Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 225
Filter
1.
Int J Food Microbiol ; 421: 110800, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38878705

ABSTRACT

To our knowledge, this study is the first to elucidate the bactericidal efficacy of unpeeled carrots (hereafter referred to as carrots) pretreated with Ultra Violet-C (UV-C) against subsequent contamination with Listeria monocytogenes. Carrots pretreated with UV-C (240 mJ/cm2) exhibited a significant antilisterial effect within 2 h. In fact, the population of UV-C-pretreated carrots decreased from 7.94 log CFU/cm2 to levels below the limit of detection (LOD; <1.65 log CFU/cm2) within 24 h. For carrots that were not pretreated with UV-C, 3-4 log reductions were found after 24 h. Carrots pretreated with UV-C exhibited antimicrobial activity against another gram-positive pathogen, Staphylococcus aureus, but not against the gram-negative pathogens, E. coli O157:H7 and Salmonella enterica. Pretreatment with UV-C created a lasting antimicrobial effect as introducing L. monocytogenes on carrots, 72 h post-UV-C treatment, still maintained the antilisterial effect. Notably, all UV-C doses in the range of 48-240 mJ/cm2 induced a lasting antilisterial effect. The bactericidal effects against L. monocytogenes were confirmed in three varieties of washed and unwashed carrots (Danvers, Nantes, and Chantenay). Fluorescence microscopy confirmed the bactericidal effect of UV-C-pretreated carrots on the survival of L. monocytogenes. Conclusively, pretreating carrots with UV-C can reduce the population of L. monocytogenes to levels below the LOD and may further prevent pathogen growth during cold storage. Additional studies are necessary to discern the mechanism underlying the bactericidal efficacy of UV-C-pretreated carrots.


Subject(s)
Daucus carota , Listeria monocytogenes , Ultraviolet Rays , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/radiation effects , Daucus carota/microbiology , Food Microbiology , Staphylococcus aureus/drug effects , Food Contamination/prevention & control , Food Contamination/analysis , Colony Count, Microbial , Escherichia coli O157/drug effects , Escherichia coli O157/radiation effects , Escherichia coli O157/growth & development , Salmonella enterica/drug effects , Salmonella enterica/radiation effects , Salmonella enterica/growth & development
2.
Food Microbiol ; 122: 104552, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839232

ABSTRACT

In this study, we investigated the combined effect of 222 nm krypton-chlorine excilamp (EX) and 307 nm ultraviolet-B (UVB) light on the inactivation of Salmonella Typhimurium and Listeria monocytogenes on sliced cheese. The data confirmed that simultaneous exposure to EX and UVB irradiation for 80 s reduced S. Typhimurium and L. monocytogenes population by 3.50 and 3.20 log CFU/g, respectively, on sliced cheese. The synergistic cell count reductions in S. Typhimurium and L. monocytogenes in the combined treatment group were 0.88 and 0.59 log units, respectively. The inactivation mechanism underlying the EX and UVB combination treatment was evaluated using fluorescent staining. The combination of EX and UVB light induced the inactivation of reactive oxygen species (ROS) defense enzymes (superoxide dismutase) and synergistic ROS generation, resulting in synergistic lipid peroxidation and destruction of the cell membrane. There were no significant (P > 0.05) differences in the color, texture, or sensory attributes of sliced cheese between the combination treatment and control groups. These results demonstrate that combined treatment with EX and UVB light is a potential alternative strategy for inactivating foodborne pathogens in dairy products without affecting their quality.


Subject(s)
Cheese , Chlorine , Listeria monocytogenes , Reactive Oxygen Species , Salmonella typhimurium , Ultraviolet Rays , Cheese/microbiology , Cheese/analysis , Listeria monocytogenes/radiation effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/drug effects , Salmonella typhimurium/radiation effects , Salmonella typhimurium/growth & development , Salmonella typhimurium/drug effects , Reactive Oxygen Species/metabolism , Chlorine/pharmacology , Food Irradiation/methods , Food Microbiology , Microbial Viability/radiation effects , Colony Count, Microbial
3.
J Microbiol Biotechnol ; 33(1): 106-113, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36474325

ABSTRACT

The supply of microbiological risk-free water is essential to keep food safety and public hygiene. And removal, inactivation, and destruction of microorganisms in drinking water are key for ensuring safety in the food industry. Ultraviolet-C (UV-C) irradiation is an attractive method for efficient disinfection of water without generating toxicity and adversely affecting human health. In this study, the disinfection efficiencies of UV-C irradiation on Shigella flexneri (Gram negative) and Listeria monocytogenes (Gram positive) at various concentrations in drinking water were evaluated using a water purifier. Their morphological and physiological characteristics after UV-C irradiation were observed using fluorescence microscopy and flow cytometry combined with live/dead staining. UV-C irradiation (254 nm wavelength, irradiation dose: 40 mJ/cm2) at a water flow velocity of 3.4 L/min showed disinfection ability on both bacteria up to 108 CFU/4 L. And flow cytometric analysis showed different physiological shift between S. flexneri and L. monocytogenes after UV-C irradiation, but no significant shift of morphology in both bacteria. In addition, each bacterium revealed different characteristics with time-course observation after UV-C irradiation: L. monocytogenes dramatically changed its physiological feature and seemed to reach maximum damage at 4 h and then recovered, whereas S. flexneri seemed to gradually die over time. This study revealed that UV-C irradiation of water purifiers is effective in disinfecting microbial contaminants in drinking water and provides basic information on bacterial features/responses after UV-C irradiation.


