Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.160
Filter
1.
Nat Commun ; 15(1): 7037, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147750

ABSTRACT

The quest for targeted therapies is critical in the battle against cancer. The RAS/MAP kinase pathway is frequently implicated in neoplasia, with ERK playing a crucial role as the most distal kinase in the RAS signaling cascade. Our previous research demonstrated that the interaction between ERK and MYD88, an adaptor protein in innate immunity, is crucial for RAS-dependent transformation and cancer cell survival. In this study, we examine the biological consequences of disrupting the ERK-MYD88 interaction through the ERK D-recruitment site (DRS), while preserving ERK's kinase activity. Our results indicate that EI-52, a small-molecule benzimidazole targeting ERK-MYD88 interaction induces an HRI-mediated integrated stress response (ISR), resulting in immunogenic apoptosis specific to cancer cells. Additionally, EI-52 exhibits anti-tumor efficacy in patient-derived tumors and induces an anti-tumor T cell response in mice in vivo. These findings suggest that inhibiting the ERK-MYD88 interaction may be a promising therapeutic approach in cancer treatment.


Subject(s)
Benzimidazoles , Extracellular Signal-Regulated MAP Kinases , Myeloid Differentiation Factor 88 , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Humans , Animals , Mice , Extracellular Signal-Regulated MAP Kinases/metabolism , Cell Line, Tumor , Benzimidazoles/pharmacology , Apoptosis/drug effects , Immunogenic Cell Death/drug effects , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Female , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
2.
Dev Comp Immunol ; 159: 105228, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38997096

ABSTRACT

Leukocyte immune-type receptors (LITRs) belong to a large family of teleost immunoregulatory receptors that share phylogenetic and syntenic relationships with mammalian Fc receptor-like molecules (FCRLs). Recently, several putative stimulatory Carassius auratus (Ca)-LITR transcripts, including CaLITR3, have been identified in goldfish. CaLITR3 has four extracellular immunoglobulin-like (Ig-like) domains, a transmembrane domain containing a positively charged histidine residue, and a short cytoplasmic tail region. Additionally, the calitr3 transcript is highly expressed by goldfish primary kidney neutrophils (PKNs) and macrophages (PKMs). To further investigate the immunoregulatory potential of CaLITR3 in goldfish myeloid cells, we developed and characterized a CaLITR3-epitope-specific polyclonal antibody (anti-CaL3.D1 pAb). We show that the anti-CaL3.D1 pAb stains various hematopoietic cell types within the goldfish kidney, as well as in PKNs and PKMs. Moreover, cross-linking of the anti-CaL3.D1-pAb on PKN membranes induces phosphorylation of p38 and ERK1/2, critical components of the MAPK pathway involved in controlling a wide variety of innate immune effector responses such as NETosis, respiratory burst, and cytokine release. These findings support the stimulatory potential of CaLITR3 proteins as activators of fish granulocytes and pave the way for a more in-depth examination of the immunoregulatory functions of CaLITRs in goldfish myeloid cells.


Subject(s)
Fish Proteins , Goldfish , Kidney , MAP Kinase Signaling System , Neutrophils , Receptors, Immunologic , Animals , Goldfish/immunology , Fish Proteins/metabolism , Fish Proteins/genetics , Fish Proteins/immunology , Neutrophils/immunology , Kidney/immunology , Kidney/cytology , MAP Kinase Signaling System/immunology , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Antibodies/immunology , Antibodies/metabolism , Macrophages/immunology , Macrophages/metabolism , Cells, Cultured , Leukocytes/immunology , Leukocytes/metabolism
3.
Fish Shellfish Immunol ; 152: 109783, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39032705

ABSTRACT

Prostaglandin-endoperoxide synthase 2 (PTGS2), a common biological macromolecule, is pivotal for innate immunity and pathogen recognition. In this study, we identified and characterized a CcPTGS2a-like gene in the common carp (Cyprinus carpio) with an open reading frame (ORF) of 1821 bp and epidermal growth factor and peroxidase domains. Our multiple sequence analysis revealed high homology between the amino acid sequence of CcPTGS2a-like and those of its homologs in other fish. CcPTGS2a-like mRNA and protein expressions were significantly upregulated in the spleen, head kidney, liver, and gill tissues upon exposure to Aeromonas hydrophila stimulation. CcPTGS2a-like protein recognized the conserved bacterial surface components and exhibited detectable bacterial binding activity. CcPTGS2a-like overexpression before exposure to A. hydrophila notably enhanced the survival rate of common carp, concomitant with decreased bacterial burden. The NF-κB/ERK signaling pathway initiated the immune response in common carp upon infection with A. hydrophila. CcPTGS2a-like overexpression or interference in the head kidney and Epithelioma papulosum cyprinid cells could modulate the p-NF-κB (p-p-65), p-IκBα, and p-ERK1/2 levels as well as the IL-1ß and IL-6 mRNA expression. These results indicated potential CcPTGS2a-like involvement in the immune response of the common carp to bacterial infections through the NF-κB/ERK signaling pathway.


Subject(s)
Aeromonas hydrophila , Carps , Fish Diseases , Fish Proteins , Gene Expression Regulation , Gram-Negative Bacterial Infections , Immunity, Innate , NF-kappa B , Animals , Carps/immunology , Carps/genetics , Aeromonas hydrophila/physiology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Fish Diseases/immunology , NF-kappa B/genetics , NF-kappa B/metabolism , NF-kappa B/immunology , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Amino Acid Sequence , Phylogeny , Sequence Alignment/veterinary , Gene Expression Profiling/veterinary , Signal Transduction , MAP Kinase Signaling System/immunology , Base Sequence
4.
Int Immunopharmacol ; 137: 112528, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38908086

ABSTRACT

Low back pain due to epidural fibrosis is a major complication after spine surgery. Macrophages infiltrate the wound area post laminectomy, but the role of macrophages in epidural fibrosis remains largely elusive. In a mouse model of laminectomy, macrophage depletion decreased epidural fibrosis. CD146, an adhesion molecule involved in cell migration, is expressed by macrophages. CD146-defective macrophages exhibited impaired migration, which was mediated by reduced expression of CCR2 and suppression of the MAPK/ERK signaling pathway. CD146-defective macrophages suppress the MAPK/ERK signaling pathway by increasing Erdr1. In vivo, CD146 deficiency decreased macrophage infiltration and reduced extracellular matrix deposition in wound tissues. Moreover, the anti-CD146 antibody AA98 suppressed macrophage infiltration and epidural fibrosis. Taken together, these findings demonstrated that CD146 deficiency alleviates epidural fibrosis by decreasing the migration of macrophages via the Erdr1/ERK/CCR2 pathway. Blocking CD146 and macrophage infiltration may help alleviate epidural fibrosis.


Subject(s)
CD146 Antigen , Fibrosis , Macrophages , Mice, Inbred C57BL , Receptors, CCR2 , Animals , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Macrophages/immunology , Macrophages/metabolism , Mice , CD146 Antigen/metabolism , CD146 Antigen/genetics , Cell Movement , Mice, Knockout , Epidural Space/pathology , Male , MAP Kinase Signaling System/immunology , Laminectomy , Disease Models, Animal , Signal Transduction , Humans
5.
Fish Shellfish Immunol ; 151: 109702, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897309

ABSTRACT

CD49d, encoded by the gene Integrin α4, is a significant member of cell adhesion receptors, which is widely expressed in various immune cells to trigger immune responses against invading pathogens. In the present study, the expression of CgCD49d and its regulatory role in TNF expression were investigated in the Pacific oyster Crassostrea gigas. There were five Int-alpha domains, an Integrin_alpha2 region and a unique FG-GAP repeat region inserted identified in CgCD49d. CgCD49d transcript was specifically expressed in haemocytes, and its mRNA expression level in haemocytes increased after LPS and Vibrio splendidus stimulation. After CgCD49d was blocked by using its antibody, the phosphorylation level of CgJNK in the MAPK signaling pathway and CgTNF transcripts decreased significantly post V. splendidus stimulation. After phosphorylation level of CgJNK was inhibited by using its inhibitor, the nuclear translocation of CgRel was restrained and CgTNF transcripts also decreased significantly post V. splendidus stimulation. Furthermore, CgCD49d was found to be mainly expressed in the agranulocyte subpopulation, and Alexa Fluor 488-conjugated CgCD49d antibody labeled agranulocytes with a circle of green fluorescence signals on CgCD49d+ agranulocyte surface under Confocal microscopy, which accounted for 24.9 ± 4.53% of total haemocytes. Collectively, these results suggested that CgCD49d promoted TNF expression in oyster haemocytes against bacterial invasion by mediating MAPK pathway, and it could be used as a surface marker to type and sort a subset of agranulocyte subpopulation among haemocytes.


Subject(s)
Crassostrea , Hemocytes , MAP Kinase Signaling System , Vibrio , Animals , Crassostrea/immunology , Crassostrea/genetics , Hemocytes/immunology , Vibrio/physiology , MAP Kinase Signaling System/immunology , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Amino Acid Sequence , Phylogeny , Sequence Alignment/veterinary
6.
Fish Shellfish Immunol ; 151: 109724, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942251

ABSTRACT

Takifugu rubripes is a highly valued cultured fish in Asia, while pathogen infections can result in severe diseases and lead to substantial economic losses. Toll-like receptors (TLRs), as pattern recognition receptors, play a crucial role on recognition pathogens and initiation innate immune response. However, the immunological properties of teleost-specific TLR23 remain largely unknown. In this study, we investigated the biological functions of TLR23 (TrTLR23) from T. rubripes, found that TrTLR23 existed in various organs. Following bacterial pathogen challenge, the expression levels of TrTLR23 were significantly increased in immune related organs. TrTLR23 located on the cellular membrane and specifically recognized pathogenic microorganism. Co-immunoprecipitation and antibody blocking analysis revealed that TrTLR23 recruited myeloid differentiation primary response protein (MyD88), thereby mediating the activation of the ERK signaling pathway. Furthermore, in vivo showed that, when TrTLR23 is overexpressed in T. rubripes, bacterial replication in fish tissues is significantly inhibited. Consistently, when TrTLR23 expression in T. rubripes is knocked down, bacterial replication is significantly enhanced. In conclusion, these findings suggested that TrTLR23 played a critical role on mediation TLR23-MyD88-ERK axis against bacterial infection. This study revealed that TLR23 involved in the innate immune mechanism, and provided the foundation for development disease control strategies in teleost.


Subject(s)
Fish Diseases , Fish Proteins , Immunity, Innate , Myeloid Differentiation Factor 88 , Takifugu , Toll-Like Receptors , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Takifugu/immunology , Takifugu/genetics , Fish Diseases/immunology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/immunology , Immunity, Innate/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , MAP Kinase Signaling System/immunology , Gene Expression Regulation/immunology , Edwardsiella/physiology , Edwardsiella/immunology , Vibrio/physiology
7.
Dev Comp Immunol ; 159: 105217, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38901503

ABSTRACT

Norepinephrine (NE) is involved in regulating cytokine expression and phagocytosis of immune cells in the innate immunity of vertebrates. In the present study, the modulation mechanism of NE on the biosynthesis of TNFs in oyster granulocytes was explored. The transcripts of CgTNF-1, CgTNF-2 and CgTNF-3 were highly expressed in granulocytes, and they were significantly up-regulated after LPS stimulation, while down-regulated after NE treatment. The phagocytic rate and apoptosis index of oyster granulocytes were also triggered by LPS stimulation and suppressed by NE treatment. The mRNA expressions of CgMAPK14 and CgRelish were significantly induced after NE treatment, and the translocation of CgRelish from cytoplasm to nucleus was observed. The concentration of intracellular Ca2+ in granulocytes was significantly up-regulated upon NE incubation, and this trend reverted after the treatment with DOX (specific antagonist for NE receptor, CgA1AR-1). No obvious significance was observed in intracellular cAMP concentrations in the PBS, NE and NE + DOX groups. Once CgA1AR-1 was blocked by DOX, the mRNA expressions of CgMAPK14 and CgRelish were significantly inhibited, and the translocation of CgRelish from cytoplasm to nucleus was also dramatically suppressed, while the mRNA expression of CgTNF-1 and the apoptosis index increased significantly to the same level with those in LPS group, respectively. These results collectively suggested that NE modulated TNF expression in oyster granulocyte through A1AR-p38 MAPK-Relish signaling pathway.


Subject(s)
Crassostrea , Granulocytes , Immunity, Innate , Lipopolysaccharides , Norepinephrine , p38 Mitogen-Activated Protein Kinases , Animals , Crassostrea/immunology , Norepinephrine/metabolism , Norepinephrine/pharmacology , Granulocytes/immunology , Granulocytes/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/immunology , Apoptosis , Signal Transduction , Phagocytosis , Cells, Cultured , Tumor Necrosis Factor-alpha/metabolism , Gene Expression Regulation , MAP Kinase Signaling System/immunology , Tumor Necrosis Factors/metabolism , Tumor Necrosis Factors/genetics
8.
Int Immunopharmacol ; 134: 112100, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728877

ABSTRACT

The parasite Leishmania resides as amastigotes within the macrophage parasitophorous vacuoles inflicting the disease Leishmaniasis. Leishmania selectively modulates mitogen-activated protein kinase (MAPK) phosphorylation subverting CD40-triggered anti-leishmanial functions of macrophages. The mechanism of any pathogen-derived molecule induced host MAPK modulation remains poorly understood. Herein, we show that of the fifteen MAPKs, LmjMAPK4 expression is higher in virulent L. major. LmjMAPK4- detected in parasitophorous vacuoles and cytoplasm- binds MEK-1/2, but not MKK-3/6. Lentivirally-overexpressed LmjMAPK4 augments CD40-activated MEK-1/2-ERK-1/2-MKP-1, but inhibits MKK3/6-p38MAPK-MKP-3, phosphorylation. A rationally-identified LmjMAPK4 inhibitor reinstates CD40-activated host-protective anti-leishmanial functions in L. major-infected susceptible BALB/c mice. These results identify LmjMAPK4 as a MAPK modulator at the host-pathogen interface and establish a pathogen-intercepted host receptor signaling as a scientific rationale for identifying drug targets.


Subject(s)
CD40 Antigens , Leishmania major , Leishmaniasis, Cutaneous , Macrophages , Mice, Inbred BALB C , Signal Transduction , Animals , Leishmania major/immunology , Leishmania major/physiology , CD40 Antigens/metabolism , Mice , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Macrophages/immunology , Macrophages/parasitology , Humans , Female , Phosphorylation , Host-Parasite Interactions/immunology , MAP Kinase Signaling System/immunology
9.
Discov Med ; 36(183): 778-787, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665026

ABSTRACT

BACKGROUND: Tropomyosin 2 (TPM2) has been linked to the advancement of various tumor types, exhibiting distinct impacts on tumor progression. In our investigation, the primary objective was to identify the potential involvement of TPM2 in the development of colitis-associated cancer (CAC) using a mice model. METHODS: This study used lentiviral vector complex for TPM2 knockdown (sh-TPM2) and the corresponding negative control lentiviral vector complex (sh-NC) for genetic interference in mice. CAC was induced in mice using azoxymethane (AOM) and dextran sulfate sodium salt (DSS). This study included 6 groups of mice models: Control, Control+sh-NC, Control+sh-TPM2, CAC, CAC+sh-NC, and CAC+sh-TPM2. Subsequently, colon tissues were collected and assessed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for TPM2 mRNA levels and flow cytometry for infiltrating immune cells. Tumor number, size, and weight within colon tissues from CAC mice were measured and recorded. The hematoxylin-eosin staining was used for observing tissue pathology changes. The intestinal epithelial cells (IECs) were isolated and analyzed for cell proliferation. This analysis included examining the levels of 5-bromo-2-deoxyuridine (BrdU) and Ki-67 using immunohistochemistry. Additionally, the mRNA levels of proliferating cell nuclear antigen (PCNA) and Ki-67 were detected by qRT-PCR. This study also investigated the activation of the c-Jun N-terminal kinase (JNK) pathway using western blot analysis. Immunogenicity analyses were conducted using immunohistochemistry for F4/80 and flow cytometry. RESULTS: In 8-week-old mice, AOM injections and three cycles of DSS treatment induced TPM2 upregulation in tumor tissues compared to normal tissues (p < 0.05). Fluorescence-activated cell sorting (FACS)-isolated lamina CAC adenomas revealed macrophages and dendritic cells as primary TPM2 contributors (p < 0.001). Lentiviral TPM2 gene knockdown significantly reduced tumor numbers and sizes in CAC mice (p < 0.01, and p < 0.001), without invasive cancer cells. TPM2 suppression resulted in decreased IEC proliferation (p < 0.001) and reduced PCNA and Ki-67 expression (p < 0.05). Western blot analysis indicated reduced JNK pathway activation in TPM2-knockdown CAC mice (p < 0.05, p < 0.001). TPM2 knockdown decreased tumor-associated macrophage infiltration (p < 0.01) and increased CD3+ and CD8+ T cells (p < 0.01, and p < 0.001), with increased levels of regulator of inflammatory cytokines (CD44+, CD107a+) (p < 0.01, and p < 0.001), decreased levels of PD-1+ and anti-inflammatory factor (IL10+) (p < 0.01, and p < 0.001). CONCLUSIONS: Our results demonstrated that TPM2 knockdown suppressed the proliferation of CAC IECs, enhanced immune suppression on CAC IECs, and inhibited the JNK signaling pathway within the framework of CAC. These findings suggest TPM2 can serve as a potential therapeutic target for CAC treatment.


Subject(s)
Cell Proliferation , Colitis-Associated Neoplasms , MAP Kinase Signaling System , Tropomyosin , Animals , Humans , Male , Mice , Azoxymethane/toxicity , Colitis/chemically induced , Colitis/pathology , Colitis/complications , Colitis/immunology , Colitis-Associated Neoplasms/pathology , Colitis-Associated Neoplasms/immunology , Colitis-Associated Neoplasms/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , MAP Kinase Signaling System/immunology , Mice, Inbred C57BL , Tropomyosin/metabolism , Tropomyosin/immunology , Tropomyosin/genetics
10.
Fish Shellfish Immunol ; 149: 109561, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636738

ABSTRACT

Toll-interacting protein (Tollip) serves as a crucial inhibitory factor in the modulation of Toll-like receptor (TLR)-mediated innate immunological responses. The structure and function of Tollip have been well documented in mammals, yet the information in teleost remained limited. This work employed in vitro overexpression and RNA interference in vivo and in vitro to comprehensively examine the regulatory effects of AjTollip on NF-κB and MAPK signaling pathways. The levels of p65, c-Fos, c-Jun, IL-1, IL-6, and TNF-α were dramatically reduced following overexpression of AjTollip, whereas knocking down AjTollip in vivo and in vitro enhanced those genes' expression. Protein molecular docking simulations showed AjTollip interacts with AjTLR2, AjIRAK4a, and AjIRAK4b. A better understanding of the transcriptional regulation of AjTollip is crucial to elucidating the role of Tollip in fish antibacterial response. Herein, we cloned and characterized a 2.2 kb AjTollip gene promoter sequence. The transcription factors GATA1 and Sp1 were determined to be associated with the activation of AjTollip expression by using promoter truncation and targeted mutagenesis techniques. Collectively, our results indicate that AjTollip suppresses the NF-κB and MAPK signaling pathways, leading to the decreased expression of the downstream inflammatory factors, and GATA1 and Sp1 play a vital role in regulating AjTollip expression.


Subject(s)
Anguilla , Fish Proteins , GATA1 Transcription Factor , NF-kappa B , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Fish Proteins/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , Anguilla/genetics , Anguilla/immunology , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Gene Expression Regulation/immunology , Immunity, Innate/genetics , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/immunology , Intracellular Signaling Peptides and Proteins/chemistry , Signal Transduction
11.
Adv Sci (Weinh) ; 11(18): e2310065, 2024 May.
Article in English | MEDLINE | ID: mdl-38447147

ABSTRACT

According to the latest evidence, the microbial metabolite Urolithin A (UA), known for its role in promoting cellular health, modulates CD8+ T cell-mediated antitumor activity. However, the direct target protein of UA and its underlying mechanism remains unclear. Here, this research identifies ERK1/2 as the specific target crucial for UA-mediated CD8+ T cell activation. Even at low doses, UA markedly enhances the persistence and effector functions of primary CD8+ cytotoxic T lymphocytes (CTLs) and human chimeric antigen receptor (CAR) T cells both in vitro and in vivo. Mechanistically, UA interacts directly with ERK1/2 kinases, enhancing their activation and subsequently facilitating T cell activation by engaging ULK1. The UA-ERK1/2-ULK1 axis promotes autophagic flux in CD8+ CTLs, enhancing cellular metabolism and maintaining reactive oxygen species (ROS) levels, as evidenced by increased oxygen consumption and extracellular acidification rates. UA-treated CD8+ CTLs also display elevated ATP levels and enhanced spare respiratory capacity. Overall, UA activates ERK1/2, inducing autophagy and metabolic adaptation, showcasing its potential in tumor immunotherapy and interventions for diseases involving ERKs.


Subject(s)
Autophagy-Related Protein-1 Homolog , CD8-Positive T-Lymphocytes , Coumarins , Animals , Humans , Mice , Autophagy/immunology , Autophagy-Related Protein-1 Homolog/drug effects , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Coumarins/pharmacology , Coumarins/metabolism , Disease Models, Animal , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/metabolism
12.
J Clin Invest ; 134(9)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483480

ABSTRACT

Macrophage immune checkpoint inhibitors, such as anti-CD47 antibodies, show promise in clinical trials for solid and hematologic malignancies. However, the best strategies to use these therapies remain unknown, and ongoing studies suggest they may be most effective when used in combination with other anticancer agents. Here, we developed an unbiased, high-throughput screening platform to identify drugs that render lung cancer cells more vulnerable to macrophage attack, and we found that therapeutic synergy exists between genotype-directed therapies and anti-CD47 antibodies. In validation studies, we found that the combination of genotype-directed therapies and CD47 blockade elicited robust phagocytosis and eliminated persister cells in vitro and maximized antitumor responses in vivo. Importantly, these findings broadly applied to lung cancers with various RTK/MAPK pathway alterations - including EGFR mutations, ALK fusions, or KRASG12C mutations. We observed downregulation of ß2-microglobulin and CD73 as molecular mechanisms contributing to enhanced sensitivity to macrophage attack. Our findings demonstrate that dual inhibition of the RTK/MAPK pathway and the CD47/SIRPa axis is a promising immunotherapeutic strategy. Our study provides strong rationale for testing this therapeutic combination in patients with lung cancers bearing driver mutations.


Subject(s)
CD47 Antigen , Lung Neoplasms , Macrophages , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Humans , CD47 Antigen/genetics , CD47 Antigen/metabolism , CD47 Antigen/immunology , CD47 Antigen/antagonists & inhibitors , Mice , Animals , Macrophages/metabolism , Macrophages/immunology , Macrophages/pathology , Cell Line, Tumor , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Molecular Targeted Therapy , ErbB Receptors/genetics , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/immunology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , MAP Kinase Signaling System/genetics , Phagocytosis , Female
13.
Front Immunol ; 13: 913830, 2022.
Article in English | MEDLINE | ID: mdl-35967391

ABSTRACT

Objective: MALT1 regulates immunity and inflammation in multiple ways, while its role in rheumatoid arthritis (RA) is obscure. This study aimed to investigate the relationship of MALT1 with disease features, treatment outcome, as well as its effect on Th1/2/17 cell differentiation and underlying molecule mechanism in RA. Methods: Totally 147 RA patients were enrolled. Then their blood Th1, Th2, and Th17 cells were detected by flow cytometry. Besides, PBMC MALT1 expression was detected before treatment (baseline), at week (W) 6, W12, and W24. PBMC MALT1 in 30 osteoarthritis patients and 30 health controls were also detected. Then, blood CD4+ T cells were isolated from RA patients, followed by MALT1 overexpression or knockdown lentivirus transfection and Th1/2/17 polarization assay. In addition, IMD 0354 (NF-κB antagonist) and SP600125 (JNK antagonist) were also added to treat CD4+ T cells. Results: MALT1 was increased in RA patients compared to osteoarthritis patients and healthy controls. Meanwhile, MALT1 positively related to CRP, ESR, DAS28 score, Th17 cells, negatively linked with Th2 cells, but did not link with other features or Th1 cells in RA patients. Notably, MALT1 decreased longitudinally during treatment, whose decrement correlated with RA treatment outcome (treatment response, low disease activity, or disease remission). In addition, MALT1 overexpression promoted Th17 differentiation, inhibited Th2 differentiation, less affected Th1 differentiation, activated NF-κB and JNK pathways in RA CD4+ T cells; while MALT1 knockdown exhibited the opposite effect. Besides, IMD 