglia/pathology , Brain/pathology , Brain/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Sequence Analysis, RNA/methods , Mice, Inbred C57BL , Transcriptome , Male
2.
Clin Transl Sci ; 17(7): e13876, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963161

ABSTRACT

Plerixafor is a CXCR4 antagonist approved in 2008 by the FDA for hematopoietic stem cell collection. Subsequently, plerixafor has shown promise as a potential pathogen-agnostic immunomodulator in a variety of preclinical animal models. Additionally, investigator-led studies demonstrated plerixafor prevents viral and bacterial infections in patients with WHIM syndrome, a rare immunodeficiency with aberrant CXCR4 signaling. Here, we investigated whether plerixafor could be repurposed to treat sepsis or severe wound infections, either alone or as an adjunct therapy. In a Pseudomonas aeruginosa lipopolysaccharide (LPS)-induced zebrafish sepsis model, plerixafor reduced sepsis mortality and morbidity assessed by tail edema. There was a U-shaped response curve with the greatest effect seen at 0.1 µM concentration. We used Acinetobacter baumannii infection in a neutropenic murine thigh infection model. Plerixafor did not show reduced bacterial growth at 24 h in the mouse thigh model, nor did it amplify the effects of a rifampin antibiotic therapy, in varying regimens. While plerixafor did not mitigate or treat bacterial wound infections in mice, it did reduce sepsis mortality in zebra fish. The observed mortality reduction in our LPS model of zebrafish was consistent with prior research demonstrating a mortality benefit in a murine model of sepsis. However, based on our results, plerixafor is unlikely to be successful as an adjunct therapy for wound infections. Further research is needed to better define the scope of plerixafor as a pathogen-agnostic therapy. Future directions may include the use of longer acting CXCR4 antagonists, biased CXCR4 signaling, and optimization of animal models.


Subject(s)
Benzylamines , Cyclams , Disease Models, Animal , Heterocyclic Compounds , Receptors, CXCR4 , Sepsis , Zebrafish , Animals , Cyclams/pharmacology , Cyclams/administration & dosage , Benzylamines/pharmacology , Sepsis/drug therapy , Sepsis/microbiology , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/administration & dosage , Mice , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/metabolism , Thigh/microbiology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Female , Lipopolysaccharides , Wound Infection/microbiology , Wound Infection/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
3.
Chem Biol Drug Des ; 104(1): e14574, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958121

ABSTRACT

To develop novel bovine lactoferrin (bLF) peptides targeting bLF-tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6) binding sites, we identified two peptides that could target bLF-TRAF6 binding sites using structural analysis. Moreover, another peptide that could bind to the TRAF6 dimerization area was selected from the bLF sequence. The effects of each peptide on cytokine expression in lipopolysaccharide (LPS)-stimulated osteoblasts (ST2) and on osteoclastogenesis were examined using an LPS-treated co-culture of primary bone marrow cells (BMCs) with ST2 cells and a single culture of osteoclast precursor cells (RAW-D) treated with soluble receptor activator of NF-κB ligand. Finally, the effectiveness of these peptides against LPS-induced alveolar bone destruction was assessed. Two of the three peptides significantly suppressed LPS-induced TNF-α and interleukin-1ß expression in ST2 cells. Additionally, these peptides inhibited and reversed LPS-induced receptor activator of NF-κB ligand (RANKL) upregulation and osteoprotegerin (OPG) downregulation, respectively. Furthermore, both peptides significantly reduced LPS-induced osteoclastogenesis in the BMC-ST2 co-culture and RANKL-induced osteoclastogenesis in RAW-D cells. In vivo, topical application of these peptides significantly reduced the osteoclast number by downregulating RANKL and upregulating OPG in the periodontal ligament. It is indicated that the novel bLF peptides can be used to treat periodontitis-associated bone destruction.


Subject(s)
Lactoferrin , Lipopolysaccharides , Osteoclasts , Peptides , Animals , Lactoferrin/pharmacology , Lactoferrin/chemistry , Lactoferrin/metabolism , Lipopolysaccharides/pharmacology , Rats , Peptides/pharmacology , Peptides/chemistry , Osteoclasts/drug effects , Osteoclasts/metabolism , RANK Ligand/metabolism , Male , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/pathology , Cattle , Mice , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/cytology , Rats, Sprague-Dawley , Osteogenesis/drug effects , Tumor Necrosis Factor-alpha/metabolism , Binding Sites , Coculture Techniques , Osteoprotegerin/metabolism , Disease Models, Animal
4.
Sci Rep ; 14(1): 14972, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38951571

