Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.488
Filter
1.
Sci Rep ; 14(1): 15437, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965293

ABSTRACT

We aimed to determine the clinical characteristics of patient self-inflicted lung injury (P-SILI)-associated pneumothorax/pneumomediastinum, to reveal its risk factors, and to assess its impact on severe COVID-19 cases. In total, 229 patients were included in this case-control study. They were randomly divided into either the case group or the control group as per the inclusion and exclusion criteria. The two groups were further analyzed to reveal the risk factors of spontaneous pneumothorax/pneumomediastinum (SP/P). Finally, risk factors for death were analyzed in the case group and the relationship between death and SP/P was also analyzed among all patients. The mean age of patients was 59.69 ± 17.01 years, most of them were male (74.2%), and 62.0% of them had comorbidities upon admission. A respiratory rate higher than 30 BPM was a risk factor for SP/P (OR 7.186, 95% CI 2.414-21.391, P < 0.001). Patients with delayed intubation due to early application of HFNC or NIV had a higher mortality rate when they developed SP/P (P < 0.05). Additionally, advanced age increased the risk of death (P < 0.05). Finally, SP/P may be a risk factor for death among patients with severe COVID-19 (OR 2.047). P-SILI occurs in severe COVID-19 with acute respiratory failure. It is necessary to identify the risk factors of P-SILI, the indicators of severe P-SILI, and the preventive measures.


Subject(s)
COVID-19 , Mediastinal Emphysema , Pneumothorax , Humans , COVID-19/complications , COVID-19/mortality , Male , Middle Aged , Female , Case-Control Studies , Risk Factors , Mediastinal Emphysema/etiology , Pneumothorax/etiology , Aged , Adult , Lung Injury/etiology , Self-Injurious Behavior/complications , SARS-CoV-2
2.
J Cardiothorac Surg ; 19(1): 445, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004745

ABSTRACT

BACKGROUND: Penetrating thoracic injuries have a significant risk of morbi-mortality. Despite the advancements in damage control methods, a subset of patients with severe pulmonary vascular lesions and bronchial injuries persists. In some of these cases, post-traumatic pneumonectomy is required, and perioperative extracorporeal membrane oxygenation (ECMO) support may be required due to right ventricular failure and respiratory failure. CASE DESCRIPTION: A male was brought to the emergency department (ED) with a penetrating thoracic injury, presenting with massive right hemothorax and active bleeding that required ligation of the right pulmonary hilum to control the bleeding. Subsequently, he developed right ventricular dysfunction and ARDS, necessitating a dynamic hybrid ECMO configuration to support his condition and facilitate recovery. CONCLUSIONS: Penetrating thoracic injuries with severe pulmonary vascular lesions may need pneumonectomy to control bleeding. ECMO support reduces the associated mortality by decreasing the complications rate. A multidisciplinary team is essential to achieve good outcomes in severe compromised patients.


Subject(s)
Extracorporeal Membrane Oxygenation , Pneumonectomy , Humans , Extracorporeal Membrane Oxygenation/methods , Male , Lung Injury/surgery , Lung Injury/etiology , Adult , Thoracic Injuries/surgery , Thoracic Injuries/complications , Wounds, Penetrating/surgery , Hemothorax/etiology , Hemothorax/surgery , Postoperative Care/methods
3.
Redox Biol ; 74: 103194, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852200

ABSTRACT

Elevated lactate levels are a significant biomarker of sepsis and are positively associated with sepsis-related mortality. Sepsis-associated lung injury (ALI) is a leading cause of poor prognosis in clinical patients. However, the underlying mechanisms of lactate's involvement in sepsis-associated ALI remain unclear. In this study, we demonstrate that lactate regulates N6-methyladenosine (m6A) modification levels by facilitating p300-mediated H3K18la binding to the METTL3 promoter site. The METTL3-mediated m6A modification is enriched in ACSL4, and its mRNA stability is regulated through a YTHDC1-dependent pathway. Furthermore, short-term lactate stimulation upregulates ACSL4, which promotes mitochondria-associated ferroptosis. Inhibition of METTL3 through knockdown or targeted inhibition effectively suppresses septic hyper-lactate-induced ferroptosis in alveolar epithelial cells and mitigates lung injury in septic mice. Our findings suggest that lactate induces ferroptosis via the GPR81/H3K18la/METTL3/ACSL4 axis in alveolar epithelial cells during sepsis-associated ALI. These results reveal a histone lactylation-driven mechanism inducing ferroptosis through METTL3-mediated m6A modification. Targeting METTL3 represents a promising therapeutic strategy for patients with sepsis-associated ALI.


