Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.340
Filter
1.
Comput Methods Programs Biomed ; 254: 108316, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38968827

ABSTRACT

INTRODUCTION: Speckle tracking technology quantifies lung sliding and detects lung sliding abolition in case of pneumothorax on selected ultrasound loops through the analysis of acoustic markers. OBJECTIVES: We aimed to test the ability of speckle tracking technology to quantify lung sliding using a pleural strain value (PS). METHODS: We performed a prospective study in 30 healthy volunteers in whom we assessed the pleural speckle tracking using ultrasound loops. Seven breathing conditions with and without non-invasive ventilation were tested. Two observers analyzed the ultrasound loops in four lung areas (anterior and posterior, left and right) and compared the obtained PS values. The first endpoint was to determine the feasibility of the PS measurement in different breathing conditions. The secondary endpoints were to assess the intra- and inter-observer's reliability of the measurement to compare PS values between anterior and posterior lung areas and to explore their correlations with the measured tidal volume. RESULTS: We analyzed 1624 ultrasound loops from 29 patients after one volunteer's exclusion. Feasibility of this method was rated at 90.8 [95%CI: 89.6 - 92.4]%. The intra-observer reliability measured through Intraclass Correlation Coefficients was 0.96 [95%CI: 0.91-0.98] and 0.93 [95%CI: 0.86-0.97] depending on the operator. The inter-observer reliability was 0.89 [95%CI: 0.78-0.95]. The PS values were significantly lower in the anterior lung areas compared with the posterior areas in all breathing conditions. A weak positive correlation was found in all the lung areas when a positive end expiratory pressure was applied with r = 0.26 [95%CI: 0.12;0.39]; p < 0.01. CONCLUSION: Speckle tracking lung sliding quantification with PS was applicable in most conditions with an excellent intra- and inter-observer reliability. More studies in patients under invasive mechanical ventilation are needed to explore the correlation between PS values of pleural sliding and tidal volumes. CLINICAL REGISTRATION: NCT05415605.


Subject(s)
Feasibility Studies , Healthy Volunteers , Lung , Ultrasonography , Humans , Male , Adult , Female , Lung/diagnostic imaging , Lung/physiology , Prospective Studies , Ultrasonography/methods , Reproducibility of Results , Pleura/diagnostic imaging , Middle Aged , Tidal Volume , Pneumothorax/diagnostic imaging , Observer Variation , Young Adult , Respiration
2.
Lancet Digit Health ; 6(8): e580-e588, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981834

ABSTRACT

BACKGROUND: Chest x-ray is a basic, cost-effective, and widely available imaging method that is used for static assessments of organic diseases and anatomical abnormalities, but its ability to estimate dynamic measurements such as pulmonary function is unknown. We aimed to estimate two major pulmonary functions from chest x-rays. METHODS: In this retrospective model development and validation study, we trained, validated, and externally tested a deep learning-based artificial intelligence (AI) model to estimate forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) from chest x-rays. We included consecutively collected results of spirometry and any associated chest x-rays that had been obtained between July 1, 2003, and Dec 31, 2021, from five institutions in Japan (labelled institutions A-E). Eligible x-rays had been acquired within 14 days of spirometry and were labelled with the FVC and FEV1. X-rays from three institutions (A-C) were used for training, validation, and internal testing, with the testing dataset being independent of the training and validation datasets, and then x-rays from the two other institutions (D and E) were used for independent external testing. Performance for estimating FVC and FEV1 was evaluated by calculating the Pearson's correlation coefficient (r), intraclass correlation coefficient (ICC), mean square error (MSE), root mean square error (RMSE), and mean absolute error (MAE) compared with the results of spirometry. FINDINGS: We included 141 734 x-ray and spirometry pairs from 81 902 patients from the five institutions. The training, validation, and internal test datasets included 134 307 x-rays from 75 768 patients (37 718 [50%] female, 38 050 [50%] male; mean age 56 years [SD 18]), and the external test datasets included 2137 x-rays from 1861 patients (742 [40%] female, 1119 [60%] male; mean age 65 years [SD 17]) from institution D and 5290 x-rays from 4273 patients (1972 [46%] female, 2301 [54%] male; mean age 63 years [SD 17]) from institution E. External testing for FVC yielded r values of 0·91 (99% CI 0·90-0·92) for institution D and 0·90 (0·89-0·91) for institution E, ICC of 0·91 (99% CI 0·90-0·92) and 0·89 (0·88-0·90), MSE of 0·17 L2 (99% CI 0·15-0·19) and 0·17 L2 (0·16-0·19), RMSE of 0·41 L (99% CI 0·39-0·43) and 0·41 L (0·39-0·43), and MAE of 0·31 L (99% CI 0·29-0·32) and 0·31 L (0·30-0·32). External testing for FEV1 yielded r values of 0·91 (99% CI 0·90-0·92) for institution D and 0·91 (0·90-0·91) for institution E, ICC of 0·90 (99% CI 0·89-0·91) and 0·90 (0·90-0·91), MSE of 0·13 L2 (99% CI 0·12-0·15) and 0·11 L2 (0·10-0·12), RMSE of 0·37 L (99% CI 0·35-0·38) and 0·33 L (0·32-0·35), and MAE of 0·28 L (99% CI 0·27-0·29) and 0·25 L (0·25-0·26). INTERPRETATION: This deep learning model allowed estimation of FVC and FEV1 from chest x-rays, showing high agreement with spirometry. The model offers an alternative to spirometry for assessing pulmonary function, which is especially useful for patients who are unable to undergo spirometry, and might enhance the customisation of CT imaging protocols based on insights gained from chest x-rays, improving the diagnosis and management of lung diseases. Future studies should investigate the performance of this AI model in combination with clinical information to enable more appropriate and targeted use. FUNDING: None.


