Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.390
Filter
1.
Nat Commun ; 15(1): 5461, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937433

ABSTRACT

Peptidoglycan (PG) sacculi surround the cytoplasmic membrane, maintaining cell integrity by withstanding internal turgor pressure. During cell growth, PG endopeptidases cleave the crosslinks of the fully closed sacculi, allowing for the incorporation of new glycan strands and expansion of the peptidoglycan mesh. Outer-membrane-anchored NlpI associates with hydrolases and synthases near PG synthesis complexes, facilitating spatially close PG hydrolysis. Here, we present the structure of adaptor NlpI in complex with the endopeptidase MepS, revealing atomic details of how NlpI recruits multiple MepS molecules and subsequently influences PG expansion. NlpI binding elicits a disorder-to-order transition in the intrinsically disordered N-terminal of MepS, concomitantly promoting the dimerization of monomeric MepS. This results in the alignment of two asymmetric MepS dimers respectively located on the two opposite sides of the dimerization interface of NlpI, thus enhancing MepS activity in PG hydrolysis. Notably, the protein level of MepS is primarily modulated by the tail-specific protease Prc, which is known to interact with NlpI. The structure of the Prc-NlpI-MepS complex demonstrates that NlpI brings together MepS and Prc, leading to the efficient MepS degradation by Prc. Collectively, our results provide structural insights into the NlpI-enabled avidity effect of cellular endopeptidases and NlpI-directed MepS degradation by Prc.


Subject(s)
Endopeptidases , Lipoproteins , Peptidoglycan , Peptidoglycan/metabolism , Endopeptidases/metabolism , Endopeptidases/chemistry , Lipoproteins/metabolism , Lipoproteins/chemistry , Protein Binding , Protein Multimerization , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Models, Molecular , Crystallography, X-Ray , Hydrolysis , Escherichia coli/metabolism
2.
ACS Chem Biol ; 19(5): 1125-1130, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38712757

ABSTRACT

There remains a critical need for new antibiotics against multi-drug-resistant Gram-negative bacteria, a major global threat that continues to impact mortality rates. Lipoprotein signal peptidase II is an essential enzyme in the lipoprotein biosynthetic pathway of Gram-negative bacteria, making it an attractive target for antibacterial drug discovery. Although natural inhibitors of LspA have been identified, such as the cyclic depsipeptide globomycin, poor stability and production difficulties limit their use in a clinical setting. We harness computational design to generate stable de novo cyclic peptide analogues of globomycin. Only 12 peptides needed to be synthesized and tested to yield potent inhibitors, avoiding costly preparation of large libraries and screening campaigns. The most potent analogues showed comparable or better antimicrobial activity than globomycin in microdilution assays against ESKAPE-E pathogens. This work highlights computational design as a general strategy to combat antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Drug Design , Peptides, Cyclic , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Microbial Sensitivity Tests , Depsipeptides/pharmacology , Depsipeptides/chemistry , Lipoproteins/chemistry , Lipoproteins/metabolism , Lipoproteins/pharmacology , Lipoproteins/antagonists & inhibitors , Bacterial Proteins , Peptides , Aspartic Acid Endopeptidases
3.
J Inorg Biochem ; 257: 112579, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38703512

ABSTRACT

Human aromatase (CYP19A1), the cytochrome P450 enzyme responsible for conversion of androgens to estrogens, was incorporated into lipoprotein nanodiscs (NDs) and interrogated by small angle X-ray and neutron scattering (SAXS/SANS). CYP19A1 was associated with the surface and centered at the edge of the long axis of the ND membrane. In the absence of the N-terminal anchor, the amphipathic A'- and G'-helices were predominately buried in the lipid head groups, with the possibly that their hydrophobic side chains protrude into the hydrophobic, aliphatic tails. The prediction is like that for CYP3A4 based on SAXS employing a similar modeling approach. The orientation of CYP19A1 in a ND is consistent with our previous predictions based on molecular dynamics simulations and lends additional credibility to the notion that CYP19A1 captures substrates from the membrane.


