Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.448
1.
J Am Chem Soc ; 146(19): 13406-13416, 2024 May 15.
Article En | MEDLINE | ID: mdl-38698549

Bioluminescent indicators are power tools for studying dynamic biological processes. In this study, we present the generation of novel bioluminescent indicators by modifying the luciferin molecule with an analyte-binding moiety. Specifically, we have successfully developed the first bioluminescent indicator for potassium ions (K+), which are critical electrolytes in biological systems. Our approach involved the design and synthesis of a K+-binding luciferin named potassiorin. Additionally, we engineered a luciferase enzyme called BRIPO (bioluminescent red indicator for potassium) to work synergistically with potassiorin, resulting in optimized K+-dependent bioluminescence responses. Through extensive validation in cell lines, primary neurons, and live mice, we demonstrated the efficacy of this new tool for detecting K+. Our research demonstrates an innovative concept of incorporating sensory moieties into luciferins to modulate luciferase activity. This approach has great potential for developing a wide range of bioluminescent indicators, advancing bioluminescence imaging (BLI), and enabling the study of various analytes in biological systems.


Luciferases , Luminescent Measurements , Potassium , Potassium/metabolism , Potassium/chemistry , Animals , Luminescent Measurements/methods , Mice , Luciferases/chemistry , Luciferases/metabolism , Humans , Protein Engineering , Luminescent Agents/chemistry , Firefly Luciferin/chemistry , Firefly Luciferin/metabolism
2.
Int J Mol Sci ; 25(9)2024 May 04.
Article En | MEDLINE | ID: mdl-38732235

The formulation of novel delivery protocols for the targeted delivery of genes into hepatocytes by receptor mediation is important for the treatment of liver-specific disorders, including cancer. Non-viral delivery methods have been extensively studied for gene therapy. Gold nanoparticles (AuNPs) have gained attention in nanomedicine due to their biocompatibility. In this study, AuNPs were synthesized and coated with polymers: chitosan (CS), and polyethylene glycol (PEG). The targeting moiety, lactobionic acid (LA), was added for hepatocyte-specific delivery. Physicochemical characterization revealed that all nano-formulations were spherical and monodispersed, with hydrodynamic sizes between 70 and 250 nm. Nanocomplexes with pCMV-Luc DNA (pDNA) confirmed that the NPs could bind, compact, and protect the pDNA from nuclease degradation. Cytotoxicity studies revealed that the AuNPs were well tolerated (cell viabilities > 70%) in human hepatocellular carcinoma (HepG2), embryonic kidney (HEK293), and colorectal adenocarcinoma (Caco-2) cells, with enhanced transgene activity in all cells. The inclusion of LA in the NP formulation was notable in the HepG2 cells, which overexpress the asialoglycoprotein receptor on their cell surface. A five-fold increase in luciferase gene expression was evident for the LA-targeted AuNPs compared to the non-targeted AuNPs. These AuNPs have shown potential as safe and suitable targeted delivery vehicles for liver-directed gene therapy.


Chitosan , Gene Transfer Techniques , Gold , Liver Neoplasms , Metal Nanoparticles , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Hep G2 Cells , Liver Neoplasms/therapy , Liver Neoplasms/genetics , Chitosan/chemistry , HEK293 Cells , Asialoglycoprotein Receptor/metabolism , Asialoglycoprotein Receptor/genetics , Caco-2 Cells , Luciferases/genetics , Luciferases/metabolism , Polyethylene Glycols/chemistry , Plasmids/genetics , Disaccharides/chemistry , Genetic Therapy/methods , Polymers/chemistry , Cell Survival/drug effects
3.
J Am Chem Soc ; 146(20): 13875-13885, 2024 May 22.
Article En | MEDLINE | ID: mdl-38718165

