Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51.159
1.
Int J Nanomedicine ; 19: 3861-3890, 2024.
Article En | MEDLINE | ID: mdl-38708178

Introduction: Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods: To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results: SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion: The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.


Anti-Bacterial Agents , Biofilms , Chitosan , Liposomes , Nanoparticles , Pseudomonas Infections , Pseudomonas aeruginosa , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Humans , Pseudomonas Infections/drug therapy , Nanoparticles/chemistry , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Drug Carriers/chemistry , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Lipids/chemistry , Lipids/pharmacology , Quorum Sensing/drug effects , A549 Cells , Alginates/chemistry
2.
AAPS PharmSciTech ; 25(5): 97, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710894

Pancreatic ductal adenocarcinoma (PDAC) is one of the highly fatal types of cancer with high mortality/incidence. Considering the crucial role of vascular endothelial growth factor (VEGF) in PDAC progression, its inhibition can be a viable strategy for the treatment. Pazopanib, a second-generation VEGF inhibitor, is approved for the treatment of various oncological conditions. However, due to associated limitations like low oral bioavailability (14-39%), high inter/intra-subject variability, stability issues, etc., high doses (800 mg) are required, which further lead to non-specific toxicities and also contribute toward cancer resistance. Thus, to overcome these challenges, pazopanib-loaded PEGylated nanoliposomes were developed and evaluated against pancreatic cancer cell lines. The nanoliposomes were prepared by thin-film hydration method, followed by characterization and stability studies. This QbD-enabled process design successfully led to the development of a suitable pazopanib liposomal formulation with desirable properties. The % entrapment of PZP-loaded non-PEGylated and PEGylated nanoliposomes was found to be 75.2% and 84.9%, respectively, whereas their particle size was found to be 129.7 nm and 182.0 nm, respectively. The developed liposomal formulations exhibited a prolonged release and showed desirable physicochemical properties. Furthermore, these liposomal formulations were also assessed for in vitro cell lines, such as cell cytotoxicity assay and cell uptake. These studies confirm the effectiveness of developed liposomal formulations against pancreatic cancer cell lines. The outcomes of this work provide encouraging results and a way forward to thoroughly investigate its potential for PDAC treatment.


Carcinoma, Pancreatic Ductal , Indazoles , Liposomes , Nanoparticles , Pancreatic Neoplasms , Particle Size , Pyrimidines , Sulfonamides , Indazoles/administration & dosage , Indazoles/pharmacology , Humans , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Sulfonamides/chemistry , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Drug Liberation , Chemistry, Pharmaceutical/methods
3.
Nat Commun ; 15(1): 3804, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714648

Messenger RNA (mRNA) therapeutics delivered via lipid nanoparticles hold the potential to treat metabolic diseases caused by protein deficiency, including propionic acidemia (PA), methylmalonic acidemia (MMA), and phenylketonuria (PKU). Herein we report results from multiple independent preclinical studies of mRNA-3927 (an investigational treatment for PA), mRNA-3705 (an investigational treatment for MMA), and mRNA-3210 (an investigational treatment for PKU) in murine models of each disease. All 3 mRNA therapeutics exhibited pharmacokinetic/pharmacodynamic (PK/PD) responses in their respective murine model by driving mRNA, protein, and/or protein activity responses, as well as by decreasing levels of the relevant biomarker(s) when compared to control-treated animals. These preclinical data were then used to develop translational PK/PD models, which were scaled allometrically to humans to predict starting doses for first-in-human clinical studies for each disease. The predicted first-in-human doses for mRNA-3927, mRNA-3705, and mRNA-3210 were determined to be 0.3, 0.1, and 0.4 mg/kg, respectively.


Amino Acid Metabolism, Inborn Errors , Disease Models, Animal , Phenylketonurias , Propionic Acidemia , RNA, Messenger , Propionic Acidemia/genetics , Propionic Acidemia/therapy , Propionic Acidemia/drug therapy , Animals , Phenylketonurias/genetics , Phenylketonurias/drug therapy , Phenylketonurias/therapy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/drug therapy , Mice , Humans , Male , Female , Nanoparticles/chemistry , Mice, Inbred C57BL , Liposomes
4.
Sci Rep ; 14(1): 10499, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714740