Subject(s)
Drinking Water , Listeria monocytogenes , Water Purification , Humans , Disinfection/methods , Water Purification/methods , Listeria monocytogenes/radiation effects , Ultraviolet Rays
4.
FEMS Microbiol Lett ; 368(17)2021 09 22.
Article in English | MEDLINE | ID: mdl-34498664

ABSTRACT

Listeria monocytogenes is the causative agent of the highly fatal foodborne disease listeriosis and can persist in food production environments. Recent research highlights the involvement of L. monocytogenes plasmids in different stress response mechanisms, which contribute to its survival in food production facilities. Ultraviolet (UV) light in the UVC spectrum (200-280 nm) is used in food production to control microbial contamination. Although plasmid-encoded UV resistance mechanisms have been described in other bacteria, no research indicates that L. monocytogenes plasmids contribute to the UV stress response. The plasmids of L. monocytogenes strains 6179, 4KSM and R479a are genetically distinct and were utilized to study the roles of plasmids in the UV response. Wild-type and plasmid-cured variant cells were grown to logarithmic or late-stationary phase, plated on agar plates and exposed to UVC for 60 or 90 s, and colony-forming units (CFUs) were determined. CFUs of 6179 and 4KSM, bearing pLM6179 and p4KSM, respectively, were significantly (P-value < 0.05) higher than those of the plasmid-cured strains in both logarithmic and stationary phases. No difference in survival was observed for the R479a strain. Our data show for the first time that certain L. monocytogenes plasmids contribute to the survival of UVC light stress.


Subject(s)
Listeria monocytogenes , Plasmids , Ultraviolet Rays , Food Microbiology , Humans , Listeria monocytogenes/genetics , Listeria monocytogenes/radiation effects , Listeriosis/microbiology , Plasmids/genetics , Stress, Physiological/radiation effects
5.
Food Microbiol ; 100: 103841, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34416951

ABSTRACT

This study assessed the inactivation kinetics of 150 keV low-energy X-ray on mono-/co-culture biofilms of Listeria monocytogenes and Pseudomonas fluorescens on three different food-contact-surfaces (polyethylene, acrylic, and stainless steel). The results indicated that the level of biofilm formation of mono-/co-cultures of L. monocytogenes and P. fluorescens was the highest on acrylic. The mono-culture L. monocytogenes biofilm cells exhibited higher resistance to the low-energy X-rays than the corresponding mono-culture P. fluorescens biofilm cells, regardless of surface types. Furthermore, co-culture had enhanced the resistance of both P. fluorescens and L. monocytogenes biofilm cells to the low-energy X-ray. Two kinetic models for the inactivation process were investigated, including (i) Linear model and (ii) Weibull model. Based on R2, RMSE and AIC analysis, the Weibull model was superior in fitting the inactivation curves of low-energy X-ray on L. monocytogenes in mono-/co-culture biofilms with P. fluorescens. For mono-culture biofilms, the irradiation achieved the tR1 value (derived from the Weibull model, i.e., the dose required for the first 1-log reduction) of 46.36-50.81 Gy for L. monocytogenes and the tR1 value of 25.61-31.33 Gy for P. fluorescens. For co-culture biofilms, higher tR1 values for L. monocytogenes (59.54-70.77 Gy) and P. fluorescens (32.73-45.13 Gy) were yielded than those for their individual counterparts in mono-culture biofilm.


Subject(s)
Biofilms/radiation effects , Disinfection/methods , Listeria monocytogenes/physiology , Listeria monocytogenes/radiation effects , Pseudomonas fluorescens/radiation effects , Coculture Techniques , Disinfection/instrumentation , Equipment Contamination , Food Handling/instrumentation , Food Microbiology , Listeria monocytogenes/growth & development , Pseudomonas fluorescens/growth & development , Pseudomonas fluorescens/physiology , Stainless Steel/analysis , X-Rays
6.
Appl Environ Microbiol ; 87(15): e0063121, 2021 07 13.
Article in English | MEDLINE | ID: mdl-33990307