Subject(s)
Coenzyme A Ligases , Ferroptosis , Methyltransferases , Sepsis , Methyltransferases/metabolism , Methyltransferases/genetics , Animals , Sepsis/metabolism , Sepsis/complications , Mice , Humans , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Lung Injury/metabolism , Lung Injury/etiology , Lung Injury/pathology , Lung Injury/genetics , Acute Lung Injury/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Acute Lung Injury/genetics , Male , Disease Models, Animal , Lactic Acid/metabolism
4.
Nat Commun ; 15(1): 5449, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937456

ABSTRACT

Progressive lung fibrosis is associated with poorly understood aging-related endothelial cell dysfunction. To gain insight into endothelial cell alterations in lung fibrosis we performed single cell RNA-sequencing of bleomycin-injured lungs from young and aged mice. Analysis reveals activated cell states enriched for hypoxia, glycolysis and YAP/TAZ activity in ACKR1+ venous and TrkB+ capillary endothelial cells. Endothelial cell activation is prevalent in lungs of aged mice and can also be detected in human fibrotic lungs. Longitudinal single cell RNA-sequencing combined with lineage tracing demonstrate that endothelial activation resolves in young mouse lungs but persists in aged ones, indicating a failure of the aged vasculature to return to quiescence. Genes associated with activated lung endothelial cells states in vivo can be induced in vitro by activating YAP/TAZ. YAP/TAZ also cooperate with BDNF, a TrkB ligand that is reduced in fibrotic lungs, to promote capillary morphogenesis. These findings offer insights into aging-related lung endothelial cell dysfunction that may contribute to defective lung injury repair and persistent fibrosis.


Subject(s)
Aging , Bleomycin , Endothelial Cells , Lung Injury , Lung , Pulmonary Fibrosis , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Aging/pathology , Bleomycin/toxicity , Humans , Mice , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/genetics , Lung/pathology , Lung/metabolism , Lung Injury/pathology , Lung Injury/metabolism , Lung Injury/etiology , Receptor, trkB/metabolism , Receptor, trkB/genetics , Mice, Inbred C57BL , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , YAP-Signaling Proteins/metabolism , Male , Single-Cell Analysis , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Female , Disease Models, Animal
5.
Animal Model Exp Med ; 7(3): 367-376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860566

ABSTRACT

BACKGROUND: Severe trauma is associated with systemic inflammation and organ dysfunction. Preclinical rodent trauma models are the mainstay of postinjury research but have been criticized for not fully replicating severe human trauma. The aim of this study was to create a rat model of multicompartmental injury which recreates profound traumatic injury. METHODS: Male Sprague-Dawley rats were subjected to unilateral lung contusion and hemorrhagic shock (LCHS), multicompartmental polytrauma (PT) (unilateral lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofracture), or naïve controls. Weight, plasma toll-like receptor 4 (TLR4), hemoglobin, spleen to body weight ratio, bone marrow (BM) erythroid progenitor (CFU-GEMM, BFU-E, and CFU-E) growth, plasma granulocyte colony-stimulating factor (G-CSF) and right lung histologic injury were assessed on day 7, with significance defined as p values <0.05 (*). RESULTS: Polytrauma resulted in markedly more profound inhibition of weight gain compared to LCHS (p = 0.0002) along with elevated plasma TLR4 (p < 0.0001), lower hemoglobin (p < 0.0001), and enlarged spleen to body weight ratios (p = 0.004). Both LCHS and PT demonstrated suppression of CFU-E and BFU-E growth compared to naïve (p < 0.03, p < 0.01). Plasma G-CSF was elevated in PT compared to both naïve and LCHS (p < 0.0001, p = 0.02). LCHS and PT demonstrated significant histologic right lung injury with poor alveolar wall integrity and interstitial edema. CONCLUSIONS: Multicompartmental injury as described here establishes a reproducible model of multicompartmental injury with worsened anemia, splenic tissue enlargement, weight loss, and increased inflammatory activity compared to a less severe model. This may serve as a more effective model to recreate profound traumatic injury to replicate the human inflammatory response postinjury.


Subject(s)
Anemia , Disease Models, Animal , Multiple Trauma , Rats, Sprague-Dawley , Shock, Hemorrhagic , Animals , Shock, Hemorrhagic/complications , Male , Anemia/etiology , Anemia/pathology , Multiple Trauma/complications , Multiple Trauma/pathology , Rats , Bone Marrow/pathology , Toll-Like Receptor 4/metabolism , Lung Injury/etiology , Lung Injury/pathology , Granulocyte Colony-Stimulating Factor/blood , Hemoglobins
6.
Am J Nurs ; 124(7): 28-34, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38837249