Subject(s)
Aromatase , Scattering, Small Angle , Aromatase/metabolism , Aromatase/chemistry , Humans , Lipoproteins/chemistry , Lipoproteins/metabolism , X-Ray Diffraction , Nanostructures/chemistry , Molecular Dynamics Simulation
4.
Biochem Biophys Res Commun ; 717: 150057, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718568

ABSTRACT

Leptospirosis is a widespread zoonotic infectious disease of human and veterinary concern caused by pathogenic spirochetes of the genus Leptospira. To date, little progress towards understanding leptospiral pathogenesis and identification of virulence factors has been made, which is the main bottleneck for developing effective measures against the disease. Some leptospiral proteins, including LipL32, Lig proteins, LipL45, and LipL21, are being considered as potential virulence factors or vaccine candidates. However, their function remains to be established. LipL45 is the most expressed membrane lipoprotein in leptospires, upregulated when the bacteria are transferred to temperatures resembling the host, expressed during infection, suppressed after culture attenuation, and known to suffer processing in vivo and in vitro, generating fragments. Based on body of evidence, we hypothesized that the LipL45 processing might occur by an auto-cleavage event, deriving two fragments. The results presented here, based on bioinformatics, structure modeling analysis, and experimental data, corroborate that LipL45 processing probably includes a self-catalyzed non-proteolytic event and suggest the participation of LipL45 in cell-surface signaling pathways, as the protein shares structural similarities with bacterial sigma regulators. Our data indicate that LipL45 might play an important role in response to environmental conditions, with possible function in the adaptation to the host.


Subject(s)
Leptospira , Lipoproteins , Lipoproteins/metabolism , Lipoproteins/chemistry , Lipoproteins/genetics , Leptospira/metabolism , Leptospira/chemistry , Sigma Factor/metabolism , Sigma Factor/chemistry , Sigma Factor/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Models, Molecular , Leptospirosis/metabolism , Leptospirosis/microbiology
5.
Acta Trop ; 255: 107216, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636584

ABSTRACT

According to the World Health Organization, infectious diseases, particularly those caused by multidrug-resistant bacteria (MDR), are projected to claim the lives of 15 million people by 2050. Septicemia carries a higher morbidity and mortality rate than infections caused by susceptible Pseudomonas aeruginosa, and MDR-mediated ocular infections can lead to impaired vision and blindness. To identify and develop a potential drug against MDR P. aeruginosa, we employed in silico reverse genetics-based target mining, drug prioritization, and evaluation. Rare Lipoprotein A (RlpA) was selected as the target protein, and its crystal structure was geometrically optimized. Molecular docking and virtual screening analyses revealed that RlpA exhibits strong binding affinity with 11 compounds. Among these, 3-chlorophthalic acid was evaluated, and subsequent in vitro assays demonstrated significant anti-Pseudomonas activity with negligible cytotoxicity. The compound was further evaluated against both drug-susceptible and MDR P. aeruginosa strains in vitro, with cytotoxicity assessed using an MTT assay. The study demonstrated that 3-chlorophthalic acid exhibits potent anti-Pseudomonas activity with minimal toxicity to host cells. Consequently, this compound emerges as a promising candidate against MDR P. aeruginosa, warranting further investigation.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Molecular Docking Simulation , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Lipoproteins/pharmacology , Lipoproteins/genetics , Lipoproteins/chemistry , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology
6.
J Biol Chem ; 300(5): 107236, 2024 May.
Article in English | MEDLINE | ID: mdl-38552741

ABSTRACT

The complement system serves as the first line of defense against invading pathogens by promoting opsonophagocytosis and bacteriolysis. Antibody-dependent activation of complement occurs through the classical pathway and relies on the activity of initiating complement proteases of the C1 complex, C1r and C1s. The causative agent of Lyme disease, Borrelia burgdorferi, expresses two paralogous outer surface lipoproteins of the OspEF-related protein family, ElpB and ElpQ, that act as specific inhibitors of classical pathway activation. We have previously shown that ElpB and ElpQ bind directly to C1r and C1s with high affinity and specifically inhibit C2 and C4 cleavage by C1s. To further understand how these novel protease inhibitors function, we carried out a series of hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments using ElpQ and full-length activated C1s as a model of Elp-protease interaction. Comparison of HDX-MS profiles between unbound ElpQ and the ElpQ/C1s complex revealed a putative C1s-binding site on ElpQ. HDX-MS-guided, site-directed ElpQ mutants were generated and tested for direct binding to C1r and C1s using surface plasmon resonance. Several residues within the C-terminal region of ElpQ were identified as important for protease binding, including a single conserved tyrosine residue that was required for ElpQ- and ElpB-mediated complement inhibition. Collectively, our study identifies key molecular determinants for classical pathway protease recognition by Elp proteins. This investigation improves our understanding of the unique complement inhibitory mechanism employed by Elp proteins which serve as part of a sophisticated complement evasion system present in Lyme disease spirochetes.