Bioluminescence is a fascinating natural phenomenon, wherein organisms produce light through specific biochemical reactions. Among these organisms, Renilla luciferase (RLuc) derived from the sea pansy Renilla reniformis is notable for its blue light emission and has potential applications in bioluminescent tagging. Our study focuses on RLuc8, a variant of RLuc with eight amino acid substitutions. Recent studies have shown that the luminescent emitter coelenteramide can adopt multiple protonation states, which may be influenced by nearby residues at the enzyme's active site, demonstrating a complex interplay between protein structure and bioluminescence. Herein, using the quantum mechanical consistent force field method and the semimacroscopic protein dipole-Langevin dipole method with linear response approximation, we show that the phenolate state of coelenteramide in RLuc8 is the primary light-emitting species in agreement with experimental results. Our calculations also suggest that the proton transfer (PT) from neutral coelenteramide to Asp162 plays a crucial role in the bioluminescence process. Additionally, we reproduced the observed emission maximum for the amide anion in RLuc8-D120A and the pyrazine anion in the presence of a Na+ counterion in RLuc8-D162A, suggesting that these are the primary emitters. Furthermore, our calculations on the neutral emitter in the engineered AncFT-D160A enzyme, structurally akin to RLuc8-D162A but with a considerably blue-shifted emission peak, aligned with the observed data, possibly explaining the variance in emission peaks. Overall, this study demonstrates an effective approach to investigate chromophores' bimolecular states while incorporating the PT process in emission spectra calculations, contributing valuable insights for future studies of PT in photoproteins.


Pyrazines , Quantum Theory , Pyrazines/chemistry , Pyrazines/metabolism , Renilla/enzymology , Luciferases/chemistry , Luciferases/metabolism , Luminescence , Animals , Imidazoles/chemistry , Benzeneacetamides
4.
J Immunol Methods ; 529: 113682, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705372

BACKGROUND: The measurement of antigen-specific serum IgE is common in clinical assessments of type I allergies. However, the interaction between antigens and IgE won't invariably trigger mast cell activation. We previously developed the IgE crosslinking-induced luciferase expression (EXiLE) method using the RS-ATL8 mast cell line; however, the method may not be sensitive enough in some cases. METHODS: In this study, we introduced an NF-AT-regulated luciferase reporter gene into the RBL-2H3 rat mast cell line and expressed a chimeric high-affinity IgE receptor (FcεRI) α chain gene, comprising an extracellular domain from humans and transmembrane/intracellular domains from rats. RESULTS: We generated multiple clones expressing the chimeric receptor. Based on their responsiveness and proliferation, we selected the HuRa-40 clone. This cell line exhibited significantly elevated human α chain expression compared to RS-ATL8 cells, demonstrating a 10-fold enhancement of antigen-specific reactivity. Reproducibility across different batches and operators was excellent. Moreover, we observed a detectable response inhibition by an anti-allergy drugs (omalizumab and cyclosporin A). CONCLUSIONS: HuRa-40 cells-which carry the human-rat chimeric IgE receptor-comprise a valuable reporter cell line for the EXiLE method. Their versatility extends to various applications and facilitates high-throughput screening of anti-allergy drugs.


Immunoglobulin E , Luciferases , Mast Cells , Receptors, IgE , Receptors, IgE/metabolism , Receptors, IgE/genetics , Receptors, IgE/immunology , Animals , Humans , Mast Cells/immunology , Mast Cells/metabolism , Rats , Immunoglobulin E/immunology , Luciferases/genetics , Luciferases/metabolism , Cell Line , Genes, Reporter , Reproducibility of Results , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism
5.
ACS Chem Biol ; 19(5): 1035-1039, 2024 May 17.
Article En | MEDLINE | ID: mdl-38717306

Red-shifted bioluminescence is highly desirable for diagnostic and imaging applications. Herein, we report a semisynthetic NanoLuc (sNLuc) based on complementation of a split NLuc (LgBiT) with a synthetic peptide (SmBiT) functionalized with a fluorophore for BRET emission. We observed exceptional BRET ratios with diverse fluorophores, notably in the red (I674/I450 > 14), with a brightness that is sufficient for naked eye detection in blood or through tissues. To exemplify its utility, LgBiT was fused to a miniprotein that binds HER2 (affibody, ZHER2), and the selective detection of HER2+ SK-BR-3 cells over HER2- HeLa cells was demonstrated.


Luminescent Measurements , Humans , HeLa Cells , Luminescent Measurements/methods , Luciferases/genetics , Luciferases/metabolism , Receptor, ErbB-2/metabolism , Cell Line, Tumor , Fluorescent Dyes/chemistry
6.
Int J Mol Sci ; 25(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38791162

Early detection of drug-induced kidney injury is essential for drug development. In this study, multiple low-dose aristolochic acid (AA) and cisplatin (Cis) injections increased renal mRNA levels of inflammation, fibrosis, and renal tubule injury markers. We applied a serum amyloid A3 (Saa3) promoter-driven luciferase reporter (Saa3 promoter-luc mice) to these two tubulointerstitial nephritis models and performed in vivo bioluminescence imaging to monitor early renal pathologies. The bioluminescent signals from renal tissues with AA or CIS injections were stronger than those from normal kidney tissues obtained from normal mice. To verify whether the visualized bioluminescence signal was specifically generated by the injured kidney, we performed in vivo bioluminescence analysis after opening the stomachs of Saa3 promoter-luc mice, and the Saa3-mediated bioluminescent signal was specifically detected in the injured kidney. This study showed that Saa3 promoter activity is a potent non-invasive indicator for the early detection of drug-induced nephrotoxicity.