ABSTRACT

ABSTRACT: Using a blind insertion technique to insert small-bore feeding tubes can result in inadvertent placement in the lungs, leading to lung perforation and even mortality. In a Magnet-designated, 500-bed, level 2 trauma center, two serious patient safety events occurred in a four-week period due to nurses blindly inserting a small-bore feeding tube. A patient safety event review team convened and conducted an assessment of reported small-bore feeding tube insertion events that occurred between March 2019 and July 2021. The review revealed six lung perforations over this two-year period. These events prompted the creation of a multidisciplinary team to evaluate alternative small-bore feeding tube insertion practices. The team reviewed the literature and evaluated several evidence-based small-bore feeding tube placement methods, including placement with fluoroscopy, a two-step X-ray, electromagnetic visualization, and capnography. After the evaluation, capnography was selected as the most effective method to mitigate the complications of blind insertion. In this article, the authors describe a quality improvement project involving the implementation of capnography-guided small-bore feeding tube placement to reduce complications and the incidence of lung perforation. Since the completion of the project, which took place from December 13, 2021, through April 18, 2022, no lung injuries or perforations have been reported. Capnography is a relatively simple, noninvasive, and cost-effective technology that provides nurses with a means to safely and effectively insert small-bore feeding tubes, decrease the incidence of adverse events, and improve patient care.


Subject(s)
Lung Injury , Humans , Lung Injury/prevention & control , Lung Injury/etiology , Enteral Nutrition/instrumentation , Enteral Nutrition/methods , Enteral Nutrition/nursing , Capnography , Intubation, Gastrointestinal/adverse effects , Intubation, Gastrointestinal/methods , Intubation, Gastrointestinal/nursing , Quality Improvement , Patient Safety , Trauma Centers
7.
BMC Pulm Med ; 24(1): 237, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745191

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) can aggravate lung ischemia-reperfusion (I/R) injury and is a significant risk factor for recipient mortality after lung transplantation. Metformin protects against I/R injury in a variety of organs. However, the effect of metformin on diabetic lung I/R injury remains unclear. Therefore, this study aimed to observe the effect and mechanism of metformin on lung I/R injury following lung transplantation in type 2 diabetic rats. METHODS: Sprague-Dawley rats were randomly divided into the following six groups: the control + sham group (CS group), the control + I/R group (CIR group), the DM + sham group (DS group), the DM + I/R group (DIR group), the DM + I/R + metformin group (DIRM group) and the DM + I/R + metformin + Compound C group (DIRMC group). Control and diabetic rats underwent the sham operation or left lung transplantation operation. Lung function, alveolar capillary permeability, inflammatory response, oxidative stress, necroptosis and the p-AMPK/AMPK ratio were determined after 24 h of reperfusion. RESULTS: Compared with the CIR group, the DIR group exhibited decreased lung function, increased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, but decreased the p-AMPK/AMPK ratio. Metformin improved the function of lung grafts, decreased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, and increased the p-AMPK/AMPK ratio. In contrast, the protective effects of metformin were abrogated by Compound C. CONCLUSIONS: Metformin attenuates lung I/R injury and necroptosis through AMPK pathway in type 2 diabetic lung transplant recipient rats.


Subject(s)
AMP-Activated Protein Kinases , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Lung Transplantation , Metformin , Necroptosis , Reperfusion Injury , Animals , Rats , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/pharmacology , Lung/pathology , Lung/drug effects , Lung/metabolism , Lung Injury/prevention & control , Lung Injury/etiology , Lung Injury/metabolism , Metformin/pharmacology , Necroptosis/drug effects , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Signal Transduction/drug effects
8.
Surgery ; 176(2): 499-510, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38811326

ABSTRACT

BACKGROUND: Emodin, a natural anthraquinone derivative found in various Chinese medicinal herbs, has been proved to be an effective therapeutic agent in the treatment of many diseases. However, its effect on lung injury after intestinal ischemia/reperfusion injury remains unknown. This research was designed to investigate whether emodin protects against intestinal ischemia/reperfusion-induced lung injury and to elucidate the underlying molecular mechanisms in vivo and in vitro. METHODS: Intestinal ischemia/reperfusion injury was induced by occluding the superior mesenteric artery in mice, and mouse lung epithelial-12 cells were subjected to oxygen-glucose deprivation and reoxygenation to establish an in vitro model. RESULTS: Our data indicated that emodin treatment reduced intestinal ischemia/reperfusion-induced oxidative stress, inflammation and apoptosis in lung tissues and alleviated lung injury. However, the protective effects of emodin on intestinal ischemia/reperfusion-induced lung injury were reversed by the protein kinase B inhibitor triciribine or the heme oxygenase-1 inhibitor tin protoporphyrin IX. The protein kinase inhibitor triciribine also downregulated the expression of heme oxygenase-1. CONCLUSION: In conclusion, our data suggest that emodin treatment protects against intestinal ischemia/reperfusion-induced lung injury by enhancing heme oxygenase-1 expression via activation of the PI3K/protein kinase pathway. Emodin may act as a potential therapeutic agent for the prevention and treatment of lung injury induced by intestinal ischemia/reperfusion.


