Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.365
1.
Food Res Int ; 188: 114489, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823872

Solanum nigrum L. (SN) berry is an edible berry containing abundant polyphenols and bioactive compounds, which possess antioxidant and antiinflammatory properties. However, the effects of SN on alcohol-induced biochemical changes in the enterohepatic axis remain unclear. In the current study, a chronic ethanol-fed mice ALD model was used to test the protective mechanisms of SN berries. Microbiota composition was determined via 16S rRNA sequencing, we found that SN berries extract (SNE) improved intestinal imbalance by reducing the Firmicutes to Bacteroides ratio, restoring the abundance of Akkermansia microbiota, and reducing the abundance of Allobaculum and Shigella. SNE restored the intestinal short-chain fatty acids content. In addition, liver transcriptome data analysis revealed that SNE primarily affected the genes involved in lipid metabolism and inflammatory responses. Furthermore, SNE ameliorated hepatic steatosis in alcohol-fed mice by activating AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), peroxisome proliferator-activated receptor α (PPAR-α). SNE reduced the expression of toll-like receptor 4 (TLR4), myeloid differentiation factor-88 (MyD88) nuclear factor kappa-B (NF-κB), which can indicate that SNE mainly adjusted LPS/TLR4/MyD88/NF-κB pathway to reduce liver inflammation. SNE enhanced hepatic antioxidant capacity by regulating NRF2-related protein expression. SNE alleviates alcoholic liver injury by regulating of gut microbiota, lipid metabolism, inflammation, and oxidative stress. This study may provide a reference for the development and utilization of SN resources.


Fruit , Gastrointestinal Microbiome , Lipid Metabolism , Liver Diseases, Alcoholic , Oxidative Stress , Plant Extracts , Solanum nigrum , Animals , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , Lipid Metabolism/drug effects , Plant Extracts/pharmacology , Mice , Fruit/chemistry , Solanum nigrum/chemistry , Male , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/prevention & control , Mice, Inbred C57BL , Inflammation , Liver/drug effects , Liver/metabolism , Toll-Like Receptor 4/metabolism , Disease Models, Animal , PPAR alpha/metabolism , Antioxidants/pharmacology , Ethanol
2.
Cell Rep Methods ; 4(5): 100778, 2024 May 20.
Article En | MEDLINE | ID: mdl-38749443

Alcohol-associated liver disease (ALD) is a prevalent liver disease, yet research is hampered by the lack of suitable and reliable human ALD models. Herein, we generated human adipose stromal/stem cell (hASC)-derived hepatocellular organoids (hAHOs) and hASC-derived liver organoids (hALOs) in a three-dimensional system using hASC-derived hepatocyte-like cells and endodermal progenitor cells, respectively. The hAHOs were composed of major hepatocytes and cholangiocytes. The hALOs contained hepatocytes and nonparenchymal cells and possessed a more mature liver function than hAHOs. Upon ethanol treatment, both steatosis and inflammation were present in hAHOs and hALOs. The incubation of hALOs with ethanol resulted in increases in the levels of oxidative stress, the endoplasmic reticulum protein thioredoxin domain-containing protein 5 (TXNDC5), the alcohol-metabolizing enzymes ADH1B and ALDH1B1, and extracellular matrix accumulation, similar to those of liver tissues from patients with ALD. These results present a useful approach for understanding the pathogenesis of ALD in humans, thus facilitating the discovery of effective treatments.


Adipose Tissue , Ethanol , Hepatocytes , Liver Diseases, Alcoholic , Organoids , Humans , Organoids/pathology , Organoids/drug effects , Ethanol/pharmacology , Ethanol/adverse effects , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Hepatocytes/metabolism , Adipose Tissue/pathology , Adipose Tissue/cytology , Alcohol Dehydrogenase/metabolism , Oxidative Stress/drug effects , Liver/pathology , Liver/drug effects , Liver/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/pathology , Models, Biological , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Stromal Cells/pathology , Stromal Cells/drug effects , Stromal Cells/metabolism , Thioredoxins/metabolism
3.
Free Radic Biol Med ; 220: 236-248, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38704052

Alcoholic liver disease (ALD) is a common chronic redox disease caused by increased alcohol consumption. Abstinence is a major challenge for people with alcohol dependence, and approved drugs have limited efficacy. Therefore, this study aimed to explore a new treatment strategy for ALD using ferroferric oxide endohedral fullerenol (Fe3O4@C60(OH)n) in combination with static magnetic and electric fields (sBE). The primary hepatocytes of 8-9-week-old female BALB/c mice were used to evaluate the efficacy of the proposed combination treatment. A mouse chronic binge ethanol feeding model was established to determine the alleviatory effect of Fe3O4@C60(OH)n on liver injury under sBE exposure. Furthermore, the ability of Fe3O4@C60(OH)n to eliminate •OH was evaluated. Alcohol-induced hepatocyte and mitochondrial damage were reversed in vitro. Additionally, the combination therapy reduced liver damage, alleviated oxidative stress by improving antioxidant levels, and effectively inhibited liver lipid accumulation in animal experiments. Here, we used a combination of magnetic derivatives of fullerenol and sBE to further improve the ROS clearance rate, thereby alleviating ALD. The developed combination treatment may effectively improve alcohol-induced liver damage and maintain redox balance without apparent toxicity, thereby enhancing therapy aimed at ALD and other redox diseases.