ABSTRACT

The aim of this study was to evaluate the antibacterial activity of caffeic acid (CA), which is a natural polyphenol, combined with UV-A light against the representative foodborne bacteria Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes. Data regarding the inactivation of these bacteria and its dependence on CA concentration, light wavelength, and light dose were obtained. E. coli O157:H7 and Salmonella Typhimurium were reduced to the detection limit when treated with 3 mM CA and UV-A for 3 J/cm2 and 4 J/cm2, respectively, and 5 J/cm2 treatment induced 3.10 log reduction in L. monocytogenes. To investigate the mechanism for inactivation of Salmonella Typhimurium and L. monocytogenes, measurement of polyphenol uptake, membrane damage assessment, enzymatic activity assay, and transmission electron microscopy (TEM) were conducted. It was revealed that CA was significantly (P < 0.05) absorbed by bacterial cells, and UV-A light allowed a higher uptake of CA for both pathogens. Additionally, CA plus UV-A treatment induced significant (P < 0.05) cell membrane damage. In the enzymatic activity assay, the activities of both pathogens were reduced by CA, and a greater reduction occurred by use of CA plus UV-A. Moreover, transmission electron microscopy (TEM) images indicated that CA plus UV-A treatment notably destroyed the intercellular structure. In addition, antibacterial activity was also observed in commercial apple juice, which showed results similar to those obtained from phosphate-buffered saline (PBS), resulting in a significant (P < 0.05) reduction for all three pathogens without any changes in color parameters (L*, a*, and b*), total phenolic compounds, and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity. IMPORTANCE Photodynamic inactivation (PDI), which involves photoactivation of a photosensitizer (PS), is an emerging field of study, as it effectively reduces various kinds of microorganisms. Although there are several PSs that have been used for PDI, there is a need to find naturally occurring PSs for safer application in the food industry. Caffeic acid, a natural polyphenol found in most fruits and vegetables, has recently been studied for its potential to act as a novel photosensitizer. However, no studies have been conducted regarding its antibacterial activity depending on treatment conditions and its antibacterial mechanism. In this study, we closely examined the effectiveness of caffeic acid in combination with UV-A light for inactivating representative foodborne bacteria in liquid medium. Therefore, the results of this research are expected to be utilized as basic data for future application of caffeic acid in PDI, especially when controlling pathogens in liquid food processing.


Subject(s)
Anti-Bacterial Agents/pharmacology , Caffeic Acids/pharmacology , Escherichia coli O157 , Food Preservation/methods , Fruit and Vegetable Juices/microbiology , Listeria monocytogenes , Salmonella typhimurium , Ultraviolet Rays , Cell Membrane/drug effects , Cell Membrane/radiation effects , Escherichia coli O157/drug effects , Escherichia coli O157/growth & development , Escherichia coli O157/metabolism , Escherichia coli O157/radiation effects , Food Microbiology , Fruit , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/metabolism , Listeria monocytogenes/radiation effects , Malus , Polyphenols/metabolism , Salmonella typhimurium/drug effects , Salmonella typhimurium/growth & development , Salmonella typhimurium/metabolism , Salmonella typhimurium/radiation effects
7.
Int J Food Microbiol ; 340: 109057, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33460999

ABSTRACT

Various adverse conditions can trigger defensive mechanisms in Listeria monocytogenes that can increase the virulence of surviving cells. The objective of this study was to evaluate the expression of one stress-response (sigB) and three virulence (plcA, hly, and iap) genes in L. monocytogenes exposed to a sub lethal dose of E-beam irradiation in dry-cured ham. To accomplish this, dry-cured ham slices (10 g) were immersed in a 109 CFU/mL suspension of L. monocytogenes strain S4-2 and subsequently irradiated with 1, 2, or 3 kGy. After irradiation, samples were stored at 7 °C or 15 °C for 30 days. Absolute gene expression levels were determined by RT-qPCR, and numbers of surviving Listeria cells were assessed by microbial counts after different storage times (0, 7, 15, and 30 days). At 7 °C, after E-beam treatment at doses of 2 or 3 kGy, Listeria gene expression significantly increased (p ≤ 0.05) up to day 15. Listeria counts decreased with increasing dosage. The relationship between absolute gene expression and the number of surviving Listeria cells could indicate that sublethal doses of E-beam irradiation can increase expression of the genes studied. We observed no significant influence of storage time or temperature on gene expression (p > 0.05). Listeria that survives E-beam treatment may display increased virulence, constituting a significant potential public health risk.


Subject(s)
Food Irradiation , Listeria monocytogenes/genetics , Listeria monocytogenes/radiation effects , Pork Meat/microbiology , Animals , Colony Count, Microbial , Food Microbiology , Food Preservation , Gene Expression , Listeria monocytogenes/growth & development , Listeria monocytogenes/pathogenicity , Sigma Factor/genetics , Stress, Physiological/genetics , Swine , Temperature , Virulence/genetics
8.
Food Microbiol ; 92: 103584, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32950168

ABSTRACT

The objectives of this study were to evaluate the bactericidal effects of X-ray irradiation and gallic acid (GA) against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on lettuce leaves and in phosphate-buffered saline (PBS). Inoculated PBS and lettuce were exposed to X-rays (0.05, 0.1, and 0.15; 0.1, 0.2, and 0.3 kGy, respectively), and GA was applied to lettuce leaves as a solution and in PBS at concentrations of 0.5% (w/v). Combined treatment with 0.3 kGy and 0.5% GA reduced E. coli O157:H7, S. Typhimurium, and L. monocytogenes cell counts 5.41, 2.57, and 1.36 log CFU/cm2 on lettuce, respectively. Combined treatment with 0.15 kGy X-ray and 0.5% GA reduced counts for the same species by 6.54, 4.24, and 1.51 log CFU/mL in PBS. The combined treatments exerted a synergistic antibacterial effect against E. coli O157:H7 on lettuce, but not against S. Typhimurium or L. monocytogenes. In PBS, the synergistic effect was confirmed in both E. coli O157:H7 and S. Typhimurium cells. Mechanistic investigations indicated that the synergistic antibacterial effect was associated with intracellular reactive oxygen species (ROS) generation and bacterial cell membrane damage. Additionally, the X-ray and GA combination treatment did not adversely affect the color, total phenol content, and texture of lettuce. These findings demonstrate that treatment with X-ray radiation and GA can enhance the microbiological safety of fresh produce.