Subject(s)
Bacterial Outer Membrane Proteins , Borrelia burgdorferi , Complement Pathway, Classical , Humans , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Borrelia burgdorferi/immunology , Borrelia burgdorferi/metabolism , Borrelia burgdorferi/genetics , Complement C1r/metabolism , Complement C1r/genetics , Complement C1s/metabolism , Complement C1s/genetics , Complement C1s/chemistry , Complement Pathway, Classical/immunology , Lipoproteins/metabolism , Lipoproteins/genetics , Lipoproteins/chemistry , Lipoproteins/immunology , Lyme Disease/genetics , Lyme Disease/immunology , Lyme Disease/microbiology , Protein Binding
7.
J Phys Chem B ; 128(11): 2717-2733, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38457439

ABSTRACT

The cell envelope of Gram-negative bacteria is a crowded tripartite architecture that separates the cell interior from the external environment. Two membranes encapsulate the aqueous periplasm, which contains the cell wall. Little is known about the mechanisms via which antimicrobial peptides move through the periplasm from the outer membrane to their site of action, the inner membrane. We utilize all-atom molecular dynamics to study two antimicrobial peptides, polymyxins B1 and E, within models of the E. coli periplasm crowded to different extents. In a simple chemical environment, both PMB1 and PME bind irreversibly to the cell wall. The presence of specific macromolecules leads to competition with the polymyxins for cell wall interaction sites, resulting in polymyxin dissociation from the cell wall. Chemical complexity also impacts interactions between polymyxins and Braun's lipoprotein; thus, the interaction modes of lipoprotein antibiotics within the periplasm are dependent upon the nature of the other species present.


Subject(s)
Escherichia coli , Periplasm , Escherichia coli/metabolism , Periplasm/metabolism , Molecular Dynamics Simulation , Lipopeptides , Polymyxins/pharmacology , Polymyxins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Lipoproteins/chemistry
8.
Microbiol Spectr ; 12(5): e0047024, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38501821

ABSTRACT

Bacterial lipoproteins are post-translationally modified by the addition of acyl chains that anchor the protein to bacterial membranes. This modification includes two ester-linked and one amide-linked acyl chain on lipoproteins from Gram-negative bacteria. Helicobacter pylori lipoproteins have important functions in pathogenesis (including delivering the CagA oncoprotein to mammalian cells) and are recognized by host innate and adaptive immune systems. The number and variety of acyl chains on lipoproteins impact the innate immune response through Toll-like receptor 2. The acyl chains added to lipoproteins are derived from membrane phospholipids. H. pylori membrane phospholipids have previously been shown to consist primarily of C14:0 and C19:0 cyclopropane-containing acyl chains. However, the acyl composition of H. pylori lipoproteins has not been determined. In this study, we characterized the acyl composition of two representative H. pylori lipoproteins, Lpp20 and CagT. Fatty acid methyl esters were prepared from both purified lipoproteins and analyzed by gas chromatography-mass spectrometry. For comparison, we also analyzed H. pylori phospholipids. Consistent with previous studies, we observed that the H. pylori phospholipids contain primarily C14:0 and C19:0 cyclopropane-containing fatty acids. In contrast, both the ester-linked and amide-linked fatty acids found in H. pylori lipoproteins were observed to be almost exclusively C16:0 and C18:0. A discrepancy between the acyl composition of membrane phospholipids and lipoproteins as reported here for H. pylori has been previously reported in other bacteria including Borrelia and Brucella. We discuss possible mechanisms.IMPORTANCEColonization of the stomach by Helicobacter pylori is an important risk factor in the development of gastric cancer, the third leading cause of cancer-related death worldwide. H. pylori persists in the stomach despite an immune response against the bacteria. Recognition of lipoproteins by TLR2 contributes to the innate immune response to H. pylori. However, the role of H. pylori lipoproteins in bacterial persistence is poorly understood. As the host response to lipoproteins depends on the acyl chain content, defining the acyl composition of H. pylori lipoproteins is an important step in characterizing how lipoproteins contribute to persistence.