Subject(s)
Deep Learning , Humans , Japan , Male , Female , Retrospective Studies , Middle Aged , Aged , Vital Capacity , Lung/diagnostic imaging , Lung/physiology , Forced Expiratory Volume , Radiography, Thoracic , Spirometry/methods , Adult , Respiratory Function Tests/methods
4.
BMC Public Health ; 24(1): 1791, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970028

ABSTRACT

BACKGROUND: Orang Asli lifestyle and household setting may influence their health status especially respiratory system and lung functions. This cross-sectional study was carried out to investigate the status of lung functions of Orang Asli community and the associated factors. METHODS: Data collection was carried out from November 2017 until May 2018 among 211 Orang Asli respondents aged 18 years old and above, who lived in five villages in Tasik Chini, Pahang. All respondents who fulfilled the inclusion criteria were recruited in this study. Interview-guided questionnaire was administered, and spirometry test that include Forced Expiratory Volume in one second (FEV1), Forced Vital Capacity (FVC), and Peak Expiratory Flow Rate (PEFR) was carried out. Data were analyzed using SPSS software version 23.0. In the first stage, descriptive analysis was done to describe the characteristics of the respondents. In the second stage, bivariable analysis was carried out to compare proportions. Finally, multiple logistic regression was performed to assess the effects of various independent predictors on spirometry parameters. RESULTS: The respondents' age ranged from 18 to 71 years old in which 50.2% of them were female. The majority ethnicity in Tasik Chini was Jakun tribe (94.3%). More than half of the respondents (52.1%) were current smoker, 5.2% were ex-smoker and 41.7% were non-smoker. More than half of them (62.1%) used woodstove for cooking, compared to only 37.9% used cleaner fuel like Liquefied Petroleum Gas (LPG) as a fuel for everyday cooking activity. The lung function parameters (FEV1 and FVC) were lower than the predictive value, whereas the ratio of Forced Expiratory Volume in one second and Forced Vital Capacity (FEV1/FVC) (%) and PEFR were within the predictive value. The FEV1 levels were significantly associated with age group (18-39 years old) (p = 0.002) and presence of woodstove in the house (p = 0.004). FVC levels were significantly associated with presence of woodstove in the house (p = 0.004), whereas there were no significant associations between all factors and FEV1/FVC levels. CONCLUSIONS: FEV1 levels were significantly associated with age group 18-39 years old, whereas FVC levels were significantly associated with the presence of woodstove in the house. Thus, environmental interventions such as replacing the use of woodstove with LPG, need to be carried out to prevent further worsening of respiratory health among Orang Asli who lived far from health facilities. Moreover, closer health monitoring is crucial especially among the younger and productive age group.


Subject(s)
Spirometry , Humans , Cross-Sectional Studies , Female , Male , Adult , Middle Aged , Malaysia/epidemiology , Adolescent , Aged , Young Adult , Respiratory Function Tests , Surveys and Questionnaires , Lung/physiology , Vital Capacity/physiology , Forced Expiratory Volume
5.
J Vis Exp ; (208)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38975766

ABSTRACT

Pulmonary magnetic resonance imaging (MRI) offers a variety of radiation-free techniques tailored to assess regional lung ventilation or its surrogates. These techniques encompass direct measurements, exemplified by hyperpolarized gas MRI and fluorinated gas MRI, as well as indirect measurements facilitated by oxygen-enhanced MRI and proton-based Fourier decomposition (FD) MRI. In recent times, there has been substantial progress in the field of FD MRI, which involved improving spatial/temporal resolution, refining sequence design and postprocessing, and developing a comprehensive whole-lung approach. The two-dimensional (2D) phase-resolved functional lung (PREFUL) MRI stands out as an FD-based approach developed for the comprehensive assessment of regional ventilation and perfusion dynamics, all within a single MR acquisition. Recently, a new advancement has been made with the development of 3D PREFUL to assess dynamic ventilation of the entire lung using 8 min exam with a self-gated sequence. The 3D PREFUL acquisition involves employing a stack-of-stars spoiled-gradient-echo sequence with a golden angle increment. Following the compressed sensing image reconstruction of approximately 40 breathing phases, all the reconstructed respiratory-resolved images undergo registration onto a fixed breathing phase. Subsequently, the ventilation parameters are extracted from the registered images. In a study cohort comprising healthy volunteers and patients with chronic obstructive pulmonary disease, the 3D PREFUL ventilation parameters demonstrated strong correlations with measurements obtained from pulmonary function tests. Additionally, the interscan repeatability of the 3D PREFUL technique was deemed to be acceptable, indicating its reliability for repeated assessments of the same individuals. In summary, 3D PREFUL ventilation MRI provides a whole lung coverage and captures ventilation dynamics with enhanced spatial resolution compared to 2D PREFUL. 3D PREFUL technique offers a cost-effective alternative to hyperpolarized 129Xe MRI, making it an attractive option for patient-friendly evaluation of pulmonary ventilation.