Subject(s)
Anti-Bacterial Agents/pharmacology , Food Preservation/methods , Gallic Acid/pharmacology , Lactuca/microbiology , Colony Count, Microbial , Escherichia coli O157/drug effects , Escherichia coli O157/growth & development , Escherichia coli O157/radiation effects , Food Irradiation/methods , Food Preservation/instrumentation , Food Preservatives/pharmacology , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/radiation effects , Microbial Viability/drug effects , Microbial Viability/radiation effects , Salmonella typhimurium/drug effects , Salmonella typhimurium/growth & development , Salmonella typhimurium/radiation effects , X-Rays
9.
Food Microbiol ; 91: 103543, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32539944

ABSTRACT

In this study, we investigated the antimicrobial activity of the X-ray irradiation and citric acid (CA) combination against Escherichia coli O157:H7 and Listeria monocytogenes on the surface of spinach leaves and elucidated the mechanisms underlying their synergistic interaction. Upon treatment with 0.3 kGy X-ray irradiation and 1% CA combination, the cell counts of E. coli O157:H7 and L. monocytogenes reduced by 4.23 and 3.69 log CFU/mL on spinach leaves, respectively. The synergistic reduction in the cell counts of E. coli O157:H7 and L. monocytogenes by the combination treatment was 0.95 and 1.14 log units, respectively. The X-ray and CA combination exerts its antimicrobial effect by damaging the bacterial cell membrane and enhancing the generation of intracellular reactive oxygen species in the pathogens. The enhanced bactericidal effect of the combination treatment may not be due to the loss of intracellular enzyme activity. We also evaluated the effect of the combination treatment on the quality attributes of spinach leaves. The combination treatment did not result in adverse changes in color and texture of spinach leaves. These results demonstrate the potential of citric acid and X-ray irradiation combination for decontaminating foodborne pathogens on fresh produce.


Subject(s)
Citric Acid/pharmacology , Disinfectants/pharmacology , Food Irradiation/methods , Spinacia oleracea/microbiology , Cell Membrane/drug effects , Cell Membrane/radiation effects , Colony Count, Microbial , Escherichia coli O157/drug effects , Escherichia coli O157/growth & development , Escherichia coli O157/metabolism , Escherichia coli O157/radiation effects , Food Microbiology , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/metabolism , Listeria monocytogenes/radiation effects , Plant Leaves/microbiology , Reactive Oxygen Species/metabolism , X-Rays
10.
Appl Environ Microbiol ; 86(9)2020 04 17.
Article in English | MEDLINE | ID: mdl-32111590

ABSTRACT

This study was aimed at assessing whether the repeated exposure of 12 strains of Salmonella spp., Escherichia coli, and Listeria monocytogenes to alternative nonthermal decontamination techniques with UV light (UV-C) and nonthermal atmospheric plasma (NTAP) may cause the emergence of variants showing increased resistance to clinically relevant antibiotics (ampicillin, cefotaxime, ciprofloxacin, gentamicin, streptomycin, tetracycline, erythromycin, vancomycin, and colistin). UV-C and NTAP treatments were applied on the surface of inoculated brain heart infusion (BHI) agar plates. Survivors were recovered and after 24 h of growth in BHI broth were again subjected to the decontamination treatment; this was repeated for 10 consecutive cycles. A total of 174 strain/decontamination technique/antibiotic combinations were tested, and 12 variant strains with increased resistance to one of the antibiotics studied were identified, with the increases in the MICs in Mueller-Hinton broth ranging from 2- to 256-fold. The variant strains of Salmonella spp. isolated were further characterized through phenotypic screenings and whole-genome sequencing (WGS) analyses. Most changes in susceptibility were observed for antibiotics that act at the level of protein synthesis (aminoglycosides, tetracyclines, and glycylcyclines) or DNA replication (fluoroquinolones), as well as for polymyxins. No changes in resistance to ß-lactams were detected. WGS analyses showed the occurrence of sequence alterations in some antibiotic cellular targets (e.g., gyrA for ciprofloxacin-resistant variants, rpsL for a streptomycin-resistant variant), accompanied by variations in stress response regulators and membrane transporters likely involved in the nonselective efflux of antibiotics, which altogether resulted in a low- to medium-level increase in microbial resistance to several antibiotics.IMPORTANCE The emergence and spread of antibiotic resistance along the food chain can be influenced by the different antimicrobial strategies used from farm to fork. This study evidences that two novel, not yet widely used, nonthermal microbial decontamination techniques, UV light and nonthermal atmospheric plasma, can select variants with increased resistance to various clinically relevant antibiotics, such as ciprofloxacin, streptomycin, tetracycline, and erythromycin. Whole-genome analysis of the resistant variants obtained for Salmonella spp. allowed identification of the genetic changes responsible for the observed phenotypes and suggested that some antimicrobial classes are more susceptible to the cross-resistance phenomena observed. This information is relevant, since these novel decontamination techniques are being proposed as possible alternative green techniques for the decontamination of environments and equipment in food and clinical settings.