Aristolochic Acids , Luciferases , Promoter Regions, Genetic , Serum Amyloid A Protein , Animals , Serum Amyloid A Protein/genetics , Serum Amyloid A Protein/metabolism , Mice , Luciferases/metabolism , Luciferases/genetics , Aristolochic Acids/toxicity , Genes, Reporter , Cisplatin/toxicity , Cisplatin/adverse effects , Luminescent Measurements/methods , Male , Kidney Diseases/chemically induced , Kidney Diseases/genetics , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Disease Models, Animal , Mice, Inbred C57BL
7.
Int J Biol Macromol ; 269(Pt 1): 131864, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692549

NanoLuc (NLuc) luciferase has found extensive application in designing a range of biological assays, including gene expression analysis, protein-protein interaction, and protein conformational changes due to its enhanced brightness and small size. However, questions related to its mechanism of interaction with the substrate, furimazine, as well as bioluminescence activity remain elusive. Here, we combined molecular dynamics (MD) simulation and mutational analysis to show that the R162A mutation results in a decreased but stable bioluminescence activity of NLuc in living cells and in vitro. Specifically, we performed multiple, all-atom, explicit solvent MD simulations of the apo and furimazine-docked (holo) NLuc structures revealing differential dynamics of the protein in the absence and presence of the ligand. Further, analysis of trajectories for hydrogen bonds (H-bonds) formed between NLuc and furimazine revealed substantial H-bond interaction between R162 and Q32 residues. Mutation of the two residues in NLuc revealed a decreased but stable activity of the R162A, but not Q32A, mutant NLuc in live cell and in vitro assays performed using lysates prepared from cells expressing the proteins and with the furimazine substrate. In addition to highlighting the role of the R162 residue in NLuc activity, we believe that the mutant NLuc will find wide application in designing in vitro assays requiring extended monitoring of NLuc bioluminescence activity. SIGNIFICANCE: Bioluminescence has been extensively utilized in developing a variety of biological and biomedical assays. In this regard, engineering of brighter bioluminescent proteins, i.e. luciferases, has played a significant role. This is acutely exemplified by the engineering of the NLuc luciferase, which is small in size and displays much enhanced bioluminescence and thermal stability compared to previously available luciferases. While enhanced bioluminescent activity is desirable in a multitude of biological and biomedical assays, it would also be useful to develop variants of the protein that display a prolonged bioluminescence activity. This is specifically relevant in designing assays that require bioluminescence for extended periods, such as in the case of biosensors designed for monitoring slow enzymatic or cellular signaling reactions, without necessitating multiple rounds of luciferase substrate addition or any specialized reagents that result in increased assay costs. In the current manuscript, we report a mutant NLuc that possesses a stable and prolonged bioluminescence activity, albeit lower than the wild-type NLuc, and envisage a wider application of the mutant NLuc in designing biosensors for monitoring slower biological and biomedical events.


Luciferases , Molecular Dynamics Simulation , Mutation , Luciferases/metabolism , Luciferases/genetics , Luciferases/chemistry , Humans , Hydrogen Bonding , Luminescent Measurements , Protein Conformation
8.
Luminescence ; 39(5): e4776, 2024 May.
Article En | MEDLINE | ID: mdl-38769690

The purpose of the work was to find optimal conditions for bioluminescent enzymatic analysis of saliva (based on the use of NADH:FMN oxidoreductase + luciferase) and then to determine the biological effect of using bioluminescence assay of saliva to study the physiological state of the body under normal and pathological conditions. The saliva of snowboarders and students were studied in the "rest-training" model. The saliva of patients diagnosed with acute pharyngitis was examined in the "sick-healthy" model. Bioluminescence assay was performed with a lyophilized and immobilized bi-enzyme system using cuvette, plate, and portable luminometers. The concentrations of secretory immunoglobulin A (sIgA) and cortisol were determined by enzyme immunoassay, and the total protein content was measured by spectrophotometric method. The activity of the bioluminescent system enzymes increased as the amount and volume of saliva in the sample was decreased. The cuvette and plate luminometers were sensitive to changes in the luminescence intensity in saliva assay. Luminescence intensity correlated with the concentrations of sIgA and cortisol. The integrated bioluminescent index for saliva was reduced in the "rest-training" model and increased in the "sick-healthy" model. Thus, the non-invasive bioluminescent saliva analysis may be a promising tool for assessing the health of the population.