Subject(s)
Emodin , Heme Oxygenase-1 , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Reperfusion Injury , Signal Transduction , Up-Regulation , Animals , Emodin/pharmacology , Emodin/therapeutic use , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Reperfusion Injury/etiology , Reperfusion Injury/drug therapy , Mice , Proto-Oncogene Proteins c-akt/metabolism , Heme Oxygenase-1/metabolism , Male , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects , Intestines/blood supply , Intestines/pathology , Intestines/drug effects , Mice, Inbred C57BL , Lung Injury/etiology , Lung Injury/prevention & control , Lung Injury/metabolism , Lung Injury/drug therapy , Lung Injury/pathology , Disease Models, Animal , Oxidative Stress/drug effects , Membrane Proteins
9.
Pflugers Arch ; 476(7): 1125-1143, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38700719

ABSTRACT

Hyperthyroidism-induced cardiac disease is an evolving health, economic, and social problem affecting well-being. Sodium-glucose cotransporter protein 2 inhibitors (SGLT2-I) have been proven to be cardio-protective when administered in cases of heart failure. This study intended to investigate the potential therapeutic effect of SGLT2-I on hyperthyroidism-related cardiopulmonary injury, targeting the possible underlying mechanisms. The impact of the SGLT2-I, dapagliflozin (DAPA), (1 mg/kg/day, p.o) on LT4 (0.3 mg/kg/day, i.p)-induced cardiopulmonary injury was investigated in rats. The body weight, ECG, and serum hormones were evaluated. Also, redox balance, DNA fragmentation, inflammatory cytokines, and PCR quantification in heart and lung tissues were employed to investigate the effect of DAPA in experimentally induced hyperthyroid rats along with histological and immunohistochemical examination. Coadministration of DAPA with LT4 effectively restored all serum biomarkers to nearly average levels, improved ECG findings, and reinstated the redox balance. Also, DAPA could improve DNA fragmentation, elevate mtTFA, and lessen TNF-α and IGF-1 gene expression in both organs of treated animals. Furthermore, DAPA markedly improved the necro-inflammatory and fibrotic cardiopulmonary histological alterations and reduced the tissue immunohistochemical expression of TNF-α and caspase-3. Although further clinical and deep molecular studies are required before transposing to humans, our study emphasized DAPA's potential to relieve hyperthyroidism-induced cardiopulmonary injury in rats through its antioxidant, anti-inflammatory, and anti-apoptotic effects, as well as via antagonizing the sympathetic over activity.


Subject(s)
Benzhydryl Compounds , Glucosides , Hyperthyroidism , Sodium-Glucose Transporter 2 Inhibitors , Animals , Rats , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Glucosides/therapeutic use , Male , Hyperthyroidism/drug therapy , Hyperthyroidism/complications , Hyperthyroidism/metabolism , Rats, Wistar , Lung/metabolism , Lung/drug effects , Lung/pathology , Myocardium/metabolism , Myocardium/pathology , Tumor Necrosis Factor-alpha/metabolism , Lung Injury/drug therapy , Lung Injury/metabolism , Lung Injury/etiology , Cytokines , Nicotinamide Phosphoribosyltransferase
10.
Biochem Biophys Res Commun ; 722: 150132, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38788354

ABSTRACT

OBJECTIVE: The present study aims to investigate the protective potential of salidroside in both lung ischemia/reperfusion injury (LIRI) mice model and cell hypoxia/reoxygenation (H/R)model and the involvement of ferroptosis and JAK2/STAT3 pathway. MATERIALS AND METHODS: After we established the IR-induced lung injury model in mice, we administered salidroside and the ferroptosis inhibitor, ferrostatin-1, then assessed the lung tissue injury, ferroptosis (levels of reactive oxygen species level, malondialdehyde and glutathione), and inflammation in lung tissues. The levels of ferroptosis-related proteins (glutathione peroxidase 4, fibroblast-specific protein 1, solute carrier family 1 member 5 and glutaminase 2) in the lung tissue were measured with Western blotting. Next, BEAS-2B cells were used to establish an H/R cell model and treated with salidroside or ferrostatin-1 before the cell viability and the levels of lactate dehydrogenase (LDH), inflammatory factor, ferroptosis-related proteins were measured. The activation of the JAK2/STAT3 signaling pathway was measured with Western blotting, then its role was confirmed with STAT3 knockdown. RESULTS: Remarkably, salidroside was found to alleviate ferroptosis, inflammation, and lung injury in LIRI mice and the cell injury in H/R cell model. Severe ferroptosis were observed in LIRI mice models and H/R-induced BEAS-2B cells, which was alleviated by salidroside. Furthermore, salidroside could inhibit JAK2/STAT3 activation induced by LIRI. STAT3 knockdown could enhance the effect of salidroside treatment on H/R-induced cell damage and ferroptosis in vitro. CONCLUSIONS: Salidroside inhibits ferroptosis to alleviate lung ischemia reperfusion injury via the JAK2/STAT3 signaling pathway.