Fullerenes , Hepatocytes , Liver Diseases, Alcoholic , Mice, Inbred BALB C , Oxidative Stress , Reactive Oxygen Species , Animals , Fullerenes/pharmacology , Fullerenes/chemistry , Fullerenes/therapeutic use , Mice , Reactive Oxygen Species/metabolism , Female , Hepatocytes/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Oxidative Stress/drug effects , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/drug therapy , Liver/metabolism , Liver/pathology , Liver/drug effects , Antioxidants/pharmacology , Disease Models, Animal , Humans , Oxidation-Reduction/drug effects , Ethanol/toxicity
4.
J Biomed Sci ; 31(1): 54, 2024 May 24.
Article En | MEDLINE | ID: mdl-38790021

BACKGROUND: Alcohol-related liver disease (ALD) is a major health concern worldwide, but effective therapeutics for ALD are still lacking. Tumor necrosis factor-inducible gene 6 protein (TSG-6), a cytokine released from mesenchymal stem cells, was shown to reduce liver fibrosis and promote successful liver repair in mice with chronically damaged livers. However, the effect of TSG-6 and the mechanism underlying its activity in ALD remain poorly understood. METHODS: To investigate its function in ALD mice with fibrosis, male mice chronically fed an ethanol (EtOH)-containing diet for 9 weeks were treated with TSG-6 (EtOH + TSG-6) or PBS (EtOH + Veh) for an additional 3 weeks. RESULTS: Severe hepatic injury in EtOH-treated mice was markedly decreased in TSG-6-treated mice fed EtOH. The EtOH + TSG-6 group had less fibrosis than the EtOH + Veh group. Activation of cluster of differentiation 44 (CD44) was reported to promote HSC activation. CD44 and nuclear CD44 intracellular domain (ICD), a CD44 activator which were upregulated in activated HSCs and ALD mice were significantly downregulated in TSG-6-exposed mice fed EtOH. TSG-6 interacted directly with the catalytic site of MMP14, a proteolytic enzyme that cleaves CD44, inhibited CD44 cleavage to CD44ICD, and reduced HSC activation and liver fibrosis in ALD mice. In addition, a novel peptide designed to include a region that binds to the catalytic site of MMP14 suppressed CD44 activation and attenuated alcohol-induced liver injury, including fibrosis, in mice. CONCLUSIONS: These results demonstrate that TSG-6 attenuates alcohol-induced liver damage and fibrosis by blocking CD44 cleavage to CD44ICD and suggest that TSG-6 and TSG-6-mimicking peptide could be used as therapeutics for ALD with fibrosis.


Cell Adhesion Molecules , Hyaluronan Receptors , Liver Cirrhosis , Liver Diseases, Alcoholic , Animals , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Mice , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Male , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/chemically induced , Mice, Inbred C57BL , Peptides/pharmacology , Peptides/metabolism , Ethanol
5.
Int J Biol Macromol ; 270(Pt 1): 132093, 2024 Jun.
Article En | MEDLINE | ID: mdl-38710247

Long-term and excessive alcohol consumption can lead to the development of alcoholic liver disease (ALD), characterized by oxidative damage, intestinal barrier injury, and disruption of intestinal microbiota. In this study, we extracted fucoidan (Aj-FUC) from Apostichopus japonicus using enzymatic methods and characterized its structure. The ALD model was established in male Balb/c mice using 56° Baijiu, with silymarin as a positive control. Mice were orally administered 100 mg/kg·bw and 300 mg/kg·bw of Aj-FUC for 28 days to evaluate its effects on liver injury in ALD mice and explore its potential role in modulating the gut-liver axis. The results showed significant improvements in histopathological changes and liver disease in the Aj-FUC group. Aj-FUC treatment significantly increased the levels of glutathione (GSH) and glutathione peroxidase (GSH-Px) while weakly reduced the elevation of malondialdehyde (MDA) induced by ALD. It also regulated the Nrf2/HO-1 signaling pathway, collectively alleviating hepatic oxidative stress. Aj-FUC intervention upregulated the expression of ZO-1 and Occludin, thus contributing to repair the intestinal barrier. Additionally, Aj-FUC increased the content of short-chain fatty acids (SCFAs) and regulated the imbalance in gut microbiota. These results suggested that Aj-FUC alleviates ALD by modulating the gut-liver axis homeostasis. It may prove to be a useful dietary supplement in the treatment of alcoholic liver damage.