Luminescent Measurements , Saliva , Humans , Saliva/enzymology , Saliva/chemistry , Luminescent Measurements/methods , Biological Assay , Hydrocortisone/analysis , Hydrocortisone/metabolism , Luciferases/metabolism , Luciferases/chemistry , Immunoglobulin A, Secretory/analysis , Immunoglobulin A, Secretory/metabolism
9.
Methods Mol Biol ; 2807: 299-323, 2024.
Article En | MEDLINE | ID: mdl-38743237

Ex vivo cervical tissue explant models offer a physiologically relevant approach for studying virus-host interactions that underlie mucosal HIV-1 transmission to women. However, the utility of cervical explant tissue (CET) models has been limited for both practical and technical reasons. These include assay variation, inadequate sensitivity for assessing HIV-1 infection and replication in tissue, and constraints imposed by the requirement for using multiple replica samples of CET to test each experimental variable and assay parameter. Here, we describe an experimental approach that employs secreted nanoluciferase (sNLuc) and current HIV-1 reporter virus technologies to overcome certain limitations of earlier ex vivo CET models. This method augments application of the CET model for investigating important questions involving mucosal HIV-1 transmission.


Cervix Uteri , HIV Infections , HIV-1 , HIV-1/physiology , HIV-1/genetics , Humans , Cervix Uteri/virology , Cervix Uteri/metabolism , Female , HIV Infections/virology , Luciferases/genetics , Luciferases/metabolism , Genes, Reporter , Mucous Membrane/virology , Mucous Membrane/metabolism , Virus Replication
10.
Methods Mol Biol ; 2808: 9-17, 2024.
Article En | MEDLINE | ID: mdl-38743359

Protein-fragment complementation assays (PCAs) are powerful tools to investigate protein-protein interactions in a cellular context. These are especially useful to study unstable proteins and weak interactions that may not resist protein isolation or purification. The PCA based on the reconstitution of the Gaussia princeps luciferase (split-luc) is a sensitive approach allowing the mapping of protein-protein interactions and the semiquantitative measurement of binding affinity. Here, we describe the split-luc protocol we used to map the viral interactome of measles virus polymerase complex.


Measles virus , Protein Binding , Protein Interaction Mapping , Protein Interaction Mapping/methods , Humans , Luciferases/metabolism , Luciferases/genetics , Viral Proteins/metabolism , RNA-Dependent RNA Polymerase/metabolism
11.
Endocrinology ; 165(6)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38679471

The glycoprotein receptors, members of the large G protein-coupled receptor family, are characterized by a large extracellular domains responsible for binding their glycoprotein hormones. Hormone-receptor interactions are traditionally analyzed by ligand-binding assays, most often using radiolabeling but also by thermal shift assays. Despite their high sensitivity, these assays require appropriate laboratory conditions and, often, purified plasma cell membranes, which do not provide information on receptor localization or activity because the assays typically focus on measuring binding only. Here, we apply bioluminescence resonance energy transfer in living cells to determine hormone-receptor interactions between a Gaussia luciferase (Gluc)-luteinizing hormone/chorionic gonadotropin receptor (LHCGR) fusion and its ligands (human chorionic gonadotropin or LH) fused to the enhanced green fluorescent protein. The Gluc-LHCGR, as well as other Gluc-G protein-coupled receptors such as the somatostatin and the C-X-C motif chemokine receptors, is expressed on the plasma membrane, where luminescence activity is equal to membrane receptor expression, and is fully functional. The chimeric enhanced green fluorescent protein-ligands are properly secreted from cells and able to bind and activate the wild-type LHCGR as well as the Gluc-LHCGR. Finally, bioluminescence resonance energy transfer was used to determine the interactions between clinically relevant mutations of the hormones and the LHCGR that show that this bioassay provides a fast and effective, safe, and cost-efficient tool to assist the molecular characterization of mutations in either the receptor or ligand and that it is compatible with downstream cellular assays to determine receptor activation/function.