Subject(s)
Bacterial Proteins , Fatty Acids , Helicobacter pylori , Lipoproteins , Helicobacter pylori/immunology , Helicobacter pylori/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Fatty Acids/metabolism , Fatty Acids/chemistry , Lipoproteins/metabolism , Lipoproteins/chemistry , Phospholipids/metabolism , Phospholipids/chemistry , Humans , Helicobacter Infections/microbiology , Immunity, Innate , Gas Chromatography-Mass Spectrometry
9.
J Agric Food Chem ; 72(4): 2309-2320, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38252882

ABSTRACT

Phytosterol ferulate (PF) is quantitively low in rice, corn, wheat, oats, barley, and millet, but it is potentially effective in reducing plasma lipids. In this study, PF was synthesized for the first time using acidic ionic liquids as a catalyst. The product was purified, characterized using Fourier transform infrared, mass spectroscopy, and nuclear magnetic resonance, and ultimately confirmed as the desired PF compound. The conversion of phytosterol surpassed an impressive 99% within just 2 h, with a selectivity for PF exceeding 83%. Plasma lipid-lowering activity of PF was further investigated by using C57BL/6J mice fed a high-fat diet as a model. Supplementation of 0.5% PF into diet resulted in significant reductions in plasma total cholesterol, triacylglycerols, and nonhigh-density lipoprotein cholesterol by 13.7, 16.9, and 46.3%, respectively. This was accompanied by 55.8 and 36.3% reductions in hepatic cholesterol and total lipids, respectively, and a 22.9% increase in fecal cholesterol excretion. Interestingly, PF demonstrated a higher lipid-lowering activity than that of its substrates, a physical mixture of phytosterols and ferulic acid. In conclusion, an efficient synthesis of PF was achieved for the first time, and PF had the great potential to be developed as a lipid-lowering dietary supplement.


Subject(s)
Ionic Liquids , Phytosterols , Animals , Mice , Cholesterol , Diet, High-Fat , Mice, Inbred C57BL , Lipoproteins/chemistry , Lipoproteins/metabolism
10.
Am J Kidney Dis ; 83(1): 9-17, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37678743

ABSTRACT

RATIONALE & OBJECTIVE: Chronic kidney disease (CKD) leads to lipid and metabolic abnormalities, but a comprehensive investigation of lipids, lipoprotein particles, and circulating metabolites associated with the risk of CKD has been lacking. We examined the associations of nuclear magnetic resonance (NMR)-based metabolomics data with CKD risk in the UK Biobank study. STUDY DESIGN: Observational cohort study. SETTING & PARTICIPANTS: A total of 91,532 participants in the UK Biobank Study without CKD and not receiving lipid-lowering therapy. EXPOSURE: Levels of metabolites including lipid concentration and composition within 14 lipoprotein subclasses, as well as other metabolic biomarkers were quantified via NMR spectroscopy. OUTCOME: Incident CKD identified using ICD codes in any primary care data, hospital admission records, or death register records. ANALYTICAL APPROACH: Cox proportional hazards regression models were used to estimate hazard ratios and 95% confidence intervals. RESULTS: We identified 2,269 CKD cases over a median follow-up period of 13.1 years via linkage with the electronic health records. After adjusting for covariates and correcting for multiple testing, 90 of 142 biomarkers were significantly associated with incident CKD. In general, higher concentrations of very-low-density lipoprotein (VLDL) particles were associated with a higher risk of CKD whereas higher concentrations of high-density lipoprotein (HDL) particles were associated with a lower risk of CKD. Higher concentrations of cholesterol, phospholipids, and total lipids within VLDL were associated with a higher risk of CKD, whereas within HDL they were associated with a lower risk of CKD. Further, higher triglyceride levels within all lipoprotein subclasses, including all HDL particles, were associated with greater risk of CKD. We also identified that several amino acids, fatty acids, and inflammatory biomarkers were associated with risk of CKD. LIMITATIONS: Potential underreporting of CKD cases because of case identification via electronic health records. CONCLUSIONS: Our findings highlight multiple known and novel pathways linking circulating metabolites to the risk of CKD. PLAIN-LANGUAGE SUMMARY: The relationship between individual lipoprotein particle subclasses and lipid-related traits and risk of chronic kidney disease (CKD) in general population is unclear. Using data from 91,532 participants in the UK Biobank, we evaluated the associations of metabolites measured using nuclear magnetic resonance testing with the risk of CKD. We identified that 90 out of 142 lipid biomarkers were significantly associated with incident CKD. We found that very-low-density lipoproteins, high-density lipoproteins, the lipid concentration and composition within these lipoproteins, triglycerides within all the lipoprotein subclasses, fatty acids, amino acids, and inflammation biomarkers were associated with CKD risk. These findings advance our knowledge about mechanistic pathways that may contribute to the development of CKD.