Improving the efficacy of chemotherapy remains a key challenge in cancer treatment, considering the low bioavailability, high cytotoxicity, and undesirable side effects of some clinical drugs. Targeted delivery and sustained release of therapeutic drugs to cancer cells can reduce the whole-body cytotoxicity of the agent and deliver a safe localized treatment to the patient. There is growing interest in herbal drugs, such as curcumin, which is highly noted as a promising anti-tumor drug, considering its wide range of bioactivities and therapeutic properties against various tumors. Conversely, the clinical efficacy of curcumin is limited because of poor oral bioavailability, low water solubility, instability in gastrointestinal fluids, and unsuitable pH stability. Drug-delivery colloid vehicles like liposomes and nanoparticles combined with microbubbles and ultrasound-mediated sustained release are currently being explored as effective delivery modes in such cases. This study aimed to synthesize and study the properties of curcumin liposomes (CLs) and optimize the high-frequency ultrasound release and uptake by a human breast cancer cell line (HCC 1954) through in vitro studies of culture viability and cytotoxicity. CLs were effectively prepared with particles sized at 81 ± 2 nm, demonstrating stability and controlled release of curcumin under ultrasound exposure. In vitro studies using HCC1954 cells, the combination of CLs, ultrasound, and Definity microbubbles significantly improved curcumin's anti-tumor effects, particularly under specific conditions: 15 s of continuous ultrasound at 0.12 W/cm2 power density with 0.6 × 107 microbubbles/mL. Furthermore, the study delved into curcumin liposomes' cytotoxic effects using an Annexin V/PI-based apoptosis assay. The treatment with CLs, particularly in conjunction with ultrasound and microbubbles, amplified cell apoptosis, mainly in the late apoptosis stage, which was attributed to heightened cellular uptake within cancer cells.


Curcumin , Drug Delivery Systems , Liposomes , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/administration & dosage , Humans , Liposomes/chemistry , Cell Line, Tumor , Drug Delivery Systems/methods , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Microbubbles , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Ultrasonic Waves , Drug Liberation , Apoptosis/drug effects
5.
Sci Rep ; 14(1): 10073, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698123

Cutaneous leishmaniasis is the most prevalent form of leishmaniasis worldwide. Although various anti-leishmanial regimens have been considered, due to the lack of efficacy or occurrence of adverse reactions, design and development of novel topical delivery systems would be essential. This study aimed to prepare artemether (ART)-loaded niosomes and evaluate their anti-leishmanial effects against Leishmania major. ART-loaded niosomes were prepared through the thin-film hydration technique and characterized in terms of particle size, zeta potential, morphology, differential scanning calorimetry, drug loading, and drug release. Furthermore, anti-leishmanial effect of the preparation was assessed in vitro and in vivo. The prepared ART-loaded niosomes were spherical with an average diameter of about 100 and 300 nm with high encapsulation efficiencies of > 99%. The results of in vitro cytotoxicity revealed that ART-loaded niosomes had significantly higher anti-leishmanial activity, lower general toxicity, and higher selectivity index (SI). Half-maximal inhibitory concentration (IC50) values of ART, ART-loaded niosomes, and liposomal amphotericin B were 39.09, 15.12, and 20 µg/mL, respectively. Also, according to the in vivo study results, ART-loaded niosomes with an average size of 300 nm showed the highest anti-leishmanial effects in animal studies. ART-loaded niosomes would be promising topical drug delivery system for the management of cutaneous leishmaniasis.


Artemether , Leishmania major , Leishmaniasis, Cutaneous , Liposomes , Liposomes/chemistry , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Artemether/chemistry , Leishmania major/drug effects , Animals , Mice , Particle Size , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/chemistry , Mice, Inbred BALB C , Drug Liberation , Humans
6.
Sci Rep ; 14(1): 10196, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702355

Urinary tract infections (UTIs) are the most common bacterial infections and uropathogenic Escherichia coli (UPEC) is the main etiological agent of UTIs. UPEC can persist in bladder cells protected by immunological defenses and antibiotics and intracellular behavior leads to difficulty in eradicating the infection. The aim of this paper is to design, prepare and characterize surfactant-based nanocarriers (niosomes) able to entrap antimicrobial drug and potentially to delivery and release antibiotics into UPEC-infected cells. In order to validate the proposed drug delivery system, gentamicin, was chosen as "active model drug" due to its poor cellular penetration. The niosomes physical-chemical characterization was performed combining different techniques: Dynamic Light Scattering Fluorescence Spectroscopy, Transmission Electron Microscopy. Empty and loaded niosomes were characterized in terms of size, ζ-potential, bilayer features and stability. Moreover, Gentamicin entrapped amount was evaluated, and the release study was also carried out. In addition, the effect of empty and loaded niosomes was studied on the invasion ability of UPEC strains in T24 bladder cell monolayers by Gentamicin Protection Assay and Confocal Microscopy. The observed decrease in UPEC invasion rate leads us to hypothesize a release of antibiotic from niosomes inside the cells. The optimization of the proposed drug delivery system could represent a promising strategy to significatively enhance the internalization of antimicrobial drugs.