Homeostasis , Liver Diseases, Alcoholic , Liver , Oxidative Stress , Polysaccharides , Stichopus , Animals , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Male , Liver/drug effects , Liver/metabolism , Liver/pathology , Homeostasis/drug effects , Oxidative Stress/drug effects , Stichopus/chemistry , Mice, Inbred BALB C , Malondialdehyde/metabolism , Gastrointestinal Microbiome/drug effects , Glutathione/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Disease Models, Animal , Glutathione Peroxidase/metabolism
6.
Environ Health Perspect ; 132(4): 47007, 2024 Apr.
Article En | MEDLINE | ID: mdl-38619879

BACKGROUND: Environmental pollutants, including polychlorinated biphenyls (PCBs) have been implicated in the pathogenesis of liver disease. Our group recently demonstrated that PCB126 promoted steatosis, hepatomegaly, and modulated intermediary metabolism in a rodent model of alcohol-associated liver disease (ALD). OBJECTIVE: To better understand how PCB126 promoted ALD in our previous model, the current study adopts multiple omics approaches to elucidate potential mechanistic hypotheses. METHODS: Briefly, male C57BL/6J mice were exposed to 0.2mg/kg polychlorinated biphenyl (PCB) 126 or corn oil vehicle prior to ethanol (EtOH) or control diet feeding in the chronic-binge alcohol feeding model. Liver tissues were collected and prepared for mRNA sequencing, phosphoproteomics, and inductively coupled plasma mass spectrometry for metals quantification. RESULTS: Principal component analysis showed that PCB126 uniquely modified the transcriptome in EtOH-fed mice. EtOH feeding alone resulted in >4,000 differentially expressed genes (DEGs), and PCB126 exposure resulted in more DEGs in the EtOH-fed group (907 DEGs) in comparison with the pair-fed group (503 DEGs). Top 20 significant gene ontology (GO) biological processes included "peptidyl tyrosine modifications," whereas top 25 significantly decreasing GO molecular functions included "metal/ion/zinc binding." Quantitative, label-free phosphoproteomics and western blot analysis revealed no major significant PCB126 effects on total phosphorylated tyrosine residues in EtOH-fed mice. Quantified hepatic essential metal levels were primarily significantly lower in EtOH-fed mice. PCB126-exposed mice had significantly lower magnesium, cobalt, and zinc levels in EtOH-fed mice. DISCUSSION: Previous work has demonstrated that PCB126 is a modifying factor in metabolic dysfunction-associated steatotic liver disease (MASLD), and our current work suggests that pollutants also modify ALD. PCB126 may, in part, be contributing to the malnutrition aspect of ALD, where metal deficiency is known to contribute and worsen prognosis. https://doi.org/10.1289/EHP14132.


Environmental Pollutants , Fatty Liver , Liver Diseases, Alcoholic , Polychlorinated Biphenyls , Male , Mice , Animals , Multiomics , Mice, Inbred C57BL , Ethanol/toxicity , Ethanol/metabolism , Liver/metabolism , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/metabolism , Liver Diseases, Alcoholic/etiology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Environmental Pollutants/toxicity , Environmental Pollutants/metabolism , Zinc/metabolism , Tyrosine/metabolism
7.
Clin Sci (Lond) ; 138(7): 435-487, 2024 04 10.
Article En | MEDLINE | ID: mdl-38571396

Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.


Liver Diseases, Alcoholic , Non-alcoholic Fatty Liver Disease , Sepsis , Humans , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Liver Cirrhosis/metabolism , Liver Diseases, Alcoholic/metabolism , Sepsis/complications
8.
Elife ; 122024 Apr 22.
Article En | MEDLINE | ID: mdl-38648183