Subject(s)
Anti-Bacterial Agents/pharmacology , Decontamination/methods , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Listeria monocytogenes/genetics , Salmonella/genetics , Selection, Genetic , Escherichia coli/drug effects , Escherichia coli/radiation effects , Escherichia coli Proteins , Listeria monocytogenes/drug effects , Listeria monocytogenes/radiation effects , Microbial Sensitivity Tests , Plasma Gases/therapeutic use , Ribosomal Protein S9 , Salmonella/drug effects , Salmonella/radiation effects , Ultraviolet Rays
11.
Food Microbiol ; 88: 103401, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31997758

ABSTRACT

This study determined the efficacy of UV-C as a decontamination process against some foodborne bacteria in dried whole black peppercorns. Artificially-inoculated Salmonella enterica, Escherichia coli O157:H7, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus were subjected to UV-C with a surface irradiance of 0.43 mW/cm2 and were all found to exhibit a biphasic inactivation pattern with fast log-linear inactivation followed by a tail. Total log reductions (TLR) ranged from 1.92 (S. aureus) to 3.60 log CFU/g (E. coli O157:H7). Increasing the lamp number from 1 to 5 also linearly (R2 = 0.98) increased the surface irradiance from 0.43 to 1.70 and the TLR of the most resistant S. aureus from 1.92 to 2.62 log CFU/g. Quality evaluation showed very small, variable changes in color coordinates, which were not detected by a same/different test involving a 50-member sensory evaluation panel. Mercury deposition was not detected after a maximum exposure time of 90 min to 0.43 and 1.70 mW/cm2. Finally small, non-significant changes in the innate bacterial microflora of the black peppercorns were determined after 90 min-treatment using 1 lamp and 5 lamps, emphasizing the limitation of utility of UV-C as additional decontamination process for post-process-introduced microorganisms. Good Manufacturing Practices throughout the dried black peppercorn manufacturing process were recommended.


Subject(s)
Bacteria/radiation effects , Decontamination/methods , Food Irradiation/methods , Microbial Viability/radiation effects , Ultraviolet Rays , Colony Count, Microbial , Colorimetry , Escherichia coli O157/radiation effects , Food Microbiology/methods , Listeria monocytogenes/radiation effects , Staphylococcus aureus/radiation effects
12.
Food Microbiol ; 87: 103387, 2020 May.
Article in English | MEDLINE | ID: mdl-31948628

ABSTRACT

We evaluated the bactericidal efficacy of the simultaneous application of ultraviolet-A (UV-A) irradiation and fumaric acid (FA) against Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in apple juice and as well as investigated the effects of this treatment on product quality. Further, we elucidated the mechanisms underlying their synergistic bactericidal action. Simultaneous UV-A light irradiation and 0.1% FA treatment for 30 min resulted in 6.65-, 6.27-, and 6.49-log CFU/ml reductions in E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, which involved 3.15, 2.21, and 3.43 log CFU reductions, respectively, and these were attributed to the synergistic action of the combined treatments. Mechanistic investigations suggested that the combined UVA-FA treatment resulted in significantly greater bacterial cell membrane damage and intracellular reactive oxygen species (ROS) generation. UVA-FA treatment for 30 min did not cause significant changes to the color, nonenzymatic browning index, pH, and total phenolic content of apple juice. These results suggest that combined UVA-FA treatment can be effectively used to control foodborne pathogens in apple juice without affecting its quality.


Subject(s)
Anti-Bacterial Agents/pharmacology , Food Preservation/methods , Fruit and Vegetable Juices/microbiology , Fumarates/pharmacology , Malus/microbiology , Escherichia coli O157/drug effects , Escherichia coli O157/growth & development , Escherichia coli O157/metabolism , Escherichia coli O157/radiation effects , Food Preservation/instrumentation , Fruit and Vegetable Juices/analysis , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/metabolism , Listeria monocytogenes/radiation effects , Microbial Viability/drug effects , Microbial Viability/radiation effects , Reactive Oxygen Species/metabolism , Salmonella typhimurium/drug effects , Salmonella typhimurium/growth & development , Salmonella typhimurium/metabolism , Salmonella typhimurium/radiation effects , Ultraviolet Rays
13.
Food Sci Technol Int ; 26(1): 28-37, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31399018

ABSTRACT

The aim of this study was to statistically evaluate the effect of a naturally food-derived cinnamaldehyde on the thermal inactivation of Listeria monocytogenes in ground pork. This study combined four concentrations of cinnamaldehyde (0, 0.1, 0.5, and 1.0% vol/wt) and four temperatures (55, 60, 65, and 70 ℃) to predict the thermal inactivation curves of L. monocytogenes. The Weibull model successfully described the primary thermal inactivation using the Integrated Pathogen Modeling Program. These results statistically proposed that the cinnamaldehyde supplementation in ground pork attenuates the thermo-tolerance of L. monocytogenes. The time for achieving a 5-log10 reduction of L. monocytogenes declined from 28.14 to 17.35 min at 55 ℃ when the ground pork sample was supplemented by 1% cinnamaldehyde, while the time declined from 1.95 to 0.34 min at 70 ℃. Thereafter, based on the 5.0-log10 lethality, secondary models were fitted by a selected polynomial model. The transmission electron microscopy revealed that cinnamaldehyde causes serious damage to membrane integrity and increases the occurrence of cell membrane rupture and leakage of cytoplasmic content under thermal treatment. Our model represents a mathematical tool that will help meat-product manufacturers to improve the efficacy of thermal processing ground pork supplemented with cinnamaldehyde.