Anti-Bacterial Agents , Gentamicins , Liposomes , Uropathogenic Escherichia coli , Gentamicins/pharmacology , Uropathogenic Escherichia coli/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Drug Carriers/chemistry , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Drug Delivery Systems , Microbial Sensitivity Tests
7.
Int J Nanomedicine ; 19: 4701-4717, 2024.
Article En | MEDLINE | ID: mdl-38808148

Purpose: Numerous failures in melanoma treatment as a highly aggressive form of skin cancer with an unfavorable prognosis and excessive resistance to conventional therapies are prompting an urgent search for more effective therapeutic tools. Consequently, to increase the treatment efficiency and to reduce the side effects of traditional administration ways, herein, it has become crucial to combine photodynamic therapy as a promising therapeutic approach with the selectivity and biocompatibility of a novel colloidal transdermal nanoplatform for effective delivery of hybrid cargo with synergistic effects on melanoma cells. Methods: The self-assembled bilosomes, co-stabilized with L-α-phosphatidylcholine, sodium cholate, Pluronic® P123, and cholesterol, were designated, and the stability of colloidal vesicles was studied using dynamic and electrophoretic light scattering, also provided in cell culture medium (Dulbecco's Modified Eagle's Medium). The hybrid compounds - a classical photosensitizer (Methylene Blue) along with a complementary natural polyphenolic agent (curcumin), were successfully co-loaded, as confirmed by UV-Vis, ATR-FTIR, and fluorescent spectroscopies. The biocompatibility and usefulness of the polymer functionalized bilosome with loaded double cargo were demonstrated in vitro cyto- and phototoxicity experiments using normal keratinocytes and melanoma cancer cells. Results: The in vitro bioimaging and immunofluorescence study upon human skin epithelial (A375) and malignant (Me45) melanoma cell lines established the protective effect of the PEGylated bilosome surface. This effect was confirmed in cytotoxicity experiments, also determined on human cutaneous (HaCaT) keratinocytes. The flow cytometry experiments indicated the enhanced uptake of the encapsulated hybrid cargo compared to the non-loaded MB and CUR molecules, as well as a selectivity of the obtained nanocarriers upon tumor cell lines. The phyto-photodynamic action provided 24h-post irradiation revealed a more significant influence of the nanoplatform on Me45 cells in contrast to the A375 cell line, causing the cell viability rate below 20% of the control. Conclusion: As a result, we established an innovative and effective strategy for potential metastatic melanoma treatment through the synergism of phyto-photodynamic therapy and novel bilosomal-origin nanophotosensitizers.


Curcumin , Melanoma , Nanomedicine , Photochemotherapy , Photosensitizing Agents , Skin Neoplasms , Humans , Skin Neoplasms/drug therapy , Melanoma/drug therapy , Photochemotherapy/methods , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/administration & dosage , Curcumin/chemistry , Curcumin/pharmacology , Cell Survival/drug effects , Liposomes/chemistry , Liposomes/pharmacology , Cholesterol/chemistry , Phosphatidylcholines/chemistry , Phosphatidylcholines/pharmacology , Sodium Cholate/chemistry , Drug Delivery Systems/methods , Poloxalene/chemistry , Poloxalene/pharmacology
8.
Proc Natl Acad Sci U S A ; 121(22): e2322935121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38771877

Current treatment options for diabetic wounds face challenges due to low efficacy, as well as potential side effects and the necessity for repetitive treatments. To address these issues, we report a formulation utilizing trisulfide-derived lipid nanoparticle (TS LNP)-mRNA therapy to accelerate diabetic wound healing by repairing and reprogramming the microenvironment of the wounds. A library of reactive oxygen species (ROS)-responsive TS LNPs was designed and developed to encapsulate interleukin-4 (IL4) mRNA. TS2-IL4 LNP-mRNA effectively scavenges excess ROS at the wound site and induces the expression of IL4 in macrophages, promoting the polarization from the proinflammatory M1 to the anti-inflammatory M2 phenotype at the wound site. In a diabetic wound model of db/db mice, treatment with this formulation significantly accelerates wound healing by enhancing the formation of an intact epidermis, angiogenesis, and myofibroblasts. Overall, this TS LNP-mRNA platform not only provides a safe, effective, and convenient therapeutic strategy for diabetic wound healing but also holds great potential for clinical translation in both acute and chronic wound care.