ABSTRACT

Sepsis, marked by organ dysfunction, necessitates reliable biomarkers. Ribonuclease inhibitor 1 (RNH1), a ribonuclease (RNase) inhibitor, emerged as a potential biomarker for acute kidney injury and mortality in thoracoabdominal aortic aneurysm patients. Our study investigates RNH1 dynamics in sepsis, its links to mortality and organ dysfunction, and the interplay with RNase 1 and RNase 5. Furthermore, we explore RNH1 as a therapeutic target in sepsis-related processes like inflammation, non-canonical inflammasome activation, and iron homeostasis. We showed that RNH1 levels are significantly higher in deceased patients compared to sepsis survivors and correlate with creatine kinase, aspartate and alanine transaminase, bilirubin, serum creatinine and RNase 5, but not RNase 1. RNH1 mitigated LPS-induced TNFα and RNase 5 secretion, and relative mRNA expression of ferroptosis-associated genes HMOX1, FTH1 and HAMP in PBMCs. Monocytes were identified as the predominant type of LPS-positive PBMCs. Exogenous RNH1 attenuated LPS-induced CASP5 expression, while increasing IL-1ß secretion in PBMCs and THP-1 macrophages. As RNH1 has contradictory effects on inflammation and non-canonical inflammasome activation, its use as a therapeutic agent is limited. However, RNH1 levels may play a central role in iron homeostasis during sepsis, supporting our clinical observations. Hence, RNH1 shows promise as biomarkers for renal and hepatic dysfunction and hepatocyte injury, and may be useful in predicting the outcome of septic patients.


Subject(s)
Biomarkers , Homeostasis , Inflammation , Iron , Sepsis , Humans , Sepsis/metabolism , Sepsis/drug therapy , Biomarkers/metabolism , Iron/metabolism , Inflammation/metabolism , Male , Female , Middle Aged , Aged , Inflammasomes/metabolism , Lipopolysaccharides , THP-1 Cells , Carrier Proteins
5.
Elife ; 122024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953285

ABSTRACT

We studied lysosomal Ca2+ in inflammasome. Lipopolysaccharide (LPS) + palmitic acid (PA) decreased lysosomal Ca2+ ([Ca2+]Lys) and increased [Ca2+]i through mitochondrial ROS, which was suppressed in Trpm2-KO macrophages. Inflammasome activation and metabolic inflammation in adipose tissue of high-fat diet (HFD)-fed mice were ameliorated by Trpm2 KO. ER→lysosome Ca2+ refilling occurred after lysosomal Ca2+ release whose blockade attenuated LPS + PA-induced inflammasome. Subsequently, store-operated Ca2+entry (SOCE) was activated whose inhibition suppressed inflammasome. SOCE was coupled with K+ efflux whose inhibition reduced ER Ca2+ content ([Ca2+]ER) and impaired [Ca2+]Lys recovery. LPS + PA activated KCa3.1 channel, a Ca2+-activated K+ channel. Inhibitors of KCa3.1 channel or Kcnn4 KO reduced [Ca2+]ER, attenuated increase of [Ca2+]i or inflammasome activation by LPS + PA, and ameliorated HFD-induced inflammasome or metabolic inflammation. Lysosomal Ca2+ release induced delayed JNK and ASC phosphorylation through CAMKII-ASK1. These results suggest a novel role of lysosomal Ca2+ release sustained by ER→lysosome Ca2+ refilling and K+ efflux through KCa3.1 channel in inflammasome activation and metabolic inflammation.


Subject(s)
Calcium , Endoplasmic Reticulum , Inflammasomes , Inflammation , Lysosomes , Mice, Knockout , Potassium , Animals , Inflammasomes/metabolism , Mice , Lysosomes/metabolism , Calcium/metabolism , Potassium/metabolism , Inflammation/metabolism , Endoplasmic Reticulum/metabolism , Lipopolysaccharides , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Mice, Inbred C57BL , Macrophages/metabolism , Male , Diet, High-Fat
6.
Front Immunol ; 15: 1397722, 2024.
Article in English | MEDLINE | ID: mdl-38957471

ABSTRACT

Rationale: Sepsis is a life-threatening organ dysfunction and lack of effective measures in the current. Exosomes from mesenchymal stem cells (MSCs) reported to alleviate inflammation during sepsis, and the preconditioning of MSCs could enhance their paracrine potential. Therefore, this study investigated whether exosomes secreted by lipopolysaccharide (LPS)-pretreated MSCs exert superior antiseptic effects, and explored the underlying molecular mechanisms. Methods: Exosomes were isolated and characterized from the supernatants of MSCs. The therapeutic efficacy of normal exosomes (Exo) and LPS-pretreated exosomes (LPS-Exo) were evaluated in terms of survival rates, inflammatory response, and organ damage in an LPS-induced sepsis model. Macrophages were stimulated with LPS and treated with Exo or LPS-Exo to confirm the results of the in vivo studies, and to explain the potential mechanisms. Results: LPS-Exo were shown to inhibit aberrant pro-inflammatory cytokines, prevent organ damages, and improve survival rates of the septic mice to a greater extent than Exo. In vitro, LPS-Exo significantly promoted the M2 polarization of macrophages exposed to inflammation. miRNA sequencing and qRT-PCR analysis identified the remarkable expression of miR-150-5p in LPS-Exo compared to that in Exo, and exosomal miR-150-5p was transferred into recipient macrophages and mediated macrophage polarization. Further investigation demonstrated that miR-150-5p targets Irs1 in recipient macrophages and subsequently modulates macrophage plasticity by down-regulating the PI3K/Akt/mTOR pathway. Conclusion: The current findings highly suggest that exosomes derived from LPS pre-conditioned MSCs represent a promising cell-free therapeutic method and highlight miR-150-5p as a novel molecular target for regulating immune hyperactivation during sepsis.