Recent genome-wide association studies (GWAS) have identified a link between single-nucleotide polymorphisms (SNPs) near the MBOAT7 gene and advanced liver diseases. Specifically, the common MBOAT7 variant (rs641738) associated with reduced MBOAT7 expression is implicated in non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis. However, the precise mechanism underlying MBOAT7-driven liver disease progression remains elusive. Previously, we identified MBOAT7-driven acylation of lysophosphatidylinositol lipids as key mechanism suppressing the progression of NAFLD (Gwag et al., 2019). Here, we show that MBOAT7 loss of function promotes ALD via reorganization of lysosomal lipid homeostasis. Circulating levels of MBOAT7 metabolic products are significantly reduced in heavy drinkers compared to healthy controls. Hepatocyte- (Mboat7-HSKO), but not myeloid-specific (Mboat7-MSKO), deletion of Mboat7 exacerbates ethanol-induced liver injury. Lipidomic profiling reveals a reorganization of the hepatic lipidome in Mboat7-HSKO mice, characterized by increased endosomal/lysosomal lipids. Ethanol-exposed Mboat7-HSKO mice exhibit dysregulated autophagic flux and lysosomal biogenesis, associated with impaired transcription factor EB-mediated lysosomal biogenesis and autophagosome accumulation. This study provides mechanistic insights into how MBOAT7 influences ALD progression through dysregulation of lysosomal biogenesis and autophagic flux, highlighting hepatocyte-specific MBOAT7 loss as a key driver of ethanol-induced liver injury.


Acyltransferases , Homeostasis , Lipid Metabolism , Liver Diseases, Alcoholic , Lysosomes , Membrane Proteins , Animals , Humans , Male , Mice , Acyltransferases/genetics , Acyltransferases/metabolism , Hepatocytes/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/genetics , Lysosomes/metabolism , Mice, Inbred C57BL , Mice, Knockout
9.
Sheng Li Xue Bao ; 76(2): 329-340, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38658381

Chronic liver disease (CLD) is a major global health burden in terms of growing morbidity and mortality. Although many conditions can cause CLD, leading to cirrhosis and hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the most common culprits. Prostaglandin E2 (PGE2), produced in the liver, is an important lipid mediator derived from the ω-6 polyunsaturated fatty acid, arachidonic acid, and plays a critical role in hepatic homeostasis. The physiological effects of PGE2 are mediated through four classes of E-type prostaglandin (EP) receptors, namely EP1, EP2, EP3 and EP4. In recent years, an increasing number of studies has been done to clarify the effects of PGE2 and EP receptors in regulating liver function and the pathogenesis of CLD to create a new potential clinical impact. In this review, we overview the biosynthesis and regulation of PGE2 and discuss the role of its synthesizing enzymes and receptors in the maintenance of normal liver function and the development and progress of CLD. We also discuss the potential of the PGE2-EP receptors system in treating CLD with various etiologies.


Dinoprostone , Liver Diseases , Receptors, Prostaglandin E , Humans , Dinoprostone/metabolism , Receptors, Prostaglandin E/metabolism , Receptors, Prostaglandin E/physiology , Liver Diseases/metabolism , Chronic Disease , Animals , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
10.
Biomolecules ; 14(4)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38672422

Alcohol-associated liver disease (ALD) is a substantial cause of morbidity and mortality worldwide and represents a spectrum of liver injury beginning with hepatic steatosis (fatty liver) progressing to inflammation and culminating in cirrhosis. Multiple factors contribute to ALD progression and disease severity. Here, we overview several crucial mechanisms related to ALD end-stage outcome development, such as epigenetic changes, cell death, hemolysis, hepatic stellate cells activation, and hepatic fatty acid binding protein 4. Additionally, in this review, we also present two clinically relevant models using human precision-cut liver slices and hepatic organoids to examine ALD pathogenesis and progression.


Disease Progression , Liver Diseases, Alcoholic , Humans , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Animals , Liver/metabolism , Liver/pathology , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Epigenesis, Genetic
11.
Biomed Pharmacother ; 174: 116595, 2024 May.
Article En | MEDLINE | ID: mdl-38640709

Fatty liver is the earliest response of the liver to excessive alcohol consumption. Previously we identified that chronic alcohol administration increases levels of stomach-derived hormone, ghrelin, which by reducing circulating insulin levels, ultimately contributes to the development of alcohol-associated liver disease (ALD). In addition, ghrelin directly promotes fat accumulation in hepatocytes by enhancing de novo lipogenesis. Other than promoting ALD, ghrelin is known to increase alcohol craving and intake. In this study, we used a ghrelin receptor (GHSR) knockout (KO) rat model to characterize the specific contribution of ghrelin in the development of ALD with emphasis on energy homeostasis. Male Wistar wild type (WT) and GHSR-KO rats were pair-fed the Lieber-DeCarli control or ethanol diet for 6 weeks. At the end of the feeding period, glucose tolerance test was conducted, and tissue samples were collected. We observed reduced alcohol intake by GHSR-KOs compared to a previous study where WT rats were fed ethanol diet ad libitum. Further, when the WTs were pair-fed to GHSR-KOs, the KO rats exhibited resistance to develop ALD through improving insulin secretion/sensitivity to reduce adipose lipolysis and hepatic fatty acid uptake/synthesis and increase fatty acid oxidation. Furthermore, proteomic data revealed that ethanol-fed KO exhibit less alcohol-induced mitochondrial dysfunction and oxidative stress than WT rats. Proteomic data also confirmed that the ethanol-fed KOs are insulin sensitive and are resistant to hepatic steatosis development compared to WT rats. Together, these data confirm that inhibiting ghrelin action prevent alcohol-induced liver and adipose dysfunction independent of reducing alcohol intake.