Subject(s)
Imaging, Three-Dimensional , Lung , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Lung/physiology , Imaging, Three-Dimensional/methods
6.
Respir Res ; 25(1): 264, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965590

ABSTRACT

BACKGROUND: Bronchoscopic lung volume reduction (BLVR) with one-way endobronchial valves (EBV) has better outcomes when the target lobe has poor collateral ventilation, resulting in complete lobe atelectasis. High-inspired oxygen fraction (FIO2) promotes atelectasis through faster gas absorption after airway occlusion, but its application during BLVR with EBV has been poorly understood. We aimed to investigate the real-time effects of FIO2 on regional lung volumes and regional ventilation/perfusion by electrical impedance tomography (EIT) during BLVR with EBV. METHODS: Six piglets were submitted to left lower lobe occlusion by a balloon-catheter and EBV valves with FIO2 0.5 and 1.0. Regional end-expiratory lung impedances (EELI) and regional ventilation/perfusion were monitored. Local pocket pressure measurements were obtained (balloon occlusion method). One animal underwent simultaneous acquisitions of computed tomography (CT) and EIT. Regions-of-interest (ROIs) were right and left hemithoraces. RESULTS: Following balloon occlusion, a steep decrease in left ROI-EELI with FIO2 1.0 occurred, 3-fold greater than with 0.5 (p < 0.001). Higher FIO2 also enhanced the final volume reduction (ROI-EELI) achieved by each valve (p < 0.01). CT analysis confirmed the denser atelectasis and greater volume reduction achieved by higher FIO2 (1.0) during balloon occlusion or during valve placement. CT and pocket pressure data agreed well with EIT findings, indicating greater strain redistribution with higher FIO2. CONCLUSIONS: EIT demonstrated in real-time a faster and more complete volume reduction in the occluded lung regions under high FIO2 (1.0), as compared to 0.5. Immediate changes in the ventilation and perfusion of ipsilateral non-target lung regions were also detected, providing better estimates of the full impact of each valve in place. TRIAL REGISTRATION: Not applicable.


Subject(s)
Bronchoscopy , Electric Impedance , Animals , Swine , Bronchoscopy/methods , Pneumonectomy/methods , Lung/diagnostic imaging , Lung/physiopathology , Lung/surgery , Lung/physiology , Tomography/methods , Pulmonary Atelectasis/diagnostic imaging , Pulmonary Atelectasis/physiopathology , Lung Volume Measurements/methods , Time Factors
7.
J Vis Exp ; (208)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39007610

ABSTRACT

Due to their physiological similarities to humans, pigs are used as experimental models for ex vivo lung perfusion (EVLP). EVLP is a technique that perfuses lungs that are not suitable for transplantation via an extracorporeal circulation pump to improve their function and increase their viability. Existing EVLP protocols are differentiated by the type of perfusion solution and perfusion flow, which varies from 40%-100% of the estimated cardiac output (CO) according to the body surface area (BSA). Devices for measuring CO use simple physical principles and other mathematical models. Thermodilution in animal models continues to be the reference standard for estimating CO because of its simplicity and ease of reproduction. Therefore, the objective of this study was to reproduce the measurement of CO by thermodilution in pigs and compare its precision and accuracy with those obtained by the BSA, weight, and Fick's method, to establish perfusion flow during EVLP. In 23 pigs, a thermodilution catheter was placed in the right jugular vein, and the carotid artery on the same side was cannulated. Blood samples were obtained for gasometry, and CO was estimated by thermodilution, adjusted body surface area, Fick's principle, and per body weight. The CO obtained by the BSA was greater (p = 0.0001, ANOVA, Tukey) than that obtained by the other methods. We conclude that although the methods used in this study to estimate CO are reliable, there are significant differences between them; therefore, each method must be evaluated by the investigator to determine which meets the needs of the protocol.