Subject(s)
Acrolein/analogs & derivatives , Hot Temperature , Listeria monocytogenes , Microbial Viability/drug effects , Red Meat/microbiology , Acrolein/pharmacology , Animals , Drug Synergism , Food Safety , Listeria monocytogenes/drug effects , Listeria monocytogenes/radiation effects , Swine
14.
Food Microbiol ; 86: 103314, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31703869

ABSTRACT

The aim of this study was to investigate the antibacterial effect of 460-470 nm light-emitting diode (LED460-470nm) illumination against pathogens and spoilage bacteria on the surface of agar media and packaged sliced cheese. LED460-470nm illumination highly inhibited the growth of Listeria monocytogenes and Pseudomonas fluorescens on agar media covered with oriented polypropylene (OPP) film (thickness, 0.03 mm). When sliced cheeses inoculated with L. monocytogenes or P. fluorescens and packaged with OPP film were illuminated by an LED460-470 nm at 4 or 25 °C, reduction levels of L. monocytogenes and P. fluorescens on packaged slice cheese were higher at 4 °C than at 25 °C. There were no significant differences in color between non-illuminated and illuminated sliced cheese after storage for 7 d at 4 °C. LED460-470 nm illumination at 4 °C for 4 d caused cellular injury of L. monocytogenes and P. fluorescens related to RNA, protein, and peptidoglycan metabolism, and a disruption of the cell membrane and loss of cytoplasmic components were observed from TEM results. These results suggest that LED460-470 nm illumination, in combination with refrigeration temperatures, may be applied to extend the shelf-life of packaged slice cheese and minimize the risk of foodborne disease, without causing color deterioration.


Subject(s)
Cheese/microbiology , Food Preservation/methods , Listeria monocytogenes/radiation effects , Pseudomonas fluorescens/radiation effects , Food Contamination/analysis , Food Contamination/prevention & control , Light , Pseudomonas fluorescens/growth & development
15.
PLoS One ; 14(12): e0225475, 2019.
Article in English | MEDLINE | ID: mdl-31790434

ABSTRACT

Rapid sample preparation is one of the leading bottlenecks to low-cost and efficient sample component detection. To overcome this setback, a technology known as Lyse-It has been developed to rapidly (less than 60 seconds) lyse Gram-positive and-negative bacteria alike, while simultaneously fragmenting DNA/RNA and proteins into tunable sizes. This technology has been used with a variety of organisms, but the underlying mechanism behind how the technology actually works to fragment DNA/RNA and proteins has hitherto been studied. It is generally understood how temperature affects cellular lysing, but for DNA/RNA and protein degradation, the temperature and amount of energy introduced by microwave irradiation of the sample, cannot explain the degradation of the biomolecules to the extent that was being observed. Thus, an investigation into the microwave generation of reactive oxygen species, in particular singlet oxygen, hydroxyl radicals, and superoxide anion radicals, was undertaken. Herein, we probe one aspect, the generation of reactive oxygen species (ROS), which is thought to contribute to a non-thermal mechanism behind biomolecule fragmentation with the Lyse-It technology. By utilizing off/on (Photoinduced electron transfer) PET fluorescent-based probes highly specific for reactive oxygen species, it was found that as oxygen concentration in the sample and/or microwave irradiation power increases, more reactive oxygen species are generated and ultimately, more oxidation and biomolecule fragmentation occurs within the microwave cavity.


Subject(s)
Analytic Sample Preparation Methods/methods , Bacteriological Techniques/methods , DNA Fragmentation/drug effects , Detergents/pharmacology , RNA Stability/drug effects , DNA Fragmentation/radiation effects , DNA, Bacterial/chemistry , DNA, Bacterial/drug effects , DNA, Bacterial/radiation effects , Hydrolysis/radiation effects , Listeria monocytogenes/drug effects , Listeria monocytogenes/genetics , Listeria monocytogenes/radiation effects , Microwaves , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Oxygen/analysis , Oxygen/metabolism , Proteolysis/drug effects , Proteolysis/radiation effects , RNA Stability/radiation effects , RNA, Bacterial/chemistry , RNA, Bacterial/drug effects , RNA, Bacterial/radiation effects , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/radiation effects , Temperature , Time Factors , Vibrio cholerae/drug effects , Vibrio cholerae/genetics , Vibrio cholerae/radiation effects
16.
J Food Prot ; 82(12): 2065-2070, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31714805

ABSTRACT

The objective of this study was to evaluate the efficacy of simultaneous UV-A and UV-B irradiation (UV-A+B) for inactivating Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in both phosphate-buffered saline (PBS) and apple juice. A cocktail of the three pathogens was inoculated into PBS and apple juice, and then the suspensions were irradiated with UV lamps of 356 nm (UV-A) and 307 nm (UV-B). Significant (P < 0.05) log reductions of the three pathogens in PBS and apple juice were observed after a maximum dose of UV-B alone or the UV-A+B treatment, but few reductions were observed upon UV-A treatment alone. At all irradiation times, antagonistic effects were observed for the application of UV-A+B against in E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes in PBS and apple juice. The degree of antagonistic effect in apple juice was greater than that in PBS. The results of this study suggest that the combined treatment of commercial UV-A and UV-B lamps would be impractical for disinfecting juice products.