Subject(s)
Lipoproteins , Renal Insufficiency, Chronic , Humans , Lipoproteins/chemistry , Lipoproteins, HDL/chemistry , Magnetic Resonance Spectroscopy/methods , Lipoproteins, VLDL/chemistry , Triglycerides , Biomarkers , Renal Insufficiency, Chronic/epidemiology
11.
Nature ; 626(7999): 617-625, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081298

ABSTRACT

The outer membrane in Gram-negative bacteria consists of an asymmetric phospholipid-lipopolysaccharide bilayer that is densely packed with outer-membrane ß-barrel proteins (OMPs) and lipoproteins1. The architecture and composition of this bilayer is closely monitored and is essential to cell integrity and survival2-4. Here we find that SlyB, a lipoprotein in the PhoPQ stress regulon, forms stable stress-induced complexes with the outer-membrane proteome. SlyB comprises a 10 kDa periplasmic ß-sandwich domain and a glycine zipper domain that forms a transmembrane α-helical hairpin with discrete phospholipid- and lipopolysaccharide-binding sites. After loss in lipid asymmetry, SlyB oligomerizes into ring-shaped transmembrane complexes that encapsulate ß-barrel proteins into lipid nanodomains of variable size. We find that the formation of SlyB nanodomains is essential during lipopolysaccharide destabilization by antimicrobial peptides or acute cation shortage, conditions that result in a loss of OMPs and compromised outer-membrane barrier function in the absence of a functional SlyB. Our data reveal that SlyB is a compartmentalizing transmembrane guard protein that is involved in cell-envelope proteostasis and integrity, and suggest that SlyB represents a larger family of broadly conserved lipoproteins with 2TM glycine zipper domains with the ability to form lipid nanodomains.


Subject(s)
Bacterial Outer Membrane Proteins , Cell Membrane , Gram-Negative Bacteria , Lipid Bilayers , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Glycine/metabolism , Lipopolysaccharides/metabolism , Lipoproteins/chemistry , Lipoproteins/metabolism , Phospholipids/metabolism , Binding Sites , Proteostasis , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Proteome/chemistry , Proteome/metabolism , Regulon , Protein Domains , Antimicrobial Peptides/metabolism , Gram-Negative Bacteria/chemistry , Gram-Negative Bacteria/cytology , Gram-Negative Bacteria/metabolism
12.
Biosci Trends ; 17(6): 491-498, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38072447

ABSTRACT

The bacterial flagellar motor is a molecular nanomachine, the assembly and regulation of which requires many accessory proteins. Their identity, structure and function are often discovered through characterisation of mutants with impaired motility. Here, we demonstrate the functional association of the Helicobacter pylori peptidoglycan-associated lipoprotein (HpPal) with the flagellar motor by analysing the motility phenotype of the ∆pal mutant, and present the results of the preliminary X-ray crystallographic analysis of its globular C-terminal domain HpPal-C. Purified HpPal-C behaved as a dimer in solution. Crystals of HpPal-C were grown by the hanging drop vapour diffusion method using medium molecular weight polyethylene glycol (PEG) Smear as the precipitating agent. The crystals belong to the primitive orthorhombic space group P1 with unit cell parameters a = 50.7, b = 63.0, c = 75.1 Å. X-ray diffraction data were collected to 1.8 Å resolution on the Australian Synchrotron beamline MX2. Calculation of the Matthews coefficient (VM=2.24 Å3/Da) and molecular replacement showed that the asymmetric unit contains two protein subunits. This study is an important step towards elucidation of the non-canonical role of H. pylori Pal in the regulation, or function of, the flagellar motor.