Nanoparticles , RNA, Messenger , Reactive Oxygen Species , Wound Healing , Wound Healing/drug effects , Animals , Nanoparticles/chemistry , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Macrophages/metabolism , Macrophages/drug effects , Interleukin-4/metabolism , Diabetes Mellitus, Experimental , Humans , Lipids/chemistry , Disease Models, Animal , Male , Liposomes
9.
Pak J Pharm Sci ; 37(2): 399-404, 2024 Mar.
Article En | MEDLINE | ID: mdl-38767107

Hair loss (alopecia) continues to be an issue for both sexes. There are multiple ways to reduce the effects of alopecia, one of which is topical minoxidil (MXD). This study aimed to test the effects of minoxidil nanoliposomes (MXD-NLs) on the hair of mice, compared with free MXD and to examine the disinfectant ability of MXD-NLs toward scalp bacteria. To test the study hypothesis, MXD-NLs and free MXD were prepared. Mouse hair was shaved prior to the experiment. MXD-NLs, free MXD and their vehicles were applied for 15 days. In addition, dermal swabs were used to isolate scalp bacteria and test the inhibitory effect of pretreated media with the two formulations and their vehicles. The results revealed that hair growth in the MXD-NLs -treated group (0.65±0.1cm) was higher than that in the free MXD -treated group (0.53±0.2cm). In addition, MXD-NLs treated media reduced the number of scalp bacteria (p=0.0456) compared with free MXD. These results reveal a novel formulation of MXD with faster hair growth properties and a better disinfectant effect than free MXD. This study can help future researchers to expand and develop MXD-NLs.


Alopecia , Hair , Liposomes , Minoxidil , Scalp , Minoxidil/pharmacology , Animals , Hair/growth & development , Hair/drug effects , Hair/microbiology , Scalp/drug effects , Mice , Alopecia/drug therapy , Alopecia/microbiology , Nanoparticles , Disinfectants/pharmacology , Male , Female
10.
Int J Nanomedicine ; 19: 4411-4427, 2024.
Article En | MEDLINE | ID: mdl-38774028

Background: Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease characterized by synovial inflammation and joint destruction. Despite progress in RA therapy, it remains difficult to achieve long-term remission in RA patients. Phosphodiesterase 3B (Pde3b) is a member of the phosphohydrolyase family that are involved in many signal transduction pathways. However, its role in RA is yet to be fully addressed. Methods: Studies were conducted in arthritic DBA/1 mice, a suitable mouse strain for collagen-induced rheumatoid arthritis (CIA), to dissect the role of Pde3b in RA pathogenesis. Next, RNAi-based therapy with Pde3b siRNA-loaded liposomes was assessed in a CIA model. To study the mechanism involved, we investigated the effect of Pde3b knockdown on macrophage polarization and related signaling pathway. Results: We demonstrated that mice with CIA exhibited upregulated Pde3b expression in macrophages. Notably, intravenous administration of liposomes loaded with Pde3b siRNA promoted the macrophage anti-inflammatory program and alleviated CIA in mice, as indicated by the reduced inflammatory response, synoviocyte infiltration, and bone and cartilage erosion. Mechanistic study revealed that depletion of Pde3b increased cAMP levels, by which it enhanced PKA-CREB-C/EBPß pathway to transcribe the expression of anti-inflammatory program-related genes. Conclusion: Our results support that Pde3b is involved in the pathogenesis of RA, and Pde3b siRNA-loaded liposomes might serve as a promising therapeutic approach against RA.