Subject(s)
Exosomes , Insulin Receptor Substrate Proteins , Lipopolysaccharides , Macrophages , Mesenchymal Stem Cells , MicroRNAs , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Sepsis , Signal Transduction , TOR Serine-Threonine Kinases , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Sepsis/metabolism , Sepsis/immunology , TOR Serine-Threonine Kinases/metabolism , Mice , Proto-Oncogene Proteins c-akt/metabolism , Macrophages/metabolism , Macrophages/immunology , Insulin Receptor Substrate Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Male , Mice, Inbred C57BL , Macrophage Activation/drug effects , Disease Models, Animal
7.
Sci Rep ; 14(1): 15394, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965275

ABSTRACT

Some herbal extracts contain relatively high amounts of lipopolysaccharide (LPS). Because orally administered LPS activates innate immunity without inducing inflammation, it plays a role as an active ingredient in herbal extracts. However, the LPS content in herbal extracts remains extensively unevaluated. This study aimed to create a database of LPS content in herbal extracts; therefore, the LPS content of 414 herbal extracts was measured and the macrophage activation potential was evaluated. The LPS content of these hot water extracts was determined using the kinetic-turbidimetric method. The LPS concentration ranged from a few ng/g to hundreds of µg/g (Standard Escherichia coli LPS equivalent). Twelve samples had a high-LPS-content of > 100 µg/g, including seven samples from roots and three samples from leaves of the herbal extracts. These samples showed high phagocytosis and NO production capacity, and further investigation using polymyxin B, an LPS inhibitor, significantly inhibited macrophage activation. This study suggests that some herbal extracts contain sufficient LPS concentration to activate innate immunity. Therefore, a new approach to evaluate the efficacy of herbal extracts based on their LPS content was proposed. A database listing the LPS content of different herbal extracts is essential for this approach.


Subject(s)
Immunity, Innate , Lipopolysaccharides , Macrophage Activation , Phagocytosis , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Immunity, Innate/drug effects , Phagocytosis/drug effects , Animals , Mice , Macrophage Activation/drug effects , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Nitric Oxide/metabolism , Plant Leaves/chemistry
8.
Commun Biol ; 7(1): 817, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965342

ABSTRACT

Macrophages play a pivotal role in orchestrating the immune response against pathogens. While the intricate interplay between macrophage activation and metabolism remains a subject of intense investigation, the role of glutamate oxaloacetate transaminase 1 (Got1) in this context has not been extensively assessed. Here, we investigate the impact of Got1 on macrophage polarization and function, shedding light on its role in reactive oxygen species (ROS) production, pathogen defense, and immune paralysis. Using genetically modified mouse models, including both myeloid specific knockout and overexpression, we comprehensively demonstrate that Got1 depletion leads to reduced ROS production in macrophages. Intriguingly, this impairment in ROS generation does not affect the resistance of Got1 KO mice to pathogenic challenges. Furthermore, Got1 is dispensable for M2 macrophage differentiation and does not influence the onset of LPS-induced immune paralysis. Our findings underscore the intricate facets of macrophage responses, suggesting that Got1 is dispensable in discrete immunological processes.


Subject(s)
Cell Differentiation , Macrophages , Mice, Knockout , Reactive Oxygen Species , Animals , Macrophages/immunology , Macrophages/metabolism , Mice , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Aspartate Aminotransferase, Cytoplasmic/genetics , Aspartate Aminotransferase, Cytoplasmic/metabolism , Macrophage Activation/genetics , Lipopolysaccharides/pharmacology
9.
Int J Oral Sci ; 16(1): 50, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956025

ABSTRACT

Apical periodontitis (AP) is a dental-driven condition caused by pathogens and their toxins infecting the inner portion of the tooth (i.e., dental pulp tissue), resulting in inflammation and apical bone resorption affecting 50% of the worldwide population, with more than 15 million root canals performed annually in the United States. Current treatment involves cleaning and decontaminating the infected tissue with chemo-mechanical approaches and materials introduced years ago, such as calcium hydroxide, zinc oxide-eugenol, or even formalin products. Here, we present, for the first time, a nanotherapeutics based on using synthetic high-density lipoprotein (sHDL) as an innovative and safe strategy to manage dental bone inflammation. sHDL application in concentrations ranging from 25 µg to 100 µg/mL decreases nuclear factor Kappa B (NF-κB) activation promoted by an inflammatory stimulus (lipopolysaccharide, LPS). Moreover, sHDL at 500 µg/mL concentration markedly decreases in vitro osteoclastogenesis (P < 0.001), and inhibits IL-1α (P = 0.027), TNF-α (P = 0.004), and IL-6 (P < 0.001) production in an inflammatory state. Notably, sHDL strongly dampens the Toll-Like Receptor signaling pathway facing LPS stimulation, mainly by downregulating at least 3-fold the pro-inflammatory genes, such as Il1b, Il1a, Il6, Ptgs2, and Tnf. In vivo, the lipoprotein nanoparticle applied after NaOCl reduced bone resorption volume to (1.3 ± 0.05) mm3 and attenuated the inflammatory reaction after treatment to (1 090 ± 184) cells compared to non-treated animals that had (2.9 ± 0.6) mm3 (P = 0.012 3) and (2 443 ± 931) cells (P = 0.004), thus highlighting its promising clinical potential as an alternative therapeutic for managing dental bone inflammation.