Subject(s)
Helicobacter pylori , Helicobacter pylori/chemistry , Bacterial Proteins/metabolism , Peptidoglycan/metabolism , Australia , Crystallography, X-Ray , Lipoproteins/chemistry , Lipoproteins/metabolism
13.
Biochem Mol Biol Educ ; 52(1): 127-128, 2024.
Article in English | MEDLINE | ID: mdl-37905739

ABSTRACT

The poem Ode on the Odyssey of lipoproteins describes the structure, functions and metabolism of lipoproteins namely Chylomicrons, LDL, VLDL and HDL. This poem is a triolet with eight lines in each stanza. Odyssey is the travel experience of an adventurous journey when someone travels far and wide. This poem describes the transport adventures of Lipids when they travel in the form of lipoproteins. The poetic form of describing the metabolism of lipoproteins was intended to kindle the interest of the learners and to gain an imaginary experience in the metabolism of lipoproteins.


Subject(s)
Lipoproteins, HDL , Lipoproteins, LDL , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Lipoproteins, VLDL/metabolism , Lipoproteins/chemistry , Lipoproteins/metabolism , Chylomicrons/metabolism
14.
J Biochem ; 175(4): 427-437, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38156779

ABSTRACT

The envelope of Escherichia coli contains approximately 100 different species of lipoproteins, most of which are localized to the inner leaflet of the outer membrane. The localization of lipoprotein (Lol) system, consisting of five Lol proteins, is responsible for the trafficking of lipoproteins to the outer membrane. LolCDE binds to lipoproteins destined for the outer membrane and transfers them to the periplasmic chaperone LolA. Although the cryo-EM structures of E. coli LolCDE have been reported, the mechanisms by which outer membrane lipoproteins are transferred to LolA remain elusive. In this study, we investigated the interaction between LolCDE and lipoproteins using site-specific photo-crosslinking. We introduced a photo-crosslinkable amino acid into different locations across the four helices which form the central lipoprotein-binding cavity, and identified domains that crosslink with peptidoglycan-associated lipoprotein (Pal) in vivo. Using one of the derivatives containing the photo-crosslinkable amino acid, we developed an in vitro system to analyze the binding of lipoproteins to LolCDE. Our results indicate that compound 2, a LolCDE inhibitor, does not inhibit the binding of lipoproteins to LolCDE, but rather promotes the dissociation of bound lipoproteins from LolCDE.


Subject(s)
Escherichia coli Proteins , Periplasmic Binding Proteins , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , ATP-Binding Cassette Transporters/metabolism , Cell Membrane/metabolism , Lipoproteins/chemistry , Lipoproteins/metabolism , Amino Acids/metabolism , Bacterial Outer Membrane Proteins/metabolism , Periplasmic Binding Proteins/metabolism
15.
Small ; 20(18): e2307240, 2024 May.
Article in English | MEDLINE | ID: mdl-38100284

ABSTRACT

Extracellular vesicles (EVs) are nanosized biomolecular packages involved in intercellular communication. EVs are released by all cells, making them broadly applicable as therapeutic, diagnostic, and mechanistic components in (patho)physiology. Sample purity is critical for correctly attributing observed effects to EVs and for maximizing therapeutic and diagnostic performance. Lipoprotein contaminants represent a major challenge for sample purity. Lipoproteins are approximately six orders of magnitude more abundant in the blood circulation and overlap in size, shape, and density with EVs. This study represents the first example of an EV purification method based on the chemically-induced breakdown of lipoproteins. Specifically, a styrene-maleic acid (SMA) copolymer is used to selectively breakdown lipoproteins, enabling subsequent size-based separation of the breakdown products from plasma EVs. The use of the polymer followed by tangential flow filtration or size-exclusion chromatography results in improved EV yield, preservation of EV morphology, increased EV markers, and reduced contaminant markers. SMA-based EV purification enables improved fluorescent labeling, reduces interactions with macrophages, and enhances accuracy, sensitivity, and specificity to detect EV biomarkers, indicating benefits for various downstream applications. In conclusion, SMA is a simple and effective method to improve the purity and yield of plasma-derived EVs, which favorably impacts downstream applications.