Ethanol , Ghrelin , Liver Diseases, Alcoholic , Liver , Rats, Wistar , Receptors, Ghrelin , Animals , Male , Rats , Alcohol Drinking , Fatty Acids/metabolism , Ghrelin/metabolism , Insulin/metabolism , Insulin/blood , Insulin Resistance , Liver/metabolism , Liver/drug effects , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Oxidative Stress/drug effects , Proteomics/methods , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/genetics
12.
Food Chem ; 451: 139337, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38663243

Alcoholic liver disease (ALD) is a serious health threat. Soybean meal peptide (SMP) supplementation may protect against this damage; however, the potential mechanism underlying the specific sequence of SMPs is unclear. Protein-protein interaction and proteomic analyses are effective methods for studying functional ingredients in diseases. This study aimed to investigate the potential mechanism of action of the peptide Gly-Thr-Tyr-Trp (GTYW) on ALD using protein-protein interaction and proteomic analyses. These results demonstrate that GTYW influenced the targets of glutathione metabolism (glutathione-disulfide reductase, glutathione S-transferase pi 1, and glutathione S-transferase mu 2). It also regulated the expression of targets related to energy metabolism and amino acid conversion (trypsin-2, cysteine dioxygenase type-1, and F6SJM7). Amino acid and lipid metabolisms were identified based on Gene Ontology annotation. These results indicate that GTYW might affect alcohol-related liver disease signaling pathways. This study provides evidence of the protective and nutritional benefits of SMPs in ALD treatment.


Glycine max , Liver Diseases, Alcoholic , Peptides , Proteomics , Animals , Mice , Glycine max/chemistry , Glycine max/metabolism , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/genetics , Male , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Peptides/administration & dosage , Humans , Mice, Inbred C57BL , Protective Agents/pharmacology , Protective Agents/administration & dosage , Protective Agents/chemistry , Liver/metabolism
13.
Anal Biochem ; 691: 115534, 2024 Aug.
Article En | MEDLINE | ID: mdl-38621605

Xing 9 Ling tablet candy (X9LTC) effectively treats alcoholic liver disease (ALD), but its potential mechanism and molecular targets remain unstudied. We aimed to address this gap using network pharmacology. Furthermore, high-performance liquid chromatography (HPLC) and database analysis revealed a total of 35 active ingredients and 311 corresponding potential targets of X9LTC. Protein interaction analysis revealed PTGS2, JUN, and FOS as its core targets. Enrichment analysis indicated that chemical carcinogenesis-receptor activation, IL-17 and TNF signaling pathway were enriched by multiple core targets, which might be the main pathway of action. Further molecular docking validation showed that the core targets had good binding activities with the identified compounds. Animal experiments showed that X9LTC could reduce the high expression of ALT, AST and TG in the serum of ALD mice, alleviate the lesions in liver tissues, and reverse the high expression of PTGS2, JUN, and FOS proteins in the liver tissues. In this study, we established a method for the determination of X9LTC content for the first time, and predicted its active ingredient and mechanism of action in treating ALD, providing theoretical basis for further research.


Drugs, Chinese Herbal , Liver Diseases, Alcoholic , Molecular Docking Simulation , Network Pharmacology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Animals , Mice , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Male , Tablets , Cyclooxygenase 2/metabolism , Mice, Inbred C57BL , Chromatography, High Pressure Liquid , Liver/metabolism , Liver/drug effects
14.
J Pharm Biomed Anal ; 245: 116157, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38636192

Penthorum chinense Pursh (PCP), as a traditional medicine of Miao nationality in China, is often used for the treatment of various liver diseases. At present, information regarding the in vivo process of PCP is lacking. Herein, a sensitive and robust ultra-performance liquid chromatography tandem with mass spectrometry (UPLC-MS/MS) was developed and validated for the quantification of several components to study their pharmacokinetics, tissues distribution and excretion in normal and acute alcoholic liver injury (ALI) rats. Prepared samples were separated on a Thermo C18 column (4.6 mm × 50 mm, 2.4 µm) using water containing 0.1 % formic acid (A) and acetonitrile (B) as the mobile phase for gradient elution. Negative electrospray ionization was performed using multiple reaction monitoring (MRM) mode for each component. The validated UPLC-MS/MS assay gave good linearity, accuracy, precision, recovery rate, matrix effect and stability. This method was successfully applied to the pharmacokinetics, tissue distribution and excretion in normal and acute ALI rats. There were differences in pharmacokinetic process, tissue distribution and excretion characteristics, indicating that ALI had a significant influence on the in vivo process of PCP in rats. The research provided an experimental basis for the study of PCP quality control and further application in the clinic.