Green Fluorescent Proteins , Protein Binding , Humans , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Receptors, LH/metabolism , Receptors, LH/genetics , Luciferases/metabolism , Luciferases/genetics , Animals , Bioluminescence Resonance Energy Transfer Techniques/methods , Chorionic Gonadotropin/metabolism , HEK293 Cells , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Energy Transfer , Glycoproteins/metabolism , Luminescent Measurements/methods
12.
J Virol Methods ; 327: 114932, 2024 Jun.
Article En | MEDLINE | ID: mdl-38582378

Senecavirus A (SVA) is a newly identified picornavirus associated with swine vesicular disease and neonatal mortality. The development of an SVA incorporating an exogenous reporter gene provides a powerful tool for viral research. In this study, we successfully constructed a recombinant SVA expressing Gaussia Luciferase (Gluc), termed rSVA-Gluc. The growth kinetics of rSVA-Gluc in BHK-21 cells were found to be comparable to those of the parental virus, and Gluc activity paralleled the virus growth curve. Genetic analysis revealed stable inheritance of the inserted reporter protein genes for at least six generations. We evaluated the utility of rSVA-Gluc in antiviral drug screening, and the results highlighted its potential as an effective tool for such purposes against SVA. DATA AVAILABILITY STATEMENT: The data that support the findings of this study are available on request from the corresponding author.


Antiviral Agents , Genes, Reporter , Luciferases , Picornaviridae , Picornaviridae/genetics , Picornaviridae/drug effects , Animals , Antiviral Agents/pharmacology , Cell Line , Luciferases/genetics , Luciferases/metabolism , Cricetinae , Drug Evaluation, Preclinical/methods
13.
Methods Mol Biol ; 2788: 273-285, 2024.
Article En | MEDLINE | ID: mdl-38656520

Epigenetic editing, also known as EpiEdit, offers an exciting way to control gene expression without altering the DNA sequence. In this study, we evaluate the application of EpiEdit to plant promoters, specifically the MLO (mildew locus o) gene promoter. We use a modified CRISPR-(d)Cas9 system, in which the nuclease-deficient Cas9 (dCas9) is fused to an epigenetic modifier, to experimentally demonstrate the utility of this tool for optimizing epigenetic engineering of a plant promoter prior to in vivo plant epigenome editing. Guide RNAs are used to deliver the dCas9-epigenetic modifier fusion protein to the target gene sequence, where it induces modification of MLO gene expression. We perform preliminary experiments using a plant promoter cloned into the luciferase reporter system, which is transfected into a human system and analyzed using the dual-luciferase reporter assay. The results suggest that this approach may be useful in the early stages of plant epigenome editing, as it can aid in the selection of appropriate modifications to the plant promoter prior to conducting in vivo experiments under plant system conditions. Overall, the results demonstrate the potential of CRISPR (d)Cas9-based EpiEdit for precise and controlled regulation of gene expression.


CRISPR-Cas Systems , Epigenesis, Genetic , Gene Editing , Genes, Reporter , Luciferases , Promoter Regions, Genetic , Humans , Gene Editing/methods , Luciferases/genetics , Luciferases/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , HEK293 Cells
14.
Sci Rep ; 14(1): 9710, 2024 04 27.
Article En | MEDLINE | ID: mdl-38678103

Among the several animal models of α-synucleinopathies, the well-known viral vector-mediated delivery of wild-type or mutated (A53T) α-synuclein requires new tools to increase the lesion in mice and follow up in vivo expression. To this end, we developed a bioluminescent expression reporter of the human A53T-α-synuclein gene using the NanoLuc system into an AAV2/9, embedded or not in a fibroin solution to stabilise its expression in space and time. We first verified the expression of the fused protein in vitro on transfected cells by bioluminescence and Western blotting. Next, two groups of C57Bl6Jr mice were unilaterally injected with the AAV-NanoLuc-human-A53T-α-synuclein above the substantia nigra combined (or not) with fibroin. We first show that the in vivo cerebral bioluminescence signal was more intense in the presence of fibroin. Using immunohistochemistry, we find that the human-A53T-α-synuclein protein is more restricted to the ipsilateral side with an overall greater magnitude of the lesion when fibroin was added. However, we also detected a bioluminescence signal in peripheral organs in both conditions, confirmed by the presence of viral DNA corresponding to the injected AAV in the liver using qPCR.