Subject(s)
Lipoproteins, HDL , NF-kappa B , Periapical Periodontitis , Animals , Periapical Periodontitis/therapy , Mice , Lipopolysaccharides , Osteogenesis/drug effects , Humans , Osteoclasts/drug effects , Nanoparticles
10.
Sci Rep ; 14(1): 15093, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956179

ABSTRACT

2K4L is a rationally designed analog of the short α-helical peptide temporin-1CEc, a natural peptide isolated and purified from the skin secretions of the Chinese brown frog Rana chensinensis by substituting amino acid residues. 2K4L displayed improved and broad-spectrum antibacterial activity than temporin-1CEc in vitro. Here, the antibacterial and anti-inflammatory activities of 2K4L in macrophages, C. elegans and mice were investigated. The results demonstrated that 2K4L could enter THP-1 cells to kill a multidrug-resistant Acinetobacter baumannii strain (MRAB 0227) and a sensitive A. baumannii strain (AB 22933), as well as reduce proinflammatory responses induced by MRAB 0227 by inhibiting NF-κB signaling pathway. Similarly, 2K4L exhibited strong bactericidal activity against A. baumannii uptake into C. elegans, extending the lifespan and healthspan of the nematodes. Meanwhile, 2K4L alleviated the oxidative stress response by inhibiting the expression of core genes in the p38 MAPK/PMK-1 signaling pathway and downregulating the phosphorylation level of p38, thereby protecting the nematodes from damage by A. baumannii. Finally, in an LPS-induced septic model, 2K4L enhanced the survival of septic mice and decreased the production of proinflammatory cytokines by inhibiting the signaling protein expression of the MAPK and NF-κB signaling pathways and protecting LPS-induced septic mice from a lethal inflammatory response. In conclusion, 2K4L ameliorated LPS-induced inflammation both in vitro and in vivo.


Subject(s)
Acinetobacter baumannii , Caenorhabditis elegans , Lipopolysaccharides , Macrophages , Shock, Septic , Animals , Caenorhabditis elegans/drug effects , Mice , Acinetobacter baumannii/drug effects , Macrophages/drug effects , Macrophages/metabolism , Shock, Septic/drug therapy , Shock, Septic/chemically induced , Shock, Septic/metabolism , NF-kappa B/metabolism , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Humans , p38 Mitogen-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Oxidative Stress/drug effects , Mitogen-Activated Protein Kinases , Caenorhabditis elegans Proteins
11.
Sci Rep ; 14(1): 15153, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956206

ABSTRACT

Durian (Durio zibethinus L.) fruit pulp is a rich source of γ-glutamylcysteine (γ-EC), a direct precursor to the antioxidant glutathione (GSH). This study elucidated the in vitro neuroprotective potential of unripe durian fruit pulp extract (UDE) against H2O2-induced neurotoxicity in SH-SY5Y cells and neuroinflammation in lipopolysaccharide (LPS)-stimulated BV-2 cells. Treatments with γ-EC, GSH standards, or UDE exhibited no cytotoxicity in SH-SY5Y and BV-2 cells, except at high concentrations. A 4-h pretreatment with 100 µM γ-EC or UDE containing 100 µM γ-EC significantly increased SH-SY5Y cell viability post H2O2 induction. Moreover, a similar pretreatment reduced LPS-stimulated production of proinflammatory cytokines in BV-2 cells. The neuroprotective effect of UDE is primarily attributed to γ-EC provision and the promotion of GSH synthesis, which in turn elevates intracellular GSH levels and reduces proinflammatory cytokines. This study identifies γ-EC in UDE as a potential neuroprotective biomarker boosting intracellular GSH levels, providing insights into UDE's therapeutic potential.


Subject(s)
Fruit , Glutathione , Neuroprotective Agents , Oxidative Stress , Plant Extracts , Glutathione/metabolism , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Neuroprotective Agents/pharmacology , Humans , Fruit/chemistry , Animals , Inflammation/metabolism , Inflammation/drug therapy , Lipopolysaccharides , Neuroprotection/drug effects , Mice , Cell Survival/drug effects , Hydrogen Peroxide/metabolism , Antioxidants/pharmacology , Cell Line, Tumor , Cell Line , Cytokines/metabolism , Dipeptides/pharmacology
12.
Respir Res ; 25(1): 263, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956592