Subject(s)
Ferroptosis , Glucosides , Janus Kinase 2 , Phenols , Reperfusion Injury , STAT3 Transcription Factor , Signal Transduction , Phenols/pharmacology , Phenols/therapeutic use , Animals , Ferroptosis/drug effects , Janus Kinase 2/metabolism , Glucosides/pharmacology , STAT3 Transcription Factor/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction/drug effects , Male , Mice , Humans , Mice, Inbred C57BL , Lung/pathology , Lung/drug effects , Lung/metabolism , Cell Line , Lung Injury/drug therapy , Lung Injury/metabolism , Lung Injury/pathology , Lung Injury/etiology
12.
Clin Respir J ; 18(5): e13776, 2024 May.
Article in English | MEDLINE | ID: mdl-38778673

ABSTRACT

This systematic review aimed to summarize the available data on the treatment of pulmonary contusions with exogenous surfactants, determine whether this treatment benefits patients with severe pulmonary contusions, and evaluate the optimal type of surfactant, method of administration, and drug concentration. Three databases (MEDline, Scopus, and Web of Science) were searched using the following keywords: pulmonary surfactant, surface-active agents, exogenous surfactant, pulmonary contusion, and lung contusion for articles published between 1945 and February 2023, with no language restrictions. Four reviewers independently rated the studies for inclusion, and the other four reviewers resolved conflicts. Of the 100 articles screened, six articles were included in the review. Owing to the limited number of papers on this topic, various types of studies were included (two clinical studies, two experiments, and two case reports). In all the studies, surfactant administration improved the selected ventilation parameters. The most frequently used type of surfactant was Curosurf® in the concentration of 25 mg/kg of ideal body weight. In most studies, the administration of a surfactant by bronchoscopy into the segmental bronchi was the preferable way of administration. In both clinical studies, patients who received surfactants required shorter ventilation times. The administration of exogenous surfactants improved ventilatory parameters and, thus, reduced the need for less aggressive artificial lung ventilation and ventilation days. The animal-derived surfactant Curosurf® seems to be the most suitable substance; however, the ideal concentration remains unclear. The ideal route of administration involves a bronchoscope in the segmental bronchi.


Subject(s)
Contusions , Lung Injury , Pulmonary Surfactants , Respiratory Distress Syndrome , Humans , Pulmonary Surfactants/administration & dosage , Pulmonary Surfactants/therapeutic use , Contusions/drug therapy , Lung Injury/drug therapy , Lung Injury/etiology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Animals , Respiration, Artificial/methods , Treatment Outcome , Bronchoscopy/methods
13.
Ter Arkh ; 96(3): 218-227, 2024 Apr 16.
Article in Russian | MEDLINE | ID: mdl-38713035

ABSTRACT

AIM: To study the clinical and histological profile of lung tissue in patients with persistent pulmonary disease, respiratory symptoms and CT findings after SARS-CoV-2 infection. MATERIALS AND METHODS: The study included 15 patients (7 females and 8 males) with a mean age of 57.7 years. All patients underwent laboratory tests, chest computed tomography, echocardiography, and pulmonary function tests. Pulmonary tissue and bronchoalveolar lavage samples were obtained by fibrobronchoscopy, transbronchial forceps (2 patients), and lung cryobiopsy (11 patients); open biopsy was performed in 2 patients. Cellular composition, herpesvirus DNA, SARS-CoV-2, Mycobacterium tuberculosis complex, galactomannan optical density index, and bacterial and fungal microflora growth were determined in bronchoalveolar lavage. SARS-CoV-2 was also identified in samples from the nasal mucosa, throat and feces using a polymerase chain reaction. RESULTS: The results showed no true pulmonary fibrosis in patients recovered from SARS-CoV-2 infection with persistent respiratory symptoms, functional impairment, and CT findings after SARS-CoV-2 infection. The observed changes comply with the current and/or resolving infection and inflammatory process. CONCLUSION: Thus, no true pulmonary fibrosis was found in patients after SARS-CoV-2 infection with persistent respiratory symptoms, functional impairment, and CT findings. The observed changes comply with the current and/or resolving infection and inflammatory process.


Subject(s)
COVID-19 , SARS-CoV-2 , Tomography, X-Ray Computed , Humans , COVID-19/diagnosis , COVID-19/complications , Male , Female , Middle Aged , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging , Lung/pathology , Lung Injury/virology , Lung Injury/etiology , Lung Injury/diagnosis , Respiratory Function Tests/methods
14.
PLoS One ; 19(5): e0303325, 2024.
Article in English | MEDLINE | ID: mdl-38748668

ABSTRACT

Since the 19th century, underwater explosions have posed a significant threat to service members. While there have been attempts to establish injury criteria for the most vulnerable organs, namely the lungs, existing criteria are highly variable due to insufficient human data and the corresponding inability to understand the underlying injury mechanisms. This study presents an experimental characterization of isolated human lung dynamics during simulated exposure to underwater shock waves. We found that the large acoustic impedance at the surface of the lung severely attenuated transmission of the shock wave into the lungs. However, the shock wave initiated large bulk pressure-volume cycles that are distinct from the response of the solid organs under similar loading. These pressure-volume cycles are due to compression of the contained gas, which we modeled with the Rayleigh-Plesset equation. The extent of these lung dynamics was dependent on physical confinement, which in real underwater blast conditions is influenced by factors such as rib cage properties and donned equipment. Findings demonstrate a potential causal mechanism for implosion injuries, which has significant implications for the understanding of primary blast lung injury due to underwater blast exposures.