Subject(s)
Extracellular Vesicles , Lipoproteins , Maleates , Polystyrenes , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Lipoproteins/chemistry , Lipoproteins/metabolism , Maleates/chemistry , Humans , Animals , Chromatography, Gel , Mice , Macrophages/metabolism
16.
J Clin Periodontol ; 51(4): 390-405, 2024 04.
Article in English | MEDLINE | ID: mdl-38098273

ABSTRACT

AIM: To investigate the medium-term associations of serum protein subfractions derived from proton nuclear magnetic resonance (1 H-NMR) spectroscopy with periodontitis and tooth loss. MATERIALS AND METHODS: A total of 3031 participants of the cohort Study of Health in Pomerania (SHIP-TREND) were included. In addition to conventional serum testing, serum lipoprotein contents and subfractions were analysed by 1 H-NMR spectroscopy. Confounder-adjusted associations of lipoprotein variables with periodontitis and the number of missing teeth variables were analysed using mixed-effects models with random intercepts for time across individuals, accounting for multiple testing. RESULTS: While only spurious associations between lipoprotein levels from conventional blood tests were found-that is, triglycerides were associated with mean clinical attachment level (CAL) and low-density lipoprotein cholesterol/high-density lipoprotein cholesterol (LDL-C/HDL-C) ratio with the number of missing teeth - several associations emerged from serum lipoprotein subfractions derived from 1 H-NMR analysis. Specifically, elevated LDL triglycerides were associated with higher levels of mean probing depth (PD), mean CALs, and increased odds of having <20 teeth. HDL-4 cholesterol levels were inversely associated with mean PD. Systemic inflammation (C-reactive protein) might mediate the effects of LDL and HDL triglyceride contents on periodontitis severity. CONCLUSIONS: Several associations between serum lipoprotein subfractions and periodontitis were observed. As the underlying biochemical mechanisms remain unclear, further research is needed.


Subject(s)
Lipoproteins , Periodontitis , Humans , Cohort Studies , Lipoproteins/chemistry , Triglycerides , Cholesterol, HDL , Periodontitis/epidemiology
17.
Pathog Dis ; 812023 01 17.
Article in English | MEDLINE | ID: mdl-37385817

ABSTRACT

Borrelia burgdorferi, the spirochete that causes Lyme disease, is a diderm organism that is similar to Gram-negative organisms in that it contains both an inner and outer membrane. Unlike typical Gram-negative organisms, however, B. burgdorferi lacks lipopolysaccharide (LPS). Using computational genome analyses and structural modeling, we identified a transport system containing six proteins in B. burgdorferi that are all orthologs to proteins found in the lipopolysaccharide transport (LPT) system that links the inner and outer membranes of Gram-negative organisms and is responsible for placing LPS on the surface of these organisms. While B. burgdorferi does not contain LPS, it does encode over 100 different surface-exposed lipoproteins and several major glycolipids, which like LPS are also highly amphiphilic molecules, though no system to transport these molecules to the borrelial surface is known. Accordingly, experiments supplemented by molecular modeling were undertaken to determine whether the orthologous LPT system identified in B. burgdorferi could transport lipoproteins and/or glycolipids to the borrelial outer membrane. Our combined observations strongly suggest that the LPT transport system does not transport lipoproteins to the surface. Molecular dynamic modeling, however, suggests that the borrelial LPT system could transport borrelial glycolipids to the outer membrane.


Subject(s)
Borrelia burgdorferi Group , Borrelia burgdorferi , Lyme Disease , Humans , Borrelia burgdorferi/genetics , Borrelia burgdorferi/chemistry , Lipopolysaccharides/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Lipoproteins/genetics , Lipoproteins/chemistry , Lipoproteins/metabolism , Carrier Proteins/metabolism , Glycolipids/metabolism , Borrelia burgdorferi Group/metabolism
18.
Sci Adv ; 9(3): eadd8659, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36662863

ABSTRACT

Braun's lipoprotein (Lpp) plays a major role in stabilizing the integrity of the cell envelope in Escherichia coli, as it provides a covalent cross-link between the outer membrane and the peptidoglycan layer. An important challenge in elucidating the physiological role of Lpp lies in attaining a detailed understanding of its distribution on the peptidoglycan layer. Here, using atomic force microscopy, we visualized Lpp directly on peptidoglycan sacculi. Lpp is homogeneously distributed over the outer surface of the sacculus at a high density. However, it is absent at the constriction site during cell division, revealing its role in the cell division process with Pal, another cell envelope-associated protein. Collectively, we have established a framework to elucidate the distribution of Lpp and other peptidoglycan-bound proteins via a direct imaging modality.


Subject(s)
Escherichia coli , Lipoproteins , Microscopy, Atomic Force , Molecular Imaging , Bacterial Outer Membrane Proteins/metabolism , Cell Membrane/metabolism , Escherichia coli/chemistry , Lipoproteins/chemistry , Peptidoglycan/chemistry , Molecular Imaging/methods
19.
Metab Eng ; 74: 108-120, 2022 11.
Article in English | MEDLINE | ID: mdl-36257594

ABSTRACT

Lichenysin, producted by Bacillus licheniformis, is an important cyclic lipopeptide biosurfactant, which has potential applications in oil exploitation, drug development, biological control of agriculture and bioremediation. While studies are lacking on metabolism regulation of lichenysin biosynthesis, which limits metabolic engineering and large-scale production of lichenysin. In this study, the yield of lichenysin was improved obviously by 13.6 folds to 2.18 ± 0.03 g/L in degU deletion strain (WX02△degU) compared with the wild-type strain (WX02) and completely inhibited in degU overexpressed strain (WX02/pHY-degU). We further proved that DegU, a transcription factor plays a significant role in multicellular behavior, is a key negative regulator of lichenysin synthesis lchA operon. But interestingly, lichenysin yield was still inhibited by overexpressing DegU in the promoter-substituted strain (WX02-PP43lch), in which promoter of lchA operon cannot be controlled by DegU. Thus, through 13C-metabolic flux analysis, we found that deletion of degU also enhanced glucose uptake, branched chain amino acid synthesis, and fatty acid synthesis, while decrease acetoin synthesis, which is beneficial for the supply of lichenysin precursors. Further experiments demonstrate that DegU regulates these pathways by binding to the promoter regions of related genes. Overall, we systematically investigated the multi-pathway regulation network mediated by DegU on lichenysin biosynthesis, which not only contributes to the further metabolic engineering for lichenysin high-production, but sheds light on studies of transcription factor regulation.


Subject(s)
Bacillus licheniformis , Bacillus licheniformis/genetics , Bacillus licheniformis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Lipoproteins/chemistry , Lipoproteins/genetics , Lipoproteins/metabolism , Anilides/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacillus subtilis/metabolism
20.
Arch Insect Biochem Physiol ; 111(4): e21959, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35996204

ABSTRACT

Lipophorin is a major hemolymph lipoprotein found in insects with a molecular native mass of 700 kDa. In mosquitoes, two different types of apolipoproteins are characterized, apolipophorin-I (ApoLp-I, ~250 kDa) and apolipophorin-II (ApoLp-II, ~80 kDa). This concentration depends on the stage of development and the age of the insects. Lipophorins are best studied in mosquitoes of the genus Aedes and Anopheles. In this study, we analyze the lipophorin sequence and show the lipophorin purification of the Culex quinquefasciatus and the transcriptional profile of the lipophorin gene in different life cycle stages. Similar amino acid composition and molecular weights are founded in three mosquitoes species lipophorins amino acid sequence. The two subunits of purified lipophorin (Apo I and Apo II) showed molecular masses of approximately 248 and 93 kDa, like that found in other mosquitoes. A gradual increase in the lipophorin expression gene was obtained during the previtellogenic period and after feeding we obtained peak expression at 24 h after feeding. With our results, we conclude that C. quinquefasciatus protein sequence has the same characteristics as those observed in other mosquitoes and that the expression of its apolipophorins is induced by blood feeding.


Subject(s)
Aedes , Culex , Animals , Culex/genetics , Lipoproteins/chemistry , Lipoproteins/genetics , Aedes/metabolism , Amino Acid Sequence
SELECTION OF CITATIONS
SEARCH DETAIL
...