Arthritis, Experimental , Arthritis, Rheumatoid , Cyclic Nucleotide Phosphodiesterases, Type 3 , Genetic Therapy , Liposomes , Macrophages , Mice, Inbred DBA , RNA, Small Interfering , Animals , Liposomes/chemistry , Liposomes/administration & dosage , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/chemically induced , Mice , Arthritis, Experimental/genetics , Arthritis, Experimental/prevention & control , Arthritis, Experimental/therapy , Macrophages/drug effects , RNA, Small Interfering/genetics , RNA, Small Interfering/administration & dosage , Genetic Therapy/methods , Male , Signal Transduction/drug effects
11.
Int J Nanomedicine ; 19: 4377-4409, 2024.
Article En | MEDLINE | ID: mdl-38774029

Angiogenesis, or the formation of new blood vessels, is a natural defensive mechanism that aids in the restoration of oxygen and nutrition delivery to injured brain tissue after an ischemic stroke. Angiogenesis, by increasing vessel development, may maintain brain perfusion, enabling neuronal survival, brain plasticity, and neurologic recovery. Induction of angiogenesis and the formation of new vessels aid in neurorepair processes such as neurogenesis and synaptogenesis. Advanced nano drug delivery systems hold promise for treatment stroke by facilitating efficient transportation across the the blood-brain barrier and maintaining optimal drug concentrations. Nanoparticle has recently been shown to greatly boost angiogenesis and decrease vascular permeability, as well as improve neuroplasticity and neurological recovery after ischemic stroke. We describe current breakthroughs in the development of nanoparticle-based treatments for better angiogenesis therapy for ischemic stroke employing polymeric nanoparticles, liposomes, inorganic nanoparticles, and biomimetic nanoparticles in this study. We outline new nanoparticles in detail, review the hurdles and strategies for conveying nanoparticle to lesions, and demonstrate the most recent advances in nanoparticle in angiogenesis for stroke treatment.


Ischemic Stroke , Nanoparticles , Neovascularization, Physiologic , Humans , Ischemic Stroke/drug therapy , Animals , Nanoparticles/chemistry , Neovascularization, Physiologic/drug effects , Blood-Brain Barrier/drug effects , Liposomes/chemistry , Drug Delivery Systems/methods , Nanoparticle Drug Delivery System/chemistry , Angiogenesis
12.
Sci Transl Med ; 16(748): eadl2720, 2024 May 22.
Article En | MEDLINE | ID: mdl-38776391

We present the preclinical pharmacology of BNT142, a lipid nanoparticle (LNP)-formulated RNA (RNA-LNP) encoding a T cell-engaging bispecific antibody that monovalently binds the T cell marker CD3 and bivalently binds claudin 6 (CLDN6), an oncofetal antigen that is absent from normal adult tissue but expressed on various solid tumors. Upon BNT142 RNA-LNP delivery in cell culture, mice, and cynomolgus monkeys, RNA is translated, followed by self-assembly into and secretion of the functional bispecific antibody RiboMab02.1. In vitro, RiboMab02.1 mediated CLDN6 target cell-specific activation and proliferation of T cells, and potent target cell killing. In mice and cynomolgus monkeys, intravenously administered BNT142 RNA-LNP maintained therapeutic serum concentrations of the encoded antibody. Concentrations of RNA-encoded RiboMab02.1 were maintained longer in circulation in mice than concentrations of directly injected, sequence-identical protein. Weekly injections of mice with BNT142 RNA-LNP in the 0.1- to 1-µg dose range were sufficient to eliminate CLDN6-positive subcutaneous human xenograft tumors and increase survival over controls. Tumor regression was associated with an influx of T cells and depletion of CLDN6-positive cells. BNT142 induced only transient and low cytokine production in CLDN6-positive tumor-bearing mice humanized with peripheral blood mononuclear cells (PBMCs). No signs of adverse effects from BNT142 RNA-LNP administration were observed in mice or cynomolgus monkeys. On the basis of these and other findings, a phase 1/2 first-in-human clinical trial has been initiated to assess the safety and preliminary efficacy of BNT142 RNA-LNP in patients with CLDN6-positive advanced solid tumors (NCT05262530).


Antibodies, Bispecific , Claudins , Macaca fascicularis , T-Lymphocytes , Animals , Humans , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/pharmacokinetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Claudins/metabolism , Mice , RNA/metabolism , Female , Cell Line, Tumor , Xenograft Model Antitumor Assays , Liposomes , Nanoparticles
13.
Pathol Oncol Res ; 30: 1611586, 2024.
Article En | MEDLINE | ID: mdl-38689823