Dependovirus , Fibroins , Genetic Vectors , Luminescent Measurements , Mice, Inbred C57BL , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Dependovirus/genetics , Humans , Mice , Luminescent Measurements/methods , Genetic Vectors/genetics , Fibroins/metabolism , Central Nervous System/metabolism , Male , Luciferases/metabolism , Luciferases/genetics
15.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1073-1081, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621914

The present study aimed to investigate the effect and mechanism of Bupleuri Radix-Paeoniae Radix Alba medicated plasma on HepG2 hepatoma cells by regulating the microRNA-1297(miR-1297)/phosphatase and tensin homologue deleted on chromosome 10(PTEN) signaling axis. Real-time quantitative PCR(RT-qPCR) was carried out to determine the mRNA levels of miR-1297 and PTEN in different hepatoma cell lines. The dual luciferase reporter assay was employed to verify the targeted interaction between miR-1297 and PTEN. The cell counting kit-8(CCK-8) was used to detect cell proliferation, and the optimal concentration and intervention time of the medicated plasma were determined. The cell invasion and migration were examined by Transwell assay and wound healing assay. Cell cycle distribution was detected by PI staining, and the apoptosis of cells was detected by Annexin V-FITC/PI double staining. The mRNA levels of miR-1297, PTEN, protein kinase B(Akt), and phosphatidylinositol 3-kinase(PI3K) were determined by RT-qPCR. Western blot was employed to determine the protein levels of PTEN, Akt, p-Akt, caspase-3, caspase-9, B-cell lymphoma-2(Bcl-2), and Bcl-2-associated X protein(Bax). The results showed that HepG2 cells were the best cell line for subsequent experiments. The dual luciferase reporter assay confirmed that miR-1297 could bind to the 3'-untranslated region(3'UTR) in the mRNA of PTEN. The medicated plasma inhibited the proliferation of HepG2 cells, and the optimal intervention concentration and time were 20% and 72 h. Compared with the blank plasma, the Bupleuri Radix-Paeoniae Radix Alba medicated plasma, miR-1297 inhibitor, miR-1297 inhibitor + medicated plasma all inhibited the proliferation, invasion, and migration of HepG2 cells, increased the proportion of cells in the G_0/G_1 phase, decreased the proportion of cells in the S phase, and increased the apoptosis rate. The medicated plasma down-regulated the mRNA levels of miR-1297, PI3K, and Akt and up-regulated the mRNA level of PTEN. In addition, it up-regulated the protein levels of PTEN, Bax, caspase-3, and caspsae-9 and down-regulated the protein levels of p-Akt, p-PI3K, and Bcl-2. In conclusion, Bupleuri Radix-Paeoniae Radix Alba medicated plasma can inhibit the expression of miR-1297 in HepG2 hepatoma cells, promote the expression of PTEN, and negatively regulate PI3K/Akt signaling pathway, thereby inhibiting the proliferation and inducing the apoptosis of HepG2 cells.


Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , MicroRNAs , Paeonia , Plant Extracts , Humans , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Hep G2 Cells , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Caspase 3/metabolism , bcl-2-Associated X Protein , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Apoptosis , Cell Proliferation , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , RNA, Messenger , Luciferases/metabolism , Luciferases/pharmacology , Cell Line, Tumor
16.
Sci Rep ; 14(1): 9117, 2024 04 20.
Article En | MEDLINE | ID: mdl-38643232

Milk protein content is an important index to evaluate the quality and nutrition of milk. Accumulating evidence suggests that microRNAs (miRNAs) play important roles in bovine lactation, but little is known regarding the cross-kingdom regulatory roles of plant-derived exogenous miRNAs (xeno-miRNAs) in milk protein synthesis, particularly the underlying molecular mechanisms. The purpose of this study was to explore the regulatory mechanism of alfalfa-derived xeno-miRNAs on proliferation and milk protein synthesis in bovine mammary epithelial cells (BMECs). Our previous study showed that alfalfa miR159a (mtr-miR159a, xeno-miR159a) was highly expressed in alfalfa, and the abundance of mtr-miR159a was significantly lower in serum and whey from high-protein-milk dairy cows compared with low-protein-milk dairy cows. In this study, mRNA expression was detected by real-time quantitative PCR (qRT-PCR), and casein content was evaluated by enzyme-linked immunosorbent assay (ELISA). Cell proliferation and apoptosis were detected using the cell counting kit 8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, western blot, and flow cytometry. A dual-luciferase reporter assay was used to determine the regulation of Protein Tyrosine Phosphatase Receptor Type F (PTPRF) by xeno-miR159a. We found that xeno-miR159a overexpression inhibited proliferation of BMEC and promoted cell apoptosis. Besides, xeno-miR159a overexpression decreased ß-casein abundance, and increased α-casein and κ-casein abundance in BMECs. Dual-luciferase reporter assay result confirmed that PTPRF is a target gene of xeno-miR159a. These results provide new insights into the mechanism by which alfalfa-derived miRNAs regulate BMECs proliferation and milk protein synthesis.