Subject(s)
Cardiac Output , Lung , Perfusion , Thermodilution , Animals , Swine , Perfusion/methods , Cardiac Output/physiology , Thermodilution/methods , Lung/physiology , Lung/blood supply , Models, Animal
8.
Int J Equity Health ; 23(1): 138, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982484

ABSTRACT

BACKGROUND: Limited lung function represents a serious health impairment. However, studies investigating social inequalities in limited lung function are rare. Thus, the current study investigates which socioeconomic groups are the most affected by overall limited lung function and severely limited lung function. METHODS: Data from the population-based German Aging Survey were used (N = 4472), with participants being 40 + years old. Lung function was assessed by the peak flow test. Education, income, and occupational prestige were used as socioeconomic indicators. RESULTS: We found that overall limited lung function was highly prevalent across the whole sample, with about 33% (Women: 35%; Men: 30%) having overall limited lung function and 8% (Women: 7%; Men: 8%) having severely limited lung function. Socioeconomic differences in limited lung function emerged for all three indicators, education, income, and occupational prestige, in both men and women in single effect analyses. These differences persisted for occupational prestige and income when controlling for all indicators simultaneously. CONCLUSIONS: Thus, overall and severely limited lung function are highly prevalent health conditions. Men and women with a low occupational position and those with low income are the most affected. Socioeconomic indicators cannot be used interchangeably when studying health inequalities in lung functioning. Occupational hazards and physical working conditions are likely to constitute major risks of health inequalities in limited lung functioning and should be investigated as such by future studies.


Subject(s)
Socioeconomic Factors , Humans , Male , Female , Germany , Cross-Sectional Studies , Middle Aged , Aged , Adult , Lung/physiology , Respiratory Function Tests , Health Status Disparities , Income/statistics & numerical data , Aged, 80 and over , Social Class
9.
Cells ; 13(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38995005

ABSTRACT

Space travel presents multiple risks to astronauts such as launch, radiation, spacewalks or extravehicular activities, and microgravity. The lungs are composed of a combination of air, blood, and tissue, making it a complex organ system with interactions between the external and internal environment. Gravity strongly influences the structure of the lung which results in heterogeneity of ventilation and perfusion that becomes uniform in microgravity as shown during parabolic flights, Spacelab, and Skylab experiments. While changes in lung volumes occur in microgravity, efficient gas exchange remains and the lungs perform as they would on Earth; however, little is known about the cellular response to microgravity. In addition to spaceflight and real microgravity, devices, such as clinostats and random positioning machines, are used to simulate microgravity to study cellular responses on the ground. Differential expression of cell adhesion and extracellular matrix molecules has been found in real and simulated microgravity. Immune dysregulation is a known consequence of space travel that includes changes in immune cell morphology, function, and number, which increases susceptibility to infections. However, the majority of in vitro studies do not have a specific respiratory focus. These studies are needed to fully understand the impact of microgravity on the function of the respiratory system in different conditions.


Subject(s)
Lung , Space Flight , Weightlessness , Humans , Lung/physiology , Weightlessness/adverse effects , Animals
10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 769-776, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948293

ABSTRACT

Objective: To experimentally validate the effects of a self-developed heat-stable thickening agent on the textual characteristics of enteral nutrition solutions of standard concentration and its applicability in improving dysphagia. Methods: A gradient of different doses of the self-developed thickening agent (1.0 g, 1.5 g, 2.0 g, 2.5 g, and3.0 g) and three commonly used commercial thickeners were mixed with 23.391 g of a complete nutrition formula powder dissolved in 85 mL of purified water to prepare 100 mL standard concentration nutrition solutions. The textual parameters (cohesiveness, viscosity, thickness, and hardness) of these nutrition solutions were measured using a texture analyzer at various temperature gradients (20 ℃, 40 ℃, 60 ℃, and 80 ℃) to compare their thermal stability. A dysphagia rat model was created via epiglottectomy to explore the effects of the thickener on lung tissue damage scores and levels of inflammatory markers. The rats were divided into a test intervention group, a positive control group, a negative control group, and a blank control group (no surgery and normal feeding after fasting for one day), with 15 rats in each group. After fasting for one day post-surgery, the test intervention group was fed with the standard concentration nutrition solution thickened with the self-developed thickener, while the positive control group was given a standard concentration nutrition solution thickened with product 3, and the negative control group was fed a normal diet. All groups were fed for two weeks with food dyed with food-grade green dye. General conditions, body mass, and food intake were observed and recorded. After two weeks, abdominal aorta blood was collected, and heart, liver, spleen, lung, and kidney tissues were harvested and weighed to calculate the lung tissue organ coefficient. The organ conditions were evaluated using routine H&E staining, and lung damage was semi-quantitatively analyzed based on the Mikawa scoring criteria. Blood supernatants were collected to measure the total serum protein and albumin levels to determine the nutritional status of the rats. The expression of IL-6 and TNF-α genes in lung tissues was measured by RT-qPCR. IL-6 and TNF-α protein expression levels in lung tissues, lung tissue homogenate, and serum were measured by ELISA. The aspiration incidence rate was calculated. Results: Within the dosage range of 1.0 g to 3.0 g, the self-developed thickener in the test samples exhibited superior thermal stability in cohesiveness compared to the three commercially available thickeners, with a statistically significant difference (P<0.01). The differences in the thermal stability of viscosity and hardness between the self-developed thickener and the three commercially available thickeners were not statistically significant. The viscosity stability was optimal for the self-developed thickener, followed by the commercially available thickeners 1 and 3, with thickeners 2 being the least stable, though the differences were not statistically significant (P>0.05). Product 1 showed the best thermal stability in thickness, followed by the self-developed thickener and product 2, while the product 3 exhibited the worst performance, with the difference being statistically significant (P<0.01). The self-developed thickener had the best thermal stability in hardness at temperatures ranging from 20℃ to 80 ℃, followed by products 1 and 2, with product 3 being the least stable. However, the differences were not statistically significant (P>0.05). Animal experiment results indicated that the body weight gain in the positive control group and the test intervention group was lower than that in the blank and negative control groups (P<0.01). The spleen coefficient of the intervention group was lower than that of the positive control group and the blank control group (P<0.01), while the heart, liver, and kidney coefficients were lower than those of the blank control group (P<0.01). The differences in the lung coefficient of the intervention group and those of the other three groups were no statistically significant. Levels of TP and ALB in the test intervention group, the positive control group, and the negative control group were all lower than those in the blank control group, with statistically significant differences (P<0.01). ELISA results showed that serum IL-6 levels in the blank and test intervention groups were lower than those in the negative and positive control groups (P<0.05), while the difference in the other indicators across the four groups were not statistically significant (P>0.05). There were no statistically significant differences among the four groups in terms of lung tissue damage pathology scores, or in the levels of IL-6 and TNF-α gene expression in lung tissues. The aspiration incidence rate was 0% in all groups. Conclusion: The self-developed enteral nutrition thickening agent demonstrated excellent thermal stability and swallowing safety. Further research to explore its application in patients with dysphagia is warranted.