Drugs, Chinese Herbal , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Animals , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Rats , Male , Drugs, Chinese Herbal/pharmacokinetics , Tissue Distribution , Reproducibility of Results , Liver Diseases, Alcoholic/metabolism , Liquid Chromatography-Mass Spectrometry
15.
Aging (Albany NY) ; 16(5): 4224-4235, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38431286

Alcoholic liver disease (ALD) serves as the leading cause of chronic liver diseases-related morbidity and mortality, which threatens the life of millions of patients in the world. However, the molecular mechanisms underlying ALD progression remain unclear. Here, we applied microarray analysis and experimental approaches to identify miRNAs and related regulatory signaling that associated with ALD. Microarray analysis identified that the expression of miR-99b was elevated in the ALD mouse model. The AML-12 cells were treated with EtOH and the expression of miR-99b was enhanced in the cells. The expression of miR-99b was positively correlated with ALT levels in the ALD mice. The microarray analysis identified the abnormally expressed mRNAs in ALD mice and the overlap analysis was performed with based on the differently expressed mRNAs and the transcriptional factors of miR-99b, in which STAT1 was identified. The elevated expression of STAT1 was validated in ALD mice. Meanwhile, the treatment of EtOH induced the expression of STAT1 in the AML-12 cells. The expression of STAT1 was positively correlated with ALT levels in the ALD mice. The positive correlation of STAT1 and miR-99b expression was identified in bioinformatics analysis and ALD mice. The expression of miR-99b and pri-miR-99b was promoted by the overexpression of STAT1 in AML-12 cells. ChIP analysis confirmed the enrichment of STAT1 on miR-99b promoter in AML-12 cells. Next, we found that the expression of mitogen-activated protein kinase kinase 1 (MAP2K1) was negatively associated with miR-99b. The expression of MAP2K1 was downregulated in ALD mice. Consistently, the expression of MAP2K1 was reduced by the treatment of EtOH in AML-12 cells. The expression of MAP2K1 was negative correlated with ALT levels in the ALD mice. We identified the binding site of MAP2K1 and miR-99b. Meanwhile, the treatment of miR-99b mimic repressed the luciferase activity of MAP2K1 in AML-12 cells. The expression of MAP2K1 was suppressed by miR-99b in the cells. We observed that the expression of MAP2K1 was inhibited by the overexpression of STAT1 in AML-12 cells. Meanwhile, the apoptosis of AML-12 cells was induced by the treatment of EtOH, while miR-99b mimic promoted but the overexpression of MAP2K1 attenuated the effect of EtOH in the cells. In conclusion, we identified the correlation and effect of STAT1, miR-99b, and MAP2K1 in ALD mouse model and hepatocyte. STAT1, miR-99b, and MAP2K1 may serve as potential therapeutic target of ALD.


Leukemia, Myeloid, Acute , Liver Diseases, Alcoholic , MicroRNAs , Humans , Animals , Mice , MAP Kinase Kinase 1/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Hepatocytes/metabolism , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Ethanol , Leukemia, Myeloid, Acute/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
16.
Dig Dis Sci ; 69(5): 1701-1713, 2024 May.
Article En | MEDLINE | ID: mdl-38551744

BACKGROUND AND AIM: he mixed lineage kinase domain like pseudokinase (MLKL) is known to play a protective role in non-alcoholic fatty liver disease (NAFLD) via inhibition of necroptosis pathway. However, the role of MLKL in alcoholic liver disease (ALD) is not yet clear. METHOD: C57BL/6N wild-type (WT) and MLKL-knockout (KO) mice (8-10 weeks old) were randomly divided into eight groups. To establish ALD model of different durations, ethanol (EtOH) was fed to WT and MLKL KO for 10 days, 4 weeks, and 8 weeks. The control group was fed with Lieber-DeCarli control diet for 8 weeks. Mortality, degree of hepatic inflammation, and steatosis were compared among the groups. Bulk mRNA transcriptome analysis was performed. Abundance of transcript and gene expressions were calculated based on read count or Transcript by Million (TPM) value. RESULTS: Survival rate of MLKL KO mice compared to WT was similar until 4 weeks, but the survival of MLKL KO mice significantly decreased after 8 weeks in ALD model. There was no difference in degree of inflammation, steatosis, and NAS scores between EtOH-fed MLKL KO and EtOH-fed WT mice at 10 days. However, at 4 weeks and 8 weeks, the degree of hepatic steatosis, NAS, and inflammation were increased in MLKL KO mice. RNA transcriptome data showed that fatty acid synthesis, and lipogenesis, mitochondria, and apoptosis-related pathways were upregulated in EtOH-fed MLKL KO mice compared to EtOH-fed WT mice. Although hepatocyte apoptosis (BAX/BCL2 ratio, caspase-3, and TUNEL staining) increased after EtOH intake; however, apoptosis was more significantly increased in EtOH-fed MLKL KO mice compared to the WT group. At the same time, hepatic cFLIP was decreased in EtOH-fed MLKL KO mice compared to the WT group. CONCLUSION: MLKL deletion did not prevent chronic alcohol-induced liver damage independently of necroptosis and exacerbated hepatic steatosis by increasing hepatocyte apoptosis.


Apoptosis , Liver Diseases, Alcoholic , Mice, Inbred C57BL , Mice, Knockout , Protein Kinases , Animals , Protein Kinases/genetics , Protein Kinases/metabolism , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/metabolism , Mice , Ethanol/toxicity , Liver/pathology , Liver/metabolism , Male , Disease Models, Animal
17.
Redox Biol ; 71: 103107, 2024 May.
Article En | MEDLINE | ID: mdl-38479224

Fibroblast growth factor 23 (FGF23) is a member of endocrine FGF family, along with FGF15/19 and FGF21. Recent reports showed that under pathological conditions, liver produces FGF23, although the role of hepatic FGF23 remains nebulous. Here, we investigated the role of hepatic FGF23 in alcoholic liver disease (ALD) and delineated the underlying molecular mechanism. FGF23 expression was compared in livers from alcoholic hepatitis patients and healthy controls. The role of FGF23 was examined in hepatocyte-specific knock-out (LKO) mice of cannabinoid receptor type 1 (CB1R), estrogen related receptor γ (ERRγ), or FGF23. Animals were fed with an alcohol-containing liquid diet alone or in combination with ERRγ inverse agonist. FGF23 is mainly expressed in hepatocytes in the human liver, and it is upregulated in ALD patients. In mice, chronic alcohol feeding leads to liver damage and induced FGF23 in liver, but not in other organs. FGF23 is transcriptionally regulated by ERRγ in response to alcohol-mediated activation of the CB1R. Alcohol induced upregulation of hepatic FGF23 and plasma FGF23 levels is lost in ERRγ-LKO mice, and an inverse agonist mediated inhibition of ERRγ transactivation significantly improved alcoholic liver damage. Moreover, hepatic CYP2E1 induction in response to alcohol is FGF23 dependent. In line, FGF23-LKO mice display decreased hepatic CYP2E1 expression and improved ALD through reduced hepatocyte apoptosis and oxidative stress. We recognized CBIR-ERRγ-FGF23 axis in facilitating ALD pathology through hepatic CYP2E1 induction. Thus, we propose FGF23 as a potential therapeutic target to treat ALD.


Cytochrome P-450 CYP2E1 , Liver Diseases, Alcoholic , Animals , Humans , Mice , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP2E1/metabolism , Drug Inverse Agonism , Ethanol/pharmacology , Hepatocytes/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Oxidative Stress
18.
Aging (Albany NY) ; 16(7): 6147-6162, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38507458

The active ingredient in Poria cocos, a parasitic plant belonging to the family Polyporaceae, is Poria cocos polysaccharide (PCP). PCP exhibits liver protection and anti-inflammatory effects, although its effect on alcoholic liver disease (ALD) remains unstudied. This study investigated the mechanism of PCP in improving ALD by regulating the Nrf2 signaling pathway. After daily intragastric administration of high-grade liquor for 4 hours, each drug group received PCPs or the ferroptosis inhibitor ferrostatin-1. The Nrf2 inhibitor ML385 (100 mg/kg/day) group was intraperitoneally injected, after which PCP (100 mg/kg/day) was administered by gavage. Samples were collected after 6 weeks for liver function and blood lipid analysis using an automatic biochemical analyzer. In the alcoholic liver injury cell model established with 150 mM alcohol, the drug group was pretreated with PCP, Fer-1, and ML385, and subsequent results were analyzed. The results revealed that PCP intervention significantly reduced liver function and blood lipid levels in alcohol-fed rats, along with decreased lipid deposition. PCP notably enhanced Nrf2 signaling expression, regulated oxidative stress levels, inhibited NF-κß, and its downstream inflammatory signaling pathways. Furthermore, PCP upregulated FTH1 protein expression and reduced intracellular Fe2+, suggesting an improvement in ferroptosis. In vitro studies yielded similar results, indicating that PCP can reduce intracellular ferroptosis by regulating oxidative stress and improve alcoholic liver injury by inhibiting the production of inflammatory factors.


Ferroptosis , Liver Diseases, Alcoholic , NF-E2-Related Factor 2 , Polysaccharides , Animals , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Polysaccharides/pharmacology , Rats , Male , Signal Transduction/drug effects , Oxidative Stress/drug effects , Humans , Rats, Sprague-Dawley , Liver/metabolism , Liver/drug effects , Liver/pathology , Wolfiporia/chemistry , Disease Models, Animal
19.
Chem Biodivers ; 21(5): e202400005, 2024 May.
Article En | MEDLINE | ID: mdl-38504590

OBJECTIVE: To delve into the primary active ingredients and mechanism of Pueraria lobata for alleviating iron overload in alcoholic liver disease. METHODS: Pueraria lobata's potential targets and signaling pathways in treating alcohol-induced iron overloads were predicted using network pharmacology analysis. Then, animal experiments were used to validate the predictions of network pharmacology. The impact of puerarin or genistein on alcohol-induced iron accumulation, liver injury, oxidative stress, and apoptosis was assessed using morphological examination, biochemical index test, and immunofluorescence. Key proteins implicated in linked pathways were identified using RT-qPCR, western blot analysis, and immunohistochemistry. RESULTS: Network pharmacological predictions combined with animal experiments suggest that the model group compared to the control group, exhibited activation of the MAPK/ERK signaling pathway, suppression of hepcidin expression, and aggravated iron overload, liver damage, oxidative stress, and hepatocyte death. Puerarin and genistein, the active compounds in Pueraria lobata, effectively mitigated the aforementioned alcohol-induced effects. No statistically significant disparities were seen in the effects above between the two groups receiving drug therapy. CONCLUSION: This study preliminarily demonstrated that puerarin and genistein in Pueraria lobata may increase hepcidin production to alleviate alcohol-induced iron overload by inhibiting the MAPK/ERK signaling pathway.


Iron Overload , Isoflavones , Liver Diseases, Alcoholic , MAP Kinase Signaling System , Pueraria , Pueraria/chemistry , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/pathology , Animals , Iron Overload/drug therapy , Iron Overload/metabolism , Isoflavones/pharmacology , Isoflavones/chemistry , MAP Kinase Signaling System/drug effects , Male , Oxidative Stress/drug effects , Genistein/pharmacology , Genistein/chemistry , Mice , Apoptosis/drug effects
20.
Molecules ; 29(5)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38474588

Alcoholic liver disease (ALD) is the main factor that induces liver-related death worldwide and represents a common chronic hepatopathy resulting from binge or chronic alcohol consumption. This work focused on revealing the role and molecular mechanism of nodakenin (NK) in ALD associated with hepatic inflammation and lipid metabolism through the regulation of Nur77-P2X7r signaling. In this study, an ALD model was constructed through chronic feeding of Lieber-DeCarli control solution with or without NK treatment. Ethanol (EtOH) or NK was administered to AML-12 cells, after which Nur77 was silenced. HepG2 cells were exposed to ethanol (EtOH) and subsequently treated with recombinant Nur77 (rNur77). Mouse peritoneal macrophages (MPMs) were treated with lipopolysaccharide/adenosine triphosphate (LPS/ATP) and NK, resulting in the generation of conditioned media. In vivo, histopathological alterations were markedly alleviated by NK, accompanied by reductions in serum triglyceride (TG), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels and the modulation of Lipin-1, SREBP1, and Nur77 levels in comparison to the EtOH-exposed group (p < 0.001). Additionally, NK reduced the production of P2X7r and NLRP3. NK markedly upregulated Nur77, inhibited P2X7r and Lipin-1, and promoted the function of Cytosporone B, a Nur77 agonist (p < 0.001). Moreover, Nur77 deficiency weakened the regulatory effect of NK on P2X7r and Lipin-1 inhibition (p < 0.001). In NK-exposed MPMs, cleaved caspase-1 and mature IL-1ß expression decreased following LPS/ATP treatment (p < 0.001). NK also decreased inflammatory-factor production in primary hepatocytes stimulated with MPM supernatant. NK ameliorated ETOH-induced ALD through a reduction in inflammation and lipogenesis factors, which was likely related to Nur77 activation. Hence, NK is a potential therapeutic approach to ALD.


Coumarins , Glucosides , Lipopolysaccharides , Liver Diseases, Alcoholic , Animals , Mice , Lipopolysaccharides/pharmacology , Liver Diseases, Alcoholic/metabolism , Liver , Ethanol/metabolism , Inflammation/metabolism , Signal Transduction/physiology , Adenosine Triphosphate/metabolism , Mice, Inbred C57BL , Organic Chemicals
...