Mounting evidence suggests that the immune landscape within prostate tumors influences progression, metastasis, treatment response, and patient outcomes. In this study, we investigated the spatial density of innate immune cell populations within NOD.SCID orthotopic prostate cancer xenografts following microinjection of human DU145 prostate cancer cells. Our laboratory has previously developed nanoscale liposomes that attach to leukocytes via conjugated E-selectin (ES) and kill cancer cells via TNF-related apoptosis inducing ligand (TRAIL). Immunohistochemistry (IHC) staining was performed on tumor samples to identify and quantify leukocyte infiltration for different periods of tumor growth and E-selectin/TRAIL (EST) liposome treatments. We examined the spatial-temporal dynamics of three different immune cell types infiltrating tumors using QuPath image analysis software. IHC staining revealed that F4/80+ tumor-associated macrophages (TAMs) were the most abundant immune cells in all groups, irrespective of time or treatment. The density of TAMs decreased over the course of tumor growth and decreased in response to EST liposome treatments. Intratumoral versus marginal analysis showed a greater presence of TAMs in the marginal regions at 3 weeks of tumor growth which became more evenly distributed over time and in tumors treated with EST liposomes. TUNEL staining indicated that EST liposomes significantly increased cell apoptosis in treated tumors. Additionally, confocal microscopy identified liposome-coated TAMs in both the core and periphery of tumors, highlighting the ability of liposomes to infiltrate tumors by "piggybacking" on macrophages. The results of this study indicate that TAMs represent the majority of innate immune cells within NOD.SCID orthotopic prostate tumors, and spatial density varies widely as a function of tumor size, duration of tumor growth, and treatment of EST liposomes.


Liposomes , Mice, Inbred NOD , Mice, SCID , Prostatic Neoplasms , Tumor-Associated Macrophages , Animals , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/immunology , Mice , Humans , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Xenograft Model Antitumor Assays , Apoptosis , Disease Models, Animal , TNF-Related Apoptosis-Inducing Ligand/metabolism , E-Selectin/metabolism , Tumor Microenvironment/immunology
14.
Yakugaku Zasshi ; 144(5): 511-519, 2024.
Article Ja | MEDLINE | ID: mdl-38692926

Nanoparticles, including liposomes and lipid nanoparticles, have garnered global attention due to their potential applications in pharmaceuticals, vaccines, and gene therapies. These particles enable targeted delivery of new drug modalities such as highly active small molecules and nucleic acids. However, for widespread use of nanoparticle-based formulations, it is crucial to comprehensively analyze their characteristics to ensure both efficacy and safety, as well as enable consistent production. In this context, this review focuses on our research using atomic force microscopy (AFM) to study liposomes and lipid nanoparticles. Our work significantly contributes to the capability of AFM to measure various types of liposomes in an aqueous medium, providing valuable insights into the mechanical properties of these nanoparticles. We discuss the applications of this AFM technique in assessing the quality of nanoparticle-based pharmaceuticals and developing membrane-active peptides.


Liposomes , Microscopy, Atomic Force , Nanoparticles , Microscopy, Atomic Force/methods , Lipids/chemistry , Drug Delivery Systems , Nanoparticle Drug Delivery System/chemistry , Peptides/chemistry
15.
J Microencapsul ; 41(4): 312-325, 2024 Jun.
Article En | MEDLINE | ID: mdl-38717966

The instability of ester bonds, low water solubility, and increased cytotoxicity of flavonoid glycoside esters significantly limit their application in the food industry. Therefore, the present study attempted to resolve these issues through liposome encapsulation. The results showed that baicalin butyl ester (BEC4) and octyl ester (BEC8) have higher encapsulation and loading efficiencies and lower leakage rate from liposomes than baicalin. FTIR results revealed the location of BEC4 and BEC8 in the hydrophobic layer of liposomes, which was different from baicalin. Additionally, liposome encapsulation improved the water solubility and stability of BEC4 and BEC8 in the digestive system and PBS but significantly reduced their cytotoxicity. Furthermore, the release rate of BEC4 and BEC8 from liposomes was lower than that of baicalin during gastrointestinal digestion. These results indicate that liposome encapsulation alleviated the negative effects of fatty chain introduction into flavonoid glycosides.