Subject(s)
Deglutition Disorders , Enteral Nutrition , Animals , Rats , Deglutition Disorders/etiology , Enteral Nutrition/methods , Rats, Sprague-Dawley , Deglutition/physiology , Male , Lung/physiology , Hot Temperature , Viscosity
11.
Sci Rep ; 14(1): 14020, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890408

ABSTRACT

The study assessed the impact of procedural errors on the remote dielectric sensing system (ReDS), a non-invasive lung fluid assessment technology, in an Asian cohort. Healthy volunteers underwent ReDS measurements following manufacturer's instructions, with two consecutive measurements one minute apart. A subset of 20 participants had modified procedure settings. Reliability was measured using intraclass correlation coefficient (ICC). The study included 86 healthy volunteers, and all ReDS measurements fell within the recommended normal range. The intra-rater reliability of ReDS measurements was excellent, with an ICC of 0.968. Among the subset of 20 subjects, deviations in height and weight did not significantly affect ReDS values. However, deviations in chest size by ± 3 cm had a noticeable impact on ReDS measures, and incorrect station selection led to fluctuations in ReDS readings. In conclusion, the ReDS system demonstrated excellent intra-rater reliability and applicability in an Asian cohort. Procedural errors, such as chest size measurement and station selection, significantly influenced ReDS measurements. Adherence to standardized operating procedures is crucial to ensure accurate and consistent results. These findings highlight the importance of adherence to manufacturer instructions when utilizing ReDS for lung fluid assessment, thereby enhancing its reliability and clinical applicability.


Subject(s)
Lung , Humans , Male , Female , Adult , Lung/physiology , Reproducibility of Results , Remote Sensing Technology/methods , Healthy Volunteers , Young Adult , Middle Aged , Body Fluids , Electric Impedance
12.
Nature ; 630(8017): 671-676, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867039

ABSTRACT

The subpectoral diverticulum (SPD) is an extension of the respiratory system in birds that is located between the primary muscles responsible for flapping the wing1,2. Here we survey the pulmonary apparatus in 68 avian species, and show that the SPD was present in virtually all of the soaring taxa investigated but absent in non-soarers. We find that this structure evolved independently with soaring flight at least seven times, which indicates that the diverticulum might have a functional and adaptive relationship with this flight style. Using the soaring hawks Buteo jamaicensis and Buteo swainsoni as models, we show that the SPD is not integral for ventilation, that an inflated SPD can increase the moment arm of cranial parts of the pectoralis, and that pectoralis muscle fascicles are significantly shorter in soaring hawks than in non-soaring birds. This coupling of an SPD-mediated increase in pectoralis leverage with force-specialized muscle architecture produces a pneumatic system that is adapted for the isometric contractile conditions expected in soaring flight. The discovery of a mechanical role for the respiratory system in avian locomotion underscores the functional complexity and heterogeneity of this organ system, and suggests that pulmonary diverticula are likely to have other undiscovered secondary functions. These data provide a mechanistic explanation for the repeated appearance of the SPD in soaring lineages and show that the respiratory system can be co-opted to provide biomechanical solutions to the challenges of flight and thereby influence the evolution of avian volancy.