Subject(s)
Escherichia coli O157 , Food Microbiology , Listeria monocytogenes , Microbial Viability , Salmonella typhimurium , Ultraviolet Rays , Colony Count, Microbial , Escherichia coli O157/radiation effects , Food Microbiology/methods , Fruit and Vegetable Juices/microbiology , Listeria monocytogenes/radiation effects , Malus , Microbial Viability/radiation effects , Salmonella typhimurium/radiation effects
17.
Appl Environ Microbiol ; 85(22)2019 11 15.
Article in English | MEDLINE | ID: mdl-31492665

ABSTRACT

Listeria monocytogenes, the causative agent of the serious foodborne disease listeriosis, can rapidly adapt to a wide range of environmental stresses, including visible light. This study shows that exposure of the L. monocytogenes EGDe strain to low-intensity, broad-spectrum visible light inhibited bacterial growth and caused altered multicellular behavior during growth on semisolid agar compared to when the bacteria were grown in complete darkness. These light-dependent changes were observed regardless of the presence of the blue light receptor (Lmo0799) and the stressosome regulator sigma B (SigB), which have been suggested to be important for the ability of L. monocytogenes to respond to blue light. A genome-wide transcriptional analysis revealed that exposure of L. monocytogenes EGDe to broad-spectrum visible light caused altered expression of 2,409 genes belonging to 18 metabolic pathways compared to bacteria grown in darkness. The light-dependent differentially expressed genes are involved in functions such as glycan metabolism, cell wall synthesis, chemotaxis, flagellar synthesis, and resistance to oxidative stress. Exposure to light conferred reduced bacterial motility in semisolid agar, which correlates well with the light-dependent reduction in transcript levels of flagellar and chemotaxis genes. Similar light-induced reduction in growth and motility was also observed in two different L. monocytogenes food isolates, suggesting that these responses are typical for L. monocytogenes Together, the results show that even relatively small doses of broad-spectrum visible light cause genome-wide transcriptional changes, reduced growth, and motility in L. monocytogenesIMPORTANCE Despite major efforts to control L. monocytogenes, this pathogen remains a major problem for the food industry, where it poses a continuous risk of food contamination. The ability of L. monocytogenes to sense and adapt to different stressors in the environment enables it to persist in many different niches, including food production facilities and in food products. The present study shows that exposure of L. monocytogenes to low-intensity broad-spectrum visible light reduces its growth and motility and alters its multicellular behavior. Light exposure also caused genome-wide changes in transcript levels, affecting multiple metabolic pathways, which are likely to influence the bacterial physiology and lifestyle. In practical terms, the data presented in this study suggest that broad-spectrum visible light is an important environmental variable to consider as a strategy to improve food safety by reducing L. monocytogenes contamination in food production environments.


Subject(s)
Genome, Bacterial , Light , Listeria monocytogenes/genetics , Listeria monocytogenes/radiation effects , Transcriptome/radiation effects , Food Microbiology , Gene Expression Profiling , Listeria monocytogenes/growth & development , Listeriosis/microbiology , Metabolic Networks and Pathways/radiation effects
18.
Food Microbiol ; 84: 103277, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31421776

ABSTRACT

The purpose of this study was to evaluate the synergistic bactericidal efficacy of combining ultrasound (US) and fumaric acid (FA) treatment against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in apple juice and to identify the synergistic bactericidal mechanisms. Additionally, the effect of combination treatment on juice quality was determined by measuring the changes in color, pH, non-enzymatic browning index, and total phenolic content. A mixed cocktail of the three pathogens was inoculated into apple juice, followed by treatment with US (40 kHz) alone, FA (0.05, 0.1, and 0.15%) alone, and a combination of US and FA for 1, 2, 3, 4, and 5 min. Combined US and 0.15% FA treatment for 5 min achieved 5.67, 6.35, and 3.47 log reductions in E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, with the 1.55, 2.37, and 0.57 log CFU reductions attributed to the synergistic effect. Although the pH value slightly decreased as FA increased, there were no significant (P > 0.05) differences in color values, browning indices, and phenolic content between untreated and treated samples. To identify the mechanism of this synergistic bactericidal action, membrane integrity, malfunctions in the membrane efflux pump, and intracellular enzyme activity were measured. The analyses confirmed that damage to the cell envelope (membrane integrity and efflux pump) was strongly related to the synergistic microbial inactivation. These results suggest that simultaneous application of US treatment and FA is a novel method for ensuring the microbial safety of apple juice.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/radiation effects , Fruit and Vegetable Juices/microbiology , Fumarates/pharmacology , Malus/microbiology , Microbial Viability/radiation effects , Ultrasonic Waves , Bacteria/pathogenicity , Colony Count, Microbial , Escherichia coli O157/drug effects , Escherichia coli O157/radiation effects , Food Microbiology/methods , Food Preservation/methods , Listeria monocytogenes/drug effects , Listeria monocytogenes/radiation effects , Salmonella typhimurium/drug effects , Salmonella typhimurium/radiation effects
19.
Appl Environ Microbiol ; 85(12)2019 06 15.
Article in English | MEDLINE | ID: mdl-30952663

ABSTRACT

In this study, we developed a washing system capable of decontaminating fresh produce by combining the Spindle apparatus, which detaches microorganisms on sample surfaces, and a 222-nm krypton-chlorine excimer lamp (KrCl excilamp) (Sp-Ex) and investigated their decontamination effect against Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes on apple (Malus domestica Borkh.) and bell pepper (Capsicum annuum L.) surfaces. Initial levels of the three pathogens were approximately 108 CFU/sample. Both E. coli O157:H7 and S. Typhimurium were reduced to below the detection limit (2.0 log CFU/sample) after 5 and 7 min of treatment on apple and bell pepper surfaces, respectively. The amounts of L. monocytogenes on apple and bell pepper surfaces were reduced by 4.26 and 5.48 logs, respectively, after 7 min of treatment. The decontamination effect of the Sp-Ex was influenced by the hydrophobicity of the sample surface as well as the microbial cell surface, and the decontamination effect decreased as the two hydrophobicity values increased. To improve the decontamination effect of the Sp-Ex, Tween 20, a surfactant that weakens the hydrophobic interaction between the sample surface and pathogenic bacteria, was incorporated into Sp-Ex processing. It was found that its decontamination effect was significantly (P < 0.05) increased by the addition of 0.1% Tween 20. Sp-Ex did not cause significant quality changes in apple or bell pepper surfaces during 7 days storage following treatment (P > 0.05). Our results suggest that Sp-Ex could be applied as a system to control pathogens in place of chemical sanitizer washing by the fresh-produce industry.IMPORTANCE Although most fresh-produce processing currently controls pathogens by means of washing with sanitizers, there are still problems such as the generation of harmful substances and changes in product quality. A combination system composed of the Spindle and a 222-nm KrCl excilamp (Sp-Ex) developed in this study reduced pathogens on apple and bell pepper surfaces using sanitizer-free water without altering produce color and texture. This study demonstrates the potential of the Sp-Ex to replace conventional washing with sanitizers, and it can be used as baseline data for practical application by industry. In addition, implementation of the Sp-Ex developed in this study is expected not only to meet consumer preference for fresh, minimally processed produce but also to reduce human exposure to harmful chemicals while being beneficial to the environment.


Subject(s)
Capsicum/microbiology , Chlorine/pharmacology , Decontamination/methods , Disinfectants/pharmacology , Krypton/pharmacology , Lasers, Excimer , Malus/microbiology , Decontamination/instrumentation , Escherichia coli O157/radiation effects , Food Microbiology , Listeria monocytogenes/radiation effects , Salmonella typhimurium/radiation effects
20.
Int J Food Microbiol ; 297: 11-20, 2019 May 16.
Article in English | MEDLINE | ID: mdl-30852362

ABSTRACT

The effectiveness of ultraviolet C light (UV-C) delivered in water (WUV) or in peroxyacetic acid (PAA) for the inactivation and inhibition of L. monocytogenes and S. enterica in ready-to-eat 'Iceberg lettuce' and baby spinach leaves, was evaluated throughout chilled storage in modified atmosphere packaging (MAP). The inhibition of pathogen's growth by sequential pretreatments with UV-C in PAA and then biocontrol using Pseudomonas graminis CPA-7 was assessed during MAP storage at 5 °C and upon a breakage of the cold-storage chain. In fresh-cut lettuce, 0 1 kJ/m2 UV-C, in water or in 40 mg/L PAA, inactivated both pathogens by up to 2.1 ±â€¯0.7 log10, which improved the efficacy of water-washing by up to 1.9 log10 and showed bacteriostatic effects on both pathogens. In baby spinach leaves, the combination of 0 3 kJ/m2 UV-C and 40 mg/L PAA reduced S. enterica and L. monocytogenes populations by 1.4 ±â€¯0.2 and 2.2 ±â€¯0.3 log10 respectively, which improved water-washing by 0.8 ±â€¯0.2 log10. Combined treatments (0.1 or 0 3 kJ/m2 WUV and 40 mg/L PAA) inactivated both pathogens in the process solution from lettuce or spinach single sanitation, respectively. Pretreating lettuce with UV-C in PAA reduced L. monocytogenes and S. enterica's growth by up to 0.9 ±â€¯0.1 log10 with respect to the PAA-pretreated control after 6 d at 5 °C in MAP. Upon a cold-chain breakage, CPA-7 prevented S. enterica growth in PAA-pretreated lettuce, whereas showed no effect on L. monocytogenes in any of both matrices. Low-dose UV-C in PAA is a suitable preservation strategy for improving the safety of ready-to-eat leafy greens and reducing the risk of cross contamination.


Subject(s)
Food Microbiology/methods , Lactuca/microbiology , Listeria monocytogenes , Peracetic Acid/pharmacology , Pseudomonas/physiology , Salmonella enterica , Spinacia oleracea/microbiology , Colony Count, Microbial , Escherichia coli O157 , Listeria monocytogenes/drug effects , Listeria monocytogenes/radiation effects , Microbial Interactions , Microbial Viability/drug effects , Microbial Viability/radiation effects , Plant Leaves/microbiology , Salmonella enterica/drug effects , Ultraviolet Rays , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...