ABSTRACT

BACKGROUND: Aberrant activation of macrophages is associated with pathogenesis of acute lung injury (ALI). However, the potential pathogenesis has not been explored. OBJECTIVES: We aimed to identify whether histone deacetylase (HDAC) 10 is involved in lipopolysaccharide (LPS)-exposed ALI and reveal the underlying pathogenesis by which it promotes lung inflammation in LPS-exposed ALI via modifying P62 with deacetylation. METHODS: We constructed an ALI mice model stimulated with LPS to determine the positive effect of Hdac10 deficiency. Moreover, we cultured murine alveolar macrophage cell line (MH-S cells) and primary bone marrow-derived macrophages (BMDMs) to explore the pro-inflammatory activity and mechanism of HDAC10 after LPS challenge. RESULTS: HDAC10 expression was increased both in mice lung tissues and macrophage cell lines and promoted inflammatory cytokines production exposed to LPS. Hdac10 deficiency inhibited autophagy and inflammatory response after LPS stimulation. In vivo, Hdac10fl/fl-LysMCre mice considerably attenuated lung inflammation and inflammatory cytokines release exposed to LPS. Mechanistically, HDAC10 interacts with P62 and mediates P62 deacetylation at lysine 165 (K165), by which it promotes P62 expression and increases inflammatory cytokines production. Importantly, we identified that Salvianolic acid B (SAB), an HDAC10 inhibitor, reduces lung inflammatory response in LPS-stimulated ALI. CONCLUSION: These results uncover a previously unknown role for HDAC10 in regulating P62 deacetylation and aggravating lung inflammation in LPS-induced ALI, implicating that targeting HDAC10 is an effective therapy for LPS-exposed ALI.


Subject(s)
Acute Lung Injury , Histone Deacetylases , Lipopolysaccharides , Lysine , Mice, Inbred C57BL , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Acute Lung Injury/metabolism , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Lipopolysaccharides/toxicity , Mice , Acetylation , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/deficiency , Lysine/metabolism , Mice, Knockout , Male , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Myeloid Cells/metabolism
13.
J Cell Mol Med ; 28(13): e18509, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957035

ABSTRACT

Pruritus is often accompanied with bacterial infections, but the underlying mechanism is not fully understood. Although previous studies revealed that lipopolysaccharides (LPS) could directly activate TRPV4 channel and TRPV4 is involved in the generation of both acute itch and chronic itch, whether and how LPS affects TRPV4-mediated itch sensation remains unclear. Here, we showed that LPS-mediated TRPV4 sensitization exacerbated GSK101-induced scratching behaviour in mice. Moreover, this effect was compromised in TLR4-knockout mice, suggesting LPS acted through a TLR4-dependent mechanism. Mechanistically, LPS enhanced GSK101-evoked calcium influx in mouse ear skin cells and HEK293T cells transfected with TRPV4. Further, LPS sensitized TRPV4 channel through the intracellular TLR4-PI3K-AKT signalling. In summary, our study found a modulatory role of LPS in TRPV4 function and highlighted the TLR4-TRPV4 interaction in itch signal amplification.


Subject(s)
Lipopolysaccharides , Phosphatidylinositol 3-Kinases , Pruritus , Signal Transduction , TRPV Cation Channels , Toll-Like Receptor 4 , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Animals , Toll-Like Receptor 4/metabolism , Pruritus/metabolism , Pruritus/chemically induced , Pruritus/pathology , Lipopolysaccharides/pharmacology , Humans , Mice , HEK293 Cells , Phosphatidylinositol 3-Kinases/metabolism , Mice, Knockout , Mice, Inbred C57BL , Male , Calcium/metabolism , Proto-Oncogene Proteins c-akt/metabolism
14.
Drug Des Devel Ther ; 18: 2793-2812, 2024.
Article in English | MEDLINE | ID: mdl-38979400

ABSTRACT

Purpose: Zoledronate (ZA) stands as a highly effective antiresorptive agent known to trigger medication-related osteonecrosis of the jaw (MRONJ). Its clinical dosages primarily encompass those used for oncologic and osteoporosis treatments. While inflammation is recognized as a potential disruptor of mucosal healing processes associated with ZA, prior research has overlooked the influence of varying ZA dosages on tissue adaptability. Therefore, a deeper understanding of the specific mechanisms by which inflammation exacerbates ZA-induced MRONJ, particularly when inflammation acts as a risk factor, remains crucial. Methods: Cell proliferation and migration of human oral keratinocytes (HOK) was analyzed after treatment with different doses of ZA and/or lipopolysaccharide (LPS) to assess their possible effect on mucosal healing of extraction wounds. Mouse periodontitis models were established using LPS, and histological changes in extraction wounds were observed after the administration of oncologic dose ZA. Hematoxylin and eosin (HE) staining and immunofluorescence were used to evaluate mucosal healing. Results: In vitro, LPS did not exacerbate the effects of osteoporosis therapeutic dose of ZA on the proliferation and migration of HOK cells, while aggravated these with the oncologic dose of ZA treatment by inducing mitochondrial dysfunction and oxidative stress via regulating SIRT1 expression. Furthermore, SIRT1 overexpression can alleviate this process. In vivo, local injection of LPS increased the nonunion of mucous membranes in MRONJ and decreased the expression of SIRT1, PGC-1α, and MnSOD. Conclusion: Inflammation aggravates oncologic dose of ZA-induced mitochondrial dysfunction and oxidative stress via a SIRT1-dependent pathway, enhancing the risk of impaired mucosal healing in MRONJ. Our study implies that inflammation becomes a critical risk factor for MRONJ development at higher ZA concentrations. Elucidating the mechanisms of inflammation as a risk factor for mucosal non-healing in MRONJ could inform the development of SIRT1-targeted therapies.