MicroRNAs , Milk Proteins , Female , Cattle , Animals , Milk Proteins/metabolism , Medicago sativa/genetics , Medicago sativa/metabolism , Phosphoric Monoester Hydrolases/metabolism , Mammary Glands, Animal/metabolism , Caseins/genetics , Caseins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation , Luciferases/metabolism , Epithelial Cells/metabolism
17.
BMC Genomics ; 25(1): 325, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561670

BACKGROUND: Non-coding RNA is a key epigenetic regulation factor during skeletal muscle development and postnatal growth, and miR-542-3p was reported to be conserved and highly expressed in the skeletal muscle among different species. However, its exact functions in the proliferation of muscle stem cells and myogenesis remain to be determined. METHODS: Transfection of proliferative and differentiated C2C12 cells used miR-542-3p mimic and inhibitor. RT-qPCR, EdU staining, immunofluorescence staining, cell counting kit 8 (CCK-8), and Western blot were used to evaluate the proliferation and myogenic differentiation caused by miR-542-3p. The dual luciferase reporter analysis and rescued experiment of the target gene were used to reveal the molecular mechanism. RESULTS: The data shows overexpression of miR-542-3p downregulation of mRNA and protein levels of proliferation marker genes, reduction of EdU+ cells, and cellular vitality. Additionally, knocking it down promoted the aforementioned phenotypes. For differentiation, the miR-542-3p gain-of-function reduced both mRNA and protein levels of myogenic genes, including MYOG, MYOD1, et al. Furthermore, immunofluorescence staining immunized by MYHC antibody showed that the myotube number, fluorescence intensity, differentiation index, and myotube fusion index all decreased in the miR-542-3p mimic group, compared with the control group. Conversely, these phenotypes exhibited an increased trend in the miR-542-3p inhibitor group. Mechanistically, phosphatase and tensin homolog (Pten) was identified as the bona fide target gene of miR-542-3p by dual luciferase reporter gene assay, si-Pten combined with miR-542-3p inhibitor treatments totally rescued the promotion of proliferation by loss-function of miR-542-3p. CONCLUSIONS: This study indicates that miR-542-3p inhibits the proliferation and differentiation of myoblast and Pten is a dependent target gene of miR-542-3p in myoblast proliferation, but not in differentiation.


MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Epigenesis, Genetic , Cell Proliferation/genetics , Cell Differentiation/genetics , RNA, Messenger/metabolism , Muscle Development/genetics , Myoblasts , Luciferases/genetics , Luciferases/metabolism
18.
J Orthop Surg Res ; 19(1): 190, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38500202

PURPOSE: To study the effect of miR-150-5p on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), and further explore the relationship between its regulatory mechanism and irisin. METHODS: We isolated mouse BMSCs, and induced osteogenic differentiation by osteogenic induction medium. Using qPCR to detect the expression of osteogenic differentiation-related genes, western blot to detect the expression of osteogenic differentiation-related proteins, and luciferase reporter system to verify that FNDC5 is the target of miR-150-5p. Irisin intraperitoneal injection to treat osteoporosis in mice constructed by subcutaneous injection of dexamethasone. RESULTS: Up-regulation of miR-150-5p inhibited the proliferation of BMSCs, and decreased the content of osteocalcin, ALP activity, calcium deposition, the expression of osteogenic differentiation genes (Runx2, OSX, OCN, OPN, ALP and BMP2) and protein (BMP2, OCN, and Runx2). And down-regulation of miR-150-5p plays the opposite role of up-regulation of miR-150-5p on osteogenic differentiation of BMSCs. Results of luciferase reporter gene assay showed that FNDC5 gene was the target gene of miR-150-5p, and miR-150-5p inhibited the expression of FNDC5 in mouse BMSCs. The expression of osteogenic differentiation genes and protein, the content of osteocalcin, ALP activity and calcium deposition in BMSCs co-overexpressed by miR-150-5p and FNDC5 was significantly higher than that of miR-150-5p overexpressed alone. In addition, the overexpression of FNDC5 reversed the blocked of p38/MAPK pathway by the overexpression of miR-150-5p in BMSCs. Irisin, a protein encoded by FNDC5 gene, improved symptoms in osteoporosis mice through intraperitoneal injection, while the inhibitor of p38/MAPK pathway weakened this function of irisin. CONCLUSION: miR-150-5p inhibits the osteogenic differentiation of BMSCs by targeting irisin to regulate the/p38/MAPK signaling pathway, and miR-150-5p/irisin/p38 pathway is a potential target for treating osteoporosis.


Mesenchymal Stem Cells , MicroRNAs , Osteoporosis , Animals , Mice , Bone Marrow , Calcium/metabolism , Cell Differentiation/genetics , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Fibronectins/pharmacology , Luciferases/metabolism , Luciferases/pharmacology , MAP Kinase Signaling System/genetics , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Osteocalcin/metabolism , Osteogenesis/genetics , Osteoporosis/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Transcription Factors/metabolism
19.
Methods Mol Biol ; 2784: 285-299, 2024.
Article En | MEDLINE | ID: mdl-38502493

To date, CRISPR-based DNA targeting approaches have typically used fusion proteins between full fluorescent reporters and catalytically inactive Cas9 (dCas9) for imaging rather than detection of endogenous genomic DNA sequences. A promising alternative strategy for DNA targeting is the direct biosensing of user-defined sequences at single copy with single-cell resolution. Our recently described DNA biosensing approach using a dual fusion protein biosensor comprised of two independently optimized fragments of NanoLuc luciferase (NLuc) directionally fused to dCas9 paired with user-defined single-guide RNAs (sgRNAs) could allow users to sensitively detect unique copies of a target sequence in individual living cells using common laboratory equipment such as a microscope or a luminescence-equipped microplate reader. Here we describe a protocol for using such a DNA biosensor noninvasively in situ.


Biosensing Techniques , RNA, Guide, CRISPR-Cas Systems , Base Sequence , DNA/genetics , DNA/metabolism , Luciferases/genetics , Luciferases/metabolism , CRISPR-Cas Systems/genetics
20.
Sci Rep ; 14(1): 5845, 2024 03 10.
Article En | MEDLINE | ID: mdl-38462658

Globally, breast cancer is the second most common cause of cancer-related deaths among women. In breast cancer, microRNAs (miRNAs) are essential for both the initiation and development of tumors. It has been suggested that the tumor suppressor microRNA-561-3p (miR-561-3p) is crucial in arresting the growth of cancer cells. Further research is necessary to fully understand the role and molecular mechanism of miR-561 in human BC. The aim of this study was to investigate the inhibitory effect of miR-561-3p on ZEB1, HIF1A, and MYC expression as oncogenes that have the most impact on PD-L1 overexpression and cellular processes such as proliferation, apoptosis, and cell cycle in breast cancer (BC) cell lines. The expression of ZEB1, HIF1A, and MYC genes and miR-561-3p were measured in BC clinical samples and cell lines via qRT-PCR. The luciferase assay, MTT, Annexin-PI staining, and cell cycle experiments were used to assess the effect of miR-561-3p on candidate gene expression, proliferation, apoptosis, and cell cycle progression. Flow cytometry was used to investigate the effects of miR-561 on PD-L1 suppression in the BC cell line. The luciferase assay showed that miRNA-561-3p targets the 3'-UTRs of ZEB1, HIF1A and MYC genes significantly. In BC tissues, the qRT-PCR results demonstrated that miR-561-3p expression was downregulated and the expression of ZEB1, HIF1A and MYC genes was up-regulated. It was shown that overexpression of miR-561-3p decreased PD-L1 expression and BC cell proliferation, and induced apoptosis and cell cycle arrest through downregulation of candidate oncogenes. Furthermore, inhibition of candidate genes by miR-561-3p reduced PD-L1 at both mRNA and protein levels. Our research investigated the impact of miR-561-3p on the expression of ZEB1, HIF1A and MYC in breast cancer cells for the first time. Our findings may help clarify the role of miR-561-3p in PD-L1 regulation and point to this miR as a potential biomarker and novel therapeutic target for cancer immunotherapy.


Breast Neoplasms , MicroRNAs , Humans , Female , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Breast Neoplasms/pathology , Genes, myc , Cell Line, Tumor , Cell Proliferation/genetics , MicroRNAs/metabolism , Luciferases/metabolism , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
...