Subject(s)
Blast Injuries , Lung , Humans , Lung/physiology , Blast Injuries/etiology , Explosions , Lung Injury/etiology , Male , Pressure , High-Energy Shock Waves/adverse effects
15.
Kyobu Geka ; 77(4): 244-248, 2024 Apr.
Article in Japanese | MEDLINE | ID: mdl-38644169

ABSTRACT

A man in his 50s was stabbed deeply in the back with a knife and brought to the emergency room. He was found to have a significant left hemopneumothorax. He was planned to undergo hemostatic surgery under general anesthesia. However, shortly after the change in a right lateral decubitus position, he experienced ventricular fibrillation. Hemostasis of the intercostal artery injury, the source of bleeding, and suture of the injured visceral pleura were performed under extracorporeal membrance oxgenation( ECMO). Although sinus rhythm was resumed, when positive pressure ventilation was applied to the left lung for an air leak test, ST elevation on the electrocardiogram and loss of arterial pressure occurred. A transesophageal echo revealed air accumulation in the left ventricle. It was determined that air had entered the damaged pulmonary vein from the injured bronchi due to the stab wound, leading to left ventricular puncture decompression and lower left lower lobectomy. Subsequently, his circulatory status stabilized, and ECMO was weaned off. He recovered without postoperative neurological deficits postoperatively. The mortality rate for chest trauma with systemic air embolism is very high. In cases of deep lung stab wounds, there is a possibility of systemic air embolism, so treatment should consider control of airway and vascular disruption during surgery.


Subject(s)
Embolism, Air , Heart Ventricles , Wounds, Stab , Humans , Male , Wounds, Stab/complications , Wounds, Stab/surgery , Middle Aged , Heart Ventricles/injuries , Embolism, Air/etiology , Lung Injury/etiology
16.
Exp Mol Med ; 56(5): 1107-1122, 2024 May.
Article in English | MEDLINE | ID: mdl-38689083

ABSTRACT

Genotoxic therapy triggers reactive oxygen species (ROS) production and oxidative tissue injury. S-nitrosylation is a selective and reversible posttranslational modification of protein thiols by nitric oxide (NO), and 5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for NO synthesis. However, the mechanism by which BH4 affects protein S-nitrosylation and ROS generation has not been determined. Here, we showed that ionizing radiation disrupted the structural integrity of BH4 and downregulated GTP cyclohydrolase I (GCH1), which is the rate-limiting enzyme in BH4 biosynthesis, resulting in deficiency in overall protein S-nitrosylation. GCH1-mediated BH4 synthesis significantly reduced radiation-induced ROS production and fueled the global protein S-nitrosylation that was disrupted by radiation. Likewise, GCH1 overexpression or the administration of exogenous BH4 protected against radiation-induced oxidative injury in vitro and in vivo. Conditional pulmonary Gch1 knockout in mice (Gch1fl/fl; Sftpa1-Cre+/- mice) aggravated lung injury following irradiation, whereas Gch1 knock-in mice (Gch1lsl/lsl; Sftpa1-Cre+/- mice) exhibited attenuated radiation-induced pulmonary toxicity. Mechanistically, lactate dehydrogenase (LDHA) mediated ROS generation downstream of the BH4/NO axis, as determined by iodoacetyl tandem mass tag (iodoTMT)-based protein quantification. Notably, S-nitrosylation of LDHA at Cys163 and Cys293 was regulated by BH4 availability and could restrict ROS generation. The loss of S-nitrosylation in LDHA after irradiation increased radiosensitivity. Overall, the results of the present study showed that GCH1-mediated BH4 biosynthesis played a key role in the ROS cascade and radiosensitivity through LDHA S-nitrosylation, identifying novel therapeutic strategies for the treatment of radiation-induced lung injury.


Subject(s)
Biopterins , GTP Cyclohydrolase , Lung Injury , Reactive Oxygen Species , Animals , Biopterins/analogs & derivatives , Biopterins/metabolism , Reactive Oxygen Species/metabolism , Mice , Lung Injury/metabolism , Lung Injury/etiology , GTP Cyclohydrolase/metabolism , GTP Cyclohydrolase/genetics , Humans , Radiation Tolerance/genetics , Lactate Dehydrogenase 5/metabolism , Mice, Knockout , Nitric Oxide/metabolism , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/genetics , Protein Processing, Post-Translational , Radiation, Ionizing
17.
Sheng Li Xue Bao ; 76(2): 247-256, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658374

ABSTRACT

This study aimed to investigate the effect of exosomes derived from bone marrow mesenchymal stem cells (BMSCs-EXO) on lung ischemia-reperfusion injury (IRI) in rats and to explore the role of miR-335. The model of rat lung IRI was established by clipping the hilum of left lung for 60 min and opening for 180 min. Forty Sprague-Dawley rats were randomly divided into sham group, IRI group, IRI+PBS group, IRI+EXO group, and IRI+miR-335 inhibitor EXO (IRI+inhibitor-EXO) group (n = 8). Rats in the sham group underwent thoracotomies without IRI. Rats in the IRI group were used to establish IRI model without any additional treatment. In the IRI+PBS, IRI+EXO, and IRI+inhibitor-EXO groups, the rats were used to establish IRI model and given PBS, EXO from BMSCs without any treatment, and EXO from BMSCs with miR-335 inhibitor treatment before reperfusion, respectively. Blood gases were analyzed during the experiment. Lung tissue wet/dry ratio (W/D), interleukin 1ß (IL-1ß), tumor necrosis factor α (TNF-α), myeloperoxidase (MPO), malondialdehyde (MDA), and superoxide dismutase (SOD) were measured at the end of reperfusion. Mitochondria were observed by electron microscopy and the Flameng scores were counted. Lung histopathology and apoptosis (TUNEL staining) were observed by light microscopy, and the lung injury scores (LIS) and apoptosis index (AI) were detected. The miR-335 expression was detected by RT-qPCR, and the expression of caspase-3, cleaved-caspase-3, caspase-9, cleaved-caspase-9, and NF-κB proteins were detected by Western blot at the end of reperfusion. The results showed that compared with the sham group, the oxygenation index, pH, and base excess (BE) were significantly lower in the IRI group and IRI+PBS group after reperfusion, whereas those indices were significantly higher in the IRI+EXO group than those in the IRI+PBS group (P < 0.05). Compared with the sham group, there were significant increases in W/D, IL-1ß, TNF-α, MPO, MDA, LIS, AI, Flameng score, caspase-3, cleaved-caspase-3, caspase-9, and cleaved-caspase-9, however significant decreases in the SOD, miR-335 and NF-κB in the IRI group (P < 0.05). These indices in the IRI and IRI+PBS groups showed no significant differences. Compared with the IRI+PBS group, there were significant decreases in W/D, IL-1ß, TNF-α, MPO, MDA, LIS, AI, Flameng score, caspase-3, cleaved-caspase-3, caspase-9, and cleaved-caspase-9, however significant increases in the SOD, miR-335 and NF-κB in the IRI+EXO group (P < 0.05). While, the changes of the above mentioned indices were reversed in the IRI+inhibitor-EXO group compared with IRI+EXO group, which were still better than those in the IRI+PBS group (P < 0.05). The results suggest that BMSCs-EXO could attenuate lung IRI in rats, activate NF-κB pathway, and maintain mitochondrial stability by up-regulating miR-335.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , NF-kappa B , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Rats , Mesenchymal Stem Cells/metabolism , NF-kappa B/metabolism , Exosomes/metabolism , Male , Lung/metabolism , Lung/pathology , Signal Transduction , Bone Marrow Cells/metabolism , Apoptosis , Lung Injury/metabolism , Lung Injury/etiology , Tumor Necrosis Factor-alpha/metabolism
18.
Crit Rev Immunol ; 44(5): 51-58, 2024.
Article in English | MEDLINE | ID: mdl-38618728

ABSTRACT

To explore the protective effect and mechanism of mild hypothermia on lung tissue damage after cardiopulmonary resuscitation in pigs. In this experiment, we electrically stimulated 16 pigs (30 ± 2 kg) for 10 min to cause ventricular fibrillation. The successfully resuscitated animals were randomly divided into two groups, a mild hypothermia group and a control group. We took arterial blood 0.5, 1, 3, and 6 h after ROSC recovery in the two groups of animals for blood gas analysis. We observed the structural changes of lung tissue under an electron microscope and calculate the wet weight/dry weight (W/D) ratio. We quantitatively analyzed the expression differences of representative inflammatory factors [interleukin-6 (IL-6) and tumor necrosis factor-alpha TNF-α)] through the ELISA test. We detected the expression levels of Bax, Bcl-2, and Caspase-3 proteins in lung tissues by Western blot. After 3 h and 6 h of spontaneous circulation was restored, compared with the control group, PaO2/FiO2 decreased significantly (P < 0.05). In addition, the pathological changes, lung W/D and lung MDA of the mild hypothermia group were better than those of the control group. The levels of IL-6 and TNF-α in the lung tissue of the mild hypothermia group were significantly lower than those of the control group (P < 0.05). The content of Caspase-3 and Bax in the mild hypothermia group was significantly lower than that of the control group. Our experiments have shown that mild hypothermia can reduce lung tissue damage after cardiopulmonary resuscitation.


Subject(s)
Cardiopulmonary Resuscitation , Hypothermia , Lung Injury , Humans , Animals , Swine , Lung Injury/etiology , Caspase 3 , Interleukin-6 , Tumor Necrosis Factor-alpha , bcl-2-Associated X Protein
19.
Pediatrics ; 153(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38629169

ABSTRACT

E-cigarettes and vaping products were first introduced in the United States around 2007, and quickly grew in popularity. By 2014, e-cigarettes had become the most commonly used tobacco product among youth in the United States. An e-cigarette, or vaping, product use-associated lung injury (EVALI) outbreak was identified by the Centers for Disease Control and Prevention (CDC) in 2019, with many cases in the adolescent population. The CDC opened a national database of cases and launched a multistate investigation; reported cases reached a peak in September 2019. The CDC investigation found that a vaping liquid additive, vitamin E acetate, was strongly linked to the EVALI outbreak but determined that the decline in cases was likely multifactorial. Due to decreased cases and the identification of a potential cause of the outbreak, the CDC stopped collecting data on EVALI cases as of February 2020. However, e-cigarettes and vaping products have continued to be the most popular tobacco product among youth, though state and national regulations on these products have increased since 2016. While pediatric case series and studies have shown differences in clinical presentation and medical histories between pediatric and adult EVALI cases, the fact that cases are no longer tracked at a national level limits necessary information for pediatric clinicians and researchers. We describe the available literature on the diagnosis, pathophysiology, treatment, and outcomes of EVALI in the pediatric population, and provide clinical and public health recommendations to facilitate prevention and management of EVALI specific to pediatrics.


Subject(s)
Electronic Nicotine Delivery Systems , Lung Injury , Vaping , Humans , Vaping/adverse effects , Vaping/epidemiology , Lung Injury/epidemiology , Lung Injury/etiology , United States/epidemiology , Adolescent , Child , Disease Outbreaks , Centers for Disease Control and Prevention, U.S. , Public Health
20.
Stem Cell Res Ther ; 15(1): 80, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38486338

ABSTRACT

BACKGROUND: Despite advances in neonatal care, the incidence of Bronchopulmonary Dysplasia (BPD) remains high among preterm infants. Human induced pluripotent stem cells (hiPSCs) have shown promise in repairing injury in animal BPD models. Evidence suggests they exert their effects via paracrine mechanisms. We aim herein to assess the effectiveness of extracellular vesicles (EVs) derived from hiPSCs and their alveolar progenies (diPSCs) in attenuating hyperoxic injury in a preterm lung explant model. METHODS: Murine lung lobes were harvested on embryonic day 17.5 and maintained in air-liquid interface. Following exposure to 95% O2 for 24 h, media was supplemented with 5 × 106 particles/mL of EVs isolated from hiPSCs or diPSCs by size-exclusion chromatography. On day 3, explants were assessed using Hematoxylin-Eosin staining with mean linear intercept (MLI) measurements, immunohistochemistry, VEGFa and antioxidant gene expression. Statistical analysis was conducted using one-way ANOVA and Multiple Comparison Test. EV proteomic profiling was performed, and annotations focused on alveolarization and angiogenesis signaling pathways, as well as anti-inflammatory, anti-oxidant, and regenerative pathways. RESULTS: Exposure of fetal lung explants to hyperoxia induced airspace enlargement, increased MLI, upregulation of anti-oxidants Prdx5 and Nfe2l2 with decreased VEGFa expression. Treatment with hiPSC-EVs improved parenchymal histologic changes. No overt changes in vasculature structure were observed on immunohistochemistry in our in vitro model. However, VEGFa and anti-oxidant genes were upregulated with diPSC-EVs, suggesting a pro-angiogenic and cytoprotective potential. EV proteomic analysis provided new insights in regard to potential pathways influencing lung regeneration. CONCLUSION: This proof-of-concept in vitro study reveals a potential role for hiPSC- and diPSC-EVs in attenuating lung changes associated with prematurity and oxygen exposure. Our findings pave the way for a novel cell free approach to prevent and/or treat BPD, and ultimately reduce the global burden of the disease.


Subject(s)
Bronchopulmonary Dysplasia , Extracellular Vesicles , Hyperoxia , Induced Pluripotent Stem Cells , Lung Injury , Animals , Mice , Humans , Infant, Newborn , Hyperoxia/complications , Hyperoxia/metabolism , Hyperoxia/pathology , Animals, Newborn , Induced Pluripotent Stem Cells/metabolism , Lung Injury/therapy , Lung Injury/etiology , Antioxidants/metabolism , Proteomics , Infant, Premature , Lung/pathology , Bronchopulmonary Dysplasia/therapy , Bronchopulmonary Dysplasia/pathology , Disease Models, Animal , Extracellular Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...