Subject(s)
Cell Proliferation , Dose-Response Relationship, Drug , Inflammation , Signal Transduction , Sirtuin 1 , Zoledronic Acid , Sirtuin 1/metabolism , Animals , Mice , Humans , Cell Proliferation/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Inflammation/pathology , Signal Transduction/drug effects , Zoledronic Acid/pharmacology , Zoledronic Acid/administration & dosage , Risk Factors , Cell Movement/drug effects , Bisphosphonate-Associated Osteonecrosis of the Jaw/pathology , Bisphosphonate-Associated Osteonecrosis of the Jaw/metabolism , Bisphosphonate-Associated Osteonecrosis of the Jaw/drug therapy , Mice, Inbred C57BL , Cells, Cultured , Male , Keratinocytes/drug effects , Keratinocytes/metabolism , Lipopolysaccharides/pharmacology
15.
Front Immunol ; 15: 1427100, 2024.
Article in English | MEDLINE | ID: mdl-38983847

ABSTRACT

Introduction: Interleukin-18 (IL-18), a pro-inflammatory cytokine belonging to the IL-1 Family, is a key mediator ofautoinflammatory diseases associated with the development of macrophage activation syndrome (MAS).High levels of IL-18 correlate with MAS and COVID-19 severity and mortality, particularly in COVID-19patients with MAS. As an inflammation inducer, IL-18 binds its receptor IL-1 Receptor 5 (IL-1R5), leadingto the recruitment of the co-receptor, IL-1 Receptor 7 (IL-1R7). This heterotrimeric complex subsequentlyinitiates downstream signaling, resulting in local and systemic inflammation. Methods: We reported earlier the development of a novel humanized monoclonal anti-human IL-1R7 antibody whichspecifically blocks the activity of human IL-18 and its inflammatory signaling in human cell and wholeblood cultures. In the current study, we further explored the strategy of blocking IL-1R7 inhyperinflammation in vivo using animal models. Results: We first identified an anti-mouse IL-1R7 antibody that significantly suppressed mouse IL-18 andlipopolysaccharide (LPS)-induced IFNg production in mouse splenocyte and peritoneal cell cultures. Whenapplied in vivo, the antibody reduced Propionibacterium acnes and LPS-induced liver injury and protectedmice from tissue and systemic hyperinflammation. Importantly, anti-IL-1R7 significantly inhibited plasma,liver cell and spleen cell IFNg production. Also, anti-IL-1R7 downregulated plasma TNFa, IL-6, IL-1b,MIP-2 production and the production of the liver enzyme ALT. In parallel, anti-IL-1R7 suppressed LPSinducedinflammatory cell infiltration in lungs and inhibited the subsequent IFNg production andinflammation in mice when assessed using an acute lung injury model. Discussion: Altogether, our data suggest that blocking IL-1R7 represents a potential therapeutic strategy to specificallymodulate IL-18-mediated hyperinflammation, warranting further investigation of its clinical application intreating IL-18-mediated diseases, including MAS and COVID-19.


Subject(s)
Inflammation , Lipopolysaccharides , Animals , Mice , Lipopolysaccharides/immunology , Inflammation/immunology , Humans , Interleukin-18/metabolism , Interleukin-18/immunology , Disease Models, Animal , COVID-19/immunology , Mice, Inbred C57BL , Macrophage Activation Syndrome/immunology , SARS-CoV-2/immunology
16.
Front Immunol ; 15: 1371764, 2024.
Article in English | MEDLINE | ID: mdl-38983858

ABSTRACT

Introduction: Environmental exposures and experimental manipulations can alter the ontogenetic composition of tissue-resident macrophages. However, the impact of these alterations on subsequent immune responses, particularly in allergic airway diseases, remains poorly understood. This study aims to elucidate the significance of modified macrophage ontogeny resulting from environmental exposures on allergic airway responses to house dust mite (HDM) allergen. Methods: We utilized embryonic lineage labeling to delineate the ontogenetic profile of tissue-resident macrophages at baseline and following the resolution of repeated lipopolysaccharide (LPS)-induced lung injury. We investigated differences in house dust mite (HDM)-induced allergy to assess the influence of macrophage ontogeny on allergic airway responses. Additionally, we employed single-cell RNA sequencing (scRNAseq) and immunofluorescent staining to characterize the pulmonary macrophage composition, associated pathways, and tissue localization. Results: Our findings demonstrate that the ontogeny of homeostatic alveolar and interstitial macrophages is altered after the resolution from repeated LPS-induced lung injury, leading to the replacement of embryonic-derived by bone marrow-derived macrophages. This shift in macrophage ontogeny is associated with reduced HDM-induced allergic airway responses. Through scRNAseq and immunofluorescent staining, we identified a distinct subset of resident-derived interstitial macrophages expressing genes associated with allergic airway diseases, localized adjacent to terminal bronchi, and diminished by prior LPS exposure. Discussion: These results suggest a pivotal role for pulmonary macrophage ontogeny in modulating allergic airway responses. Moreover, our findings highlight the implications of prior environmental exposures in shaping future immune responses and influencing the development of allergies. By elucidating the mechanisms underlying these phenomena, this study provides valuable insights into potential therapeutic targets for allergic airway diseases and avenues for further research into immune modulation and allergic disease prevention.


Subject(s)
Macrophages, Alveolar , Transcriptome , Animals , Mice , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Pyroglyphidae/immunology , Respiratory Hypersensitivity/immunology , Lung/immunology , Disease Models, Animal , Mice, Inbred C57BL , Allergens/immunology , Lipopolysaccharides , Female , Hypersensitivity/immunology
17.
Mol Med Rep ; 30(3)2024 09.
Article in English | MEDLINE | ID: mdl-38963032

ABSTRACT

Cirrhosis impairs macrophage function and disrupts bile acid homeostasis. Although bile acids affect macrophage function in patients with sepsis, whether and how the bile acid profile is changed by infection in patients with cirrhosis to modulate macrophage function remains unclear. The present study aimed to investigate the changes in the bile acid profile of patients with cirrhosis and infection and their effects on macrophage function. Serum was collected from 20 healthy subjects, 18 patients with cirrhosis and 39 patients with cirrhosis and infection. Bile acid profiles were detected using high­performance liquid chromatography­triple time­of­flight mass spectrometer. The association between bile acid changes and infection was analysed using receiver operating characteristic (ROC) curves. Infection­altered bile acids were used in combination with lipopolysaccharides (LPS) to stimulate RAW264.7/THP­1 cells in vitro. The migratory capacity was evaluated using wound healing and Transwell migration assays. The expression of Arg­1, iNOS, IκBα, phosphorylated (p­)IκBα and p65 was examined with western blotting and immunofluorescence, Tnfα, Il1b and Il6 mRNA was examined with RT­qPCR, and CD86, CD163 and phagocytosis was measured with flow cytometry. The ROC curves showed that decreased hyodeoxycholic acid (HDCA) and deoxycholic acid (DCA) levels were associated with infection. HDCA or DCA combined with LPS enhanced the phagocytic and migratory ability of macrophages, accompanied by upregulation of iNOS and CD86 protein expression as well as Tnfα, Il1b, and Il6 mRNA expression. However, neither HDCA nor DCA alone showed an effect on these phenotypes. In addition, DCA and HDCA acted synergistically with LPS to increase the expression of p­IκBα and the intranuclear migration of p65. Infection changed the bile acid profile in patients with cirrhosis, among which the reduction of DCA and HDCA associated most strongly with infection. HDCA and DCA enhanced the sensitivity of macrophage function loss to LPS stimulation. These findings suggested a potential role for monitoring the bile acid profile that could help manage patients with cirrhosis and infection.


Subject(s)
Bile Acids and Salts , Liver Cirrhosis , Macrophage Activation , Macrophages , Humans , Liver Cirrhosis/metabolism , Macrophage Activation/drug effects , Bile Acids and Salts/metabolism , Bile Acids and Salts/blood , Male , Female , Middle Aged , Mice , RAW 264.7 Cells , Animals , Macrophages/metabolism , Macrophages/immunology , Lipopolysaccharides , THP-1 Cells , Adult , Aged , Phagocytosis/drug effects , Cytokines/metabolism , Cell Movement/drug effects
18.
Nat Commun ; 15(1): 5740, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982040

ABSTRACT

Mycobacterial glycolipids are important cell envelope structures that drive host-pathogen interactions. Arguably, the most important are lipoarabinomannan (LAM) and its precursor, lipomannan (LM), which are trafficked from the bacterium to the host via unknown mechanisms. Arabinomannan is thought to be a capsular derivative of these molecules, lacking a lipid anchor. However, the mechanism by which this material is generated has yet to be elucidated. Here, we describe the identification of a glycoside hydrolase family 76 enzyme that we term LamH (Rv0365c in Mycobacterium tuberculosis) which specifically cleaves α-1,6-mannoside linkages within LM and LAM, driving its export to the capsule releasing its phosphatidyl-myo-inositol mannoside lipid anchor. Unexpectedly, we found that the catalytic activity of this enzyme is important for efficient exit from stationary phase cultures, potentially implicating arabinomannan as a signal for growth phase transition. Finally, we demonstrate that LamH is important for M. tuberculosis survival in macrophages.


Subject(s)
Bacterial Proteins , Glycoside Hydrolases , Lipopolysaccharides , Macrophages , Mannans , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/growth & development , Lipopolysaccharides/metabolism , Mannans/metabolism , Macrophages/metabolism , Macrophages/microbiology , Glycoside Hydrolases/metabolism , Bacterial Proteins/metabolism , Animals , Mice , Humans , Phosphatidylinositols/metabolism , Bacterial Capsules/metabolism
19.
Ren Fail ; 46(2): 2371059, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38946402

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) have been shown to play critical roles in the initiation and progression of chronic glomerulonephritis (CGN), while their role from mesangial cells in contributing to the pathogenesis of CGN is rarely understood. Our study aims to explore the potential functions of mesangial cell-derived circRNAs using RNA sequencing (RNA-seq) and bioinformatics analysis. METHODS: Mouse mesangial cells (MMCs) were stimulated by lipopolysaccharide (LPS) to establish an in vitro model of CGN. Pro-inflammatory cytokines and cell cycle stages were detected by Enzyme-linked immunosorbent assay (ELISA) and Flow Cytometry experiment, respectively. Subsequently, differentially expressed circRNAs (DE-circRNAs) were identified by RNA-seq. GEO microarrays were used to identify differentially expressed mRNAs (DE-mRNAs) between CGN and healthy populations. Weighted co-expression network analysis (WGCNA) was utilized to explore clinically significant modules of CGN. CircRNA-associated CeRNA networks were constructed by bioinformatics analysis. The hub mRNAs from CeRNA network were identified using LASSO algorithms. Furthermore, utilizing protein-protein interaction (PPI), gene ontology (GO), pathway enrichment (KEGG), and GSEA analyses to explore the potential biological function of target genes from CeRNA network. In addition, we investigated the relationships between immune cells and hub mRNAs from CeRNA network using CIBERSORT. RESULTS: The expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α was drastically increased in LPS-induced MMCs. The number of cells decreased significantly in the G1 phase but increased significantly in the S/G2 phase. A total of 6 DE-mRNAs were determined by RNA-seq, including 4 up-regulated circRNAs and 2 down-regulated circRNAs. WGCNA analysis identified 1747 DE-mRNAs of the turquoise module from CGN people in the GEO database. Then, the CeRNA networks, including 6 circRNAs, 38 miRNAs, and 80 mRNAs, were successfully constructed. The results of GO and KEGG analyses revealed that the target mRNAs were mainly enriched in immune, infection, and inflammation-related pathways. Furthermore, three hub mRNAs (BOC, MLST8, and HMGCS2) from the CeRNA network were screened using LASSO algorithms. GSEA analysis revealed that hub mRNAs were implicated in a great deal of immune system responses and inflammatory pathways, including IL-5 production, MAPK signaling pathway, and JAK-STAT signaling pathway. Moreover, according to an evaluation of immune infiltration, hub mRNAs have statistical correlations with neutrophils, plasma cells, monocytes, and follicular helper T cells. CONCLUSIONS: Our findings provide fundamental and novel insights for further investigations into the role of mesangial cell-derived circRNAs in CGN pathogenesis.


Subject(s)
Computational Biology , Glomerulonephritis , Mesangial Cells , RNA, Circular , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , Mice , Mesangial Cells/metabolism , Glomerulonephritis/genetics , Glomerulonephritis/metabolism , Sequence Analysis, RNA , Gene Regulatory Networks , RNA, Messenger/metabolism , RNA, Messenger/genetics , Protein Interaction Maps/genetics , Chronic Disease , Cytokines/metabolism , Lipopolysaccharides/pharmacology , Gene Expression Profiling , Disease Models, Animal
20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 538-543, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38952094

ABSTRACT

Objective To investigate the expression levels of lncRNA H19 in ulcerative colitis (UC) patients and its role in UC. Methods Colonic mucosa and serum samples were collected from 25 UC patients and 25 healthy individuals at the General Hospital of Xizang Military Region. The expression levels of lncRNA H19 were detected, and the receiver operating characteristic (ROC) curve analysis was performed using serum samples. An in vitro inflammatory model was established in HT29 colorectal cells under lipopolysaccharide (LPS) stimulation, and the expression levels of lncRNA H19 were observed in HT29 cells through fluorescence quantitative PCR. HT29 cells with downregulated lncRNA H19 was constructed using lentivirus-mediated shRNA. The effect of lncRNA H19 on cell survival was analyzed through MTT assay. Cell apoptosis was detected by flow cytometry, and the protein expression levels of apoptosis and autophagy markers were analyzed through Western blot. After treatment with rapamycin, the survival of HT29 cells was observed by MTT assay. Results lncRNA H19 was highly expressed in the colonic mucosa and serum samples of UC patients with the ROC area being 0.786. Following LPS stimulation, the expression levels of lncRNA H19 was significantly increased in a time-dependent manner. Downregulation of lncRNA H19 can promote cell survival, inhibit cell apoptosis and increase autophagy level in HT29 cells. Treatment with rapamycin significantly increased the cell survival rate. Conclusion Knock-down of lncRNA H19 increases autophagy levels, inhibits LPS-induced apoptosis and promotes the survival of colon cells.


Subject(s)
Apoptosis , Autophagy , Colitis, Ulcerative , Lipopolysaccharides , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Apoptosis/drug effects , Apoptosis/genetics , Autophagy/drug effects , Autophagy/genetics , Lipopolysaccharides/pharmacology , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , HT29 Cells , Male , Female , Middle Aged , Adult , Gene Knockdown Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...