Esters , Flavonoids , Liposomes , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/administration & dosage , Liposomes/chemistry , Humans , Esters/chemistry , Solubility , Cell Survival/drug effects , Drug Compounding
16.
Science ; 384(6697): eadk0582, 2024 May 17.
Article En | MEDLINE | ID: mdl-38753770

Germline-targeting (GT) HIV vaccine strategies are predicated on deriving broadly neutralizing antibodies (bnAbs) through multiple boost immunogens. However, as the recruitment of memory B cells (MBCs) to germinal centers (GCs) is inefficient and may be derailed by serum antibody-induced epitope masking, driving further B cell receptor (BCR) modification in GC-experienced B cells after boosting poses a challenge. Using humanized immunoglobulin knockin mice, we found that GT protein trimer immunogen N332-GT5 could prime inferred-germline precursors to the V3-glycan-targeted bnAb BG18 and that B cells primed by N332-GT5 were effectively boosted by either of two novel protein immunogens designed to have minimum cross-reactivity with the off-target V1-binding responses. The delivery of the prime and boost immunogens as messenger RNA lipid nanoparticles (mRNA-LNPs) generated long-lasting GCs, somatic hypermutation, and affinity maturation and may be an effective tool in HIV vaccine development.


AIDS Vaccines , Broadly Neutralizing Antibodies , Germinal Center , HIV Antibodies , HIV-1 , Immunization, Secondary , Nanoparticles , RNA, Messenger , Animals , Mice , HIV-1/immunology , HIV-1/genetics , AIDS Vaccines/immunology , Humans , HIV Antibodies/immunology , Germinal Center/immunology , Broadly Neutralizing Antibodies/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , Gene Knock-In Techniques , Memory B Cells/immunology , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Somatic Hypermutation, Immunoglobulin , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/genetics , Cross Reactions , HIV Infections/immunology , HIV Infections/prevention & control , Liposomes
17.
Sci Immunol ; 9(95): eadn0622, 2024 May 10.
Article En | MEDLINE | ID: mdl-38753808

Germline-targeting (GT) protein immunogens to induce VRC01-class broadly neutralizing antibodies (bnAbs) to the CD4-binding site of the HIV envelope (Env) have shown promise in clinical trials. Here, we preclinically validated a lipid nanoparticle-encapsulated nucleoside mRNA (mRNA-LNP) encoding eOD-GT8 60mer as a soluble self-assembling nanoparticle in mouse models. In a model with three humanized B cell lineages bearing distinct VRC01-precursor B cell receptors (BCRs) with similar affinities for eOD-GT8, all lineages could be simultaneously primed and undergo diversification and affinity maturation without exclusionary competition. Boosts drove precursor B cell participation in germinal centers; the accumulation of somatic hypermutations, including in key VRC01-class positions; and affinity maturation to boost and native-like antigens in two of the three precursor lineages. We have preclinically validated a prime-boost regimen of soluble self-assembling nanoparticles encoded by mRNA-LNP, demonstrating that multiple lineages can be primed, boosted, and diversified along the bnAb pathway.


Broadly Neutralizing Antibodies , Nanoparticles , RNA, Messenger , Animals , Mice , Humans , RNA, Messenger/immunology , RNA, Messenger/genetics , Nanoparticles/chemistry , Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , Lipids/immunology , HIV Infections/immunology , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV-1/immunology , Female , Antibodies, Monoclonal , Liposomes
18.
Adv Protein Chem Struct Biol ; 140: 59-90, 2024.
Article En | MEDLINE | ID: mdl-38762280

It is critical to emphasize the importance of vaccination as it protects us against harmful pathogens. Despite significant progress in vaccine development, there is an ongoing need to develop vaccines that are not only safe but also highly effective in protecting against severe infections. Subunit vaccines are generally safe, but they frequently fail to elicit strong immune responses. As a result, there is a need to improve vaccine effectiveness by combining them with adjuvants, which have the potential to boost the immune system many folds. The process of developing these adjuvants requires searching for molecules capable of activating the immune system, combining these promising compounds with an antigen, and then testing this combination using animal models before approving it for clinical use. Liposomal adjuvants work as delivery adjuvants and its activity depends on certain parameters such as surface charge, vesicle size, surface modification and route of administration. Self-assembly property of peptide adjuvants and discovery of hybrid peptides have widened the scope of peptides in vaccine formulations. Since most pathogenic molecules are not peptide based, phage display technique allows for screening peptide mimics for such pathogens that have potential as adjuvants. This chapter discusses about peptide and liposome-based adjuvants focusing on their properties imparting adjuvanticity along with the methods of formulating them. Methods of adjuvant characterization important for an adjuvant to be approved for clinical trials are also discussed. These include assays for cytotoxicity, T-lymphocyte proliferation, dendritic cell maturation, cytokine and antibody production, toll-like receptor dependent signaling and adjuvant half-life.