Subject(s)
Flight, Animal , Hawks , Respiration , Respiratory System , Wings, Animal , Animals , Biological Evolution , Biomechanical Phenomena/physiology , Flight, Animal/physiology , Hawks/anatomy & histology , Hawks/classification , Hawks/physiology , Lung/anatomy & histology , Lung/physiology , Models, Biological , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Respiratory System/anatomy & histology , Wings, Animal/physiology , Wings, Animal/anatomy & histology , Male , Female
13.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R88-R96, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38842517

ABSTRACT

The purpose of the present study was to clarify the impact of age on the sympathoinhibitory response to cardiopulmonary baroreceptor loading in females. Nine older females (mean ± SD, 70 ± 6 yr) and 11 younger females (20 ± 1 yr) completed the study. A passive leg raising (PLR) test was performed wherein the participants were positioned supine (baseline, 0°), and their lower limbs were passively lifted at 10°, 20°, 30°, and 40° (3 min at each angle). Muscle sympathetic nerve activity (MSNA) was recorded via microneurography of the left radial nerve. The central venous pressure was estimated based on peripheral venous pressure (eCVP), which was monitored using a cannula in the right large antecubital vein. Baseline MSNA was higher in older females than in younger females. MSNA burst frequency (BF) decreased during the PLR test in both older and younger females, but the magnitude of the decrease in MSNA BF was smaller in older females than in younger females (older, -3.5 ± 1.5 vs. younger, -6.3 ± 1.5 bursts/min at 40° from baseline, P = 0.014). The eCVP increased during the PLR in both groups, and there was no difference in the changes in eCVP between the two groups (older, +1.07 ± 0.37 vs. younger, +1.12 ± 0.33 mmHg at 40° from baseline, P = 0.941). These results suggest that inhibition of sympathetic vasomotor outflow during cardiopulmonary baroreceptor loading could be blunted with advancing age in females.NEW & NOTEWORTHY There were no available data concerning the effect of age on the sympathoinhibitory response to cardiopulmonary baroreceptor loading in females. The magnitude of the decrease in muscle sympathetic nerve activity during passive leg raising (10°-40°) was smaller in older females than in young females. In females, inhibition of sympathetic vasomotor outflow during cardiopulmonary baroreceptor loading could be blunted with advancing age.


Subject(s)
Aging , Baroreflex , Pressoreceptors , Sympathetic Nervous System , Humans , Female , Sympathetic Nervous System/physiology , Pressoreceptors/physiology , Aged , Aging/physiology , Young Adult , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Age Factors , Blood Pressure/physiology , Middle Aged , Lung/innervation , Lung/physiology , Neural Inhibition
14.
J Health Popul Nutr ; 43(1): 98, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926790

ABSTRACT

PURPOSE: There is a major epidemic of obesity, and many obese patients suffer from respiratory symptoms and disease. However, limited research explores the associations between abdominal obesity and lung function indices, yielding mixed results. This study aims to analyze the association between waist circumference (WC), an easily measurable marker of abdominal obesity, and lung function parameters in middle-aged and older adults using the National Health and Nutrition Examination Survey (NHANES). METHODS: This study utilized data obtained from the National Health and Nutrition Examination Survey (NHANES) spanning 2007 to 2012, with a total sample size of 6089 individuals. A weighted multiple regression analysis was conducted to assess the relationship between WC and three pulmonary function parameters. Additionally, a weighted generalized additive model and smooth curve fitting were applied to capture any potential nonlinear relationship within this association. RESULTS: After considering all confounding variables, it was observed that for each unit increase in WC, in males, Forced Vital Capacity (FVC) increased by 23.687 ml, Forced Expiratory Volume in one second (FEV1) increased by 12.029 ml, and the FEV1/FVC ratio decreased by 0.140%. In females, an increase in waist circumference by one unit resulted in an FVC increase of 6.583 ml and an FEV1 increase of 4.453 ml. In the overall population, each unit increase in waist circumference led to a FVC increase of 12.014 ml, an FEV1 increase of 6.557 ml, and a decrease in the FEV1/FVC ratio by 0.076%. By constructing a smooth curve, we identified a positive correlation between waist circumference and FVC and FEV1. Conversely, there was a negative correlation between waist circumference and the FEV1/FVC ratio. CONCLUSIONS: Our findings indicate that in the fully adjusted model, waist circumference, independent of BMI, positively correlates with FVC and FEV1 while exhibiting a negative correlation with FEV1/FVC among middle-aged and older adults in the United States. These results underscore the importance of considering abdominal obesity as a potential factor influencing lung function in American middle-aged and older adults.