Adjuvants, Immunologic , Liposomes , Adjuvants, Immunologic/chemistry , Humans , Liposomes/chemistry , Animals , Peptides/chemistry , Peptides/immunology , Vaccines/chemistry , Vaccines/immunology
19.
J Nanobiotechnology ; 22(1): 257, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755645

Imperceptible examination and unideal treatment effect are still intractable difficulties for the clinical treatment of pancreatic ductal adenocarcinoma (PDAC). At present, despite 5-fluorouracil (5-FU), as a clinical first-line FOLFIRINOX chemo-drug, has achieved significant therapeutic effects. Nevertheless, these unavoidable factors such as low solubility, lack of biological specificity and easy to induce immunosuppressive surroundings formation, severely limit their treatment in PDAC. As an important source of energy for many tumor cells, tryptophan (Trp), is easily degraded to kynurenine (Kyn) by indolamine 2,3- dioxygenase 1 (IDO1), which activates the axis of Kyn-AHR to form special suppressive immune microenvironment that promotes tumor growth and metastasis. However, our research findings that 5-FU can induce effectively immunogenic cell death (ICD) to further treat tumor by activating immune systems, while the secretion of interferon-γ (IFN-γ) re-induce the Kyn-AHR axis activation, leading to poor treatment efficiency. Therefore, a metal matrix protease-2 (MMP-2) and endogenous GSH dual-responsive liposomal-based nanovesicle, co-loading with 5-FU (anti-cancer drug) and NLG919 (IDO1 inhibitor), was constructed (named as ENP919@5-FU). The multifunctional ENP919@5-FU can effectively reshape the tumor immunosuppression microenvironment to enhance the effect of chemoimmunotherapy, thereby effectively inhibiting cancer growth. Mechanistically, PDAC with high expression of MMP-2 will propel the as-prepared nanovesicle to dwell in tumor region via shedding PEG on the nanovesicle surface, effectively enhancing tumor uptake. Subsequently, the S-S bond containing nanovesicle was cut via high endogenous GSH, leading to the continued release of 5-FU and NLG919, thereby enabling circulating chemoimmunotherapy to effectively cause tumor ablation. Moreover, the combination of ENP919@5-FU and PD-L1 antibody (αPD-L1) showed a synergistic anti-tumor effect on the PDAC model with abdominal cavity metastasis. Collectively, ENP919@5-FU nanovesicle, as a PDAC treatment strategy, showed excellent antitumor efficacy by remodeling tumor microenvironment to circulate tumor chemoimmunotherapy amplification, which has promising potential in a precision medicine approach.


Carcinoma, Pancreatic Ductal , Fluorouracil , Immunotherapy , Tumor Microenvironment , Tumor Microenvironment/drug effects , Animals , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Mice , Humans , Immunotherapy/methods , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms/drug therapy , Matrix Metalloproteinase 2/metabolism , Liposomes/chemistry , Kynurenine/metabolism , Interferon-gamma/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use
20.
Molecules ; 29(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38731568

Cancer is one of the major causes of death, and its negative impact continues to rise globally. Chemotherapy, which is the most common therapy, has several limitations due to its tremendous side effects. Therefore, developing an alternate therapeutic agent with high biocompatibility is indeed needed. The anti-oxidative effects and bioactivities of several different crude extracts of marine algae have been evaluated both in vitro and in vivo. In the present study, we synthesized the aqueous extract (HA) from the marine algae Amphiroa anceps, and then, a liposome was formulated for that extract (NHA). The extracts were characterized using different photophysical tools like dynamic light scattering, UV-visible spectroscopy, FTIR, scanning electron microscopy, and GC-MS analysis. The SEM image revealed a size range of 112-185 nm for NHA and the GC-MS results showed the presence of octadecanoic acid and n-Hexadecanoic acid in the majority. The anticancer activity was studied using A549 cells, and the NHA inhibited the cancer cells dose-dependently, with the highest killing of 92% at 100 µg/mL. The in vivo studies in the zebrafish model showed that neither the HA nor NHA of Amphiroa anceps showed any teratogenic effect. The outcome of our study showed that NHA can be a potential drug candidate for inhibiting cancer with good biocompatibility up to a dose of 100 µg/mL.


Antineoplastic Agents , Rhodophyta , Zebrafish , Rhodophyta/chemistry , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , A549 Cells , Neoplasms/drug therapy , Neoplasms/pathology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Liposomes/chemistry , Gas Chromatography-Mass Spectrometry , Nanoparticles/chemistry , Cell Line, Tumor
...