Subject(s)
Lung , Nutrition Surveys , Obesity, Abdominal , Waist Circumference , Humans , Male , Female , Middle Aged , United States/epidemiology , Aged , Obesity, Abdominal/epidemiology , Lung/physiopathology , Lung/physiology , Vital Capacity , Forced Expiratory Volume , Respiratory Function Tests , Cross-Sectional Studies , Body Mass Index
15.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 447-454, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38932529

ABSTRACT

This paper investigates the variation of lung tissue dielectric properties with tidal volume under in vivo conditions to provide reliable and valid a priori information for techniques such as microwave imaging. In this study, the dielectric properties of the lung tissue of 30 rabbits were measured in vivo using the open-end coaxial probe method in the frequency band of 100 MHz to 1 GHz, and 6 different sets of tidal volumes (30, 40, 50, 60, 70, 80 mL) were set up to study the trends of the dielectric properties, and the data at 2 specific frequency points (433 and 915 MHz) were analyzed statistically. It was found that the dielectric coefficient and conductivity of lung tissue tended to decrease with increasing tidal volume in the frequency range of 100 MHz to 1 GHz, and the differences in the dielectric properties of lung tissue for the 6 groups of tidal volumes at 2 specific frequency points were statistically significant. This paper showed that the dielectric properties of lung tissue tend to vary non-linearly with increasing tidal volume. Based on this, more accurate biological tissue parameters can be provided for bioelectromagnetic imaging techniques such as microwave imaging, which could provide a scientific basis and experimental data support for the improvement of diagnostic methods and equipment for lung diseases.


Subject(s)
Lung , Tidal Volume , Animals , Rabbits , Lung/physiology , Lung/diagnostic imaging , Electric Impedance , Electric Conductivity , Microwave Imaging , Microwaves
16.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 439-446, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38932528

ABSTRACT

Electrical impedance tomography (EIT) is a non-radiation, non-invasive visual diagnostic technique. In order to improve the imaging resolution and the removing artifacts capability of the reconstruction algorithms for electrical impedance imaging in human-chest models, the HMANN algorithm was proposed using the Hadamard product to optimize multilayer artificial neural networks (MANN). The reconstructed images of the HMANN algorithm were compared with those of the generalized vector sampled pattern matching (GVSPM) algorithm, truncated singular value decomposition (TSVD) algorithm, backpropagation (BP) neural network algorithm, and traditional MANN algorithm. The simulation results showed that the correlation coefficient of the reconstructed images obtained by the HMANN algorithm was increased by 17.30% in the circular cross-section models compared with the MANN algorithm. It was increased by 13.98% in the lung cross-section models. In the lung cross-section models, some of the correlation coefficients obtained by the HMANN algorithm would decrease. Nevertheless, the HMANN algorithm retained the image information of the MANN algorithm in all models, and the HMANN algorithm had fewer artifacts in the reconstructed images. The distinguishability between the objects and the background was better compared with the traditional MANN algorithm. The algorithm could improve the correlation coefficient of the reconstructed images, and effectively remove the artifacts, which provides a new direction to effectively improve the quality of the reconstructed images for EIT.


Subject(s)
Algorithms , Electric Impedance , Image Processing, Computer-Assisted , Neural Networks, Computer , Thorax , Tomography , Humans , Tomography/methods , Thorax/diagnostic imaging , Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Lung/physiology
17.
Toxicol Lett ; 397: 89-102, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768835

ABSTRACT

Aging increases susceptibility to lung disease, but the topic is understudied, especially in relation to environmental exposures with the bulk of rodent studies using young adults. This study aims to define the pulmonary toxicity of naphthalene (NA) and the impacts of a dietary antioxidant, ergothioneine (ET), in the liver and lungs of middle-aged mice. NA causes a well-characterized pattern of conducting airway epithelial injury in the lung in young adult mice, but NA's toxicity has not been characterized in middle-aged mice, aged 1-1.5 years. ET is a dietary antioxidant that is synthesized by bacteria and fungi. The ET transporter (ETT), SLC22A4, is upregulated in tissues that experience high levels of oxidative stress. In this study, middle-aged male and female C57BL/6 J mice, maintained on an ET-free synthetic diet from conception, were gavaged with 70 mg/kg of ET for five consecutive days. On day 8, the mice were exposed to a single intraperitoneal NA dose of 50, 100, 150, or 200 mg/kg. At 24 hours post NA injection samples were collected and analyzed for ET concentration and reduced (GSH) and oxidized glutathione (GSSG) concentrations. Histopathology, morphometry, and gene expression were examined. Histopathology of mice exposed to 100 mg/kg of NA suggests reduction in toxicity in the terminal airways of both male (p ≤ 0.001) and female (p ≤ 0.05) middle-aged mice by the ET pretreatment. Our findings in this study are the first to document the toxicity of NA in middle-aged mice and show some efficacy of ET in reducing NA toxicity.


Subject(s)
Aging , Antioxidants , Ergothioneine , Lung , Naphthalenes , Ergothioneine/therapeutic use , Naphthalenes/toxicity , Lung/pathology , Lung/physiology , Humans , Dietary Supplements , Male , Female , Animals , Mice , Antioxidants/therapeutic use , Polymerase Chain Reaction , Gene Expression , Glutathione/genetics , Glutathione/metabolism
18.
Eur J Anaesthesiol ; 41(7): 513-521, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38769936

ABSTRACT

BACKGROUND: Atelectasis has been reported in 68 to 100% of children undergoing general anaesthesia, a phenomenon that persists into the recovery period. Children receiving recruitment manoeuvres have less atelectasis and fewer episodes of oxygen desaturation during emergence. The optimal type of recruitment manoeuvre is unclear and may be influenced by the airway device chosen. OBJECTIVE: We aimed to investigate the different effects on lung mechanics as assessed by the forced oscillation technique (FOT) utilising different recruitment strategies: repeated inflations vs. one sustained inflation and different airway devices, a supraglottic airway device vs. a cuffed tracheal tube. DESIGN: Pragmatic enrolment with randomisation to the recruitment strategy. SETTING: We conducted this single-centre trial between February 2020 and March 2022. PARTICIPANTS: Seventy healthy patients (53 boys) aged between 2 and 16 years undergoing general anaesthesia were included. INTERVENTIONS: Forced oscillations (5 Hz) were superimposed on the ventilator waveform using a customised system connected to the anaesthesia machine. Pressure and flow were measured at the inlet of the airway device and used to compute respiratory system resistance and reactance. Measurements were taken before and after recruitment, and again at the end of surgery. MAIN OUTCOME MEASURES: The primary endpoint measured is the change in respiratory reactance. RESULTS: Statistical analysis (linear model with recruitment strategy and airway device as factors) did not show any significant difference in resistance and reactance between before and after recruitment. Baseline reactance was the strongest predictor for a change in reactance after recruitment: prerecruitment Xrs decreased by mean (standard error) of 0.25 (0.068) cmH 2 O s l -1 per  1 cmH 2 O -1  s l -1 increase in baseline Xrs ( P  < 0.001). After correcting for baseline reactance, the change in reactance after recruitment was significantly lower for sustained inflation compared with repeated inflation by mean (standard error) 0.25 (0.101) cmH 2 O ( P  = 0.0166). CONCLUSION: Although there was no significant difference between airway devices, this study demonstrated more effective recruitment via repeated inflations than sustained inflation in anaesthetised children. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry: ACTRN12619001434189.


Subject(s)
Anesthesia, General , Respiratory Mechanics , Humans , Anesthesia, General/instrumentation , Anesthesia, General/methods , Child , Male , Female , Adolescent , Child, Preschool , Respiratory Mechanics/physiology , Intubation, Intratracheal/instrumentation , Intubation, Intratracheal/methods , Airway Management/instrumentation , Airway Management/methods , Lung/physiology , Pulmonary Atelectasis/prevention & control , Pulmonary Atelectasis/etiology , Pulmonary Atelectasis/physiopathology , Respiration, Artificial/instrumentation , Respiration, Artificial/methods
19.
PLoS One ; 19(5): e0302476, 2024.
Article in English | MEDLINE | ID: mdl-38709742

ABSTRACT

BACKGROUND: The Incentive Spirometer (IS) increases lung volume and improves gas exchange by visually stimulating patients to take slow, deep breaths. It prevents respiratory complications and treats postoperative atelectasis in patients undergoing abdominal, thoracic, and neurosurgical procedures. Its effectiveness has been validated in studies that support improved lung capacities and volumes in individuals with respiratory complications, postoperative thoracic surgery, upper abdominal surgery, and bariatric surgery. The modified Pachón incentive spirometer (MPIS) is a cost-effective alternative to branded IS. It is crucial to validate whether the MPIS distributes ventilation as effectively as commercial devices do. Ventilation distribution will be measured using electrical impedance tomography. OBJECTIVE: The aim is to compare the distribution of pulmonary ventilation between the MPIS and another commercial IS in healthy adults using electrical impedance tomography. METHODS: A crossover clinical trial is proposed to evaluate the measurement of pulmonary ventilation distribution using EIT in a sample of healthy adults. All participants will use a commercial flow IS and the MPIS, with the order of assignment randomized. This research will use electrical impedance tomography to validate the operation of the MPIS. CONCLUSIONS: This study protocol will compare two incentive spirometers' impact on pulmonary ventilation, potentially endorsing the adoption of a cost-effective device to enhance accessibility for targeted populations. TRIAL REGISTRATION: The study was registered in ClinicalTrials.gov (NTC05532748).


Subject(s)
Electric Impedance , Pulmonary Ventilation , Spirometry , Tomography , Humans , Adult , Spirometry/methods , Spirometry/instrumentation , Tomography/methods , Pulmonary Ventilation/physiology , Male , Female , Healthy Volunteers , Cross-Over Studies , Lung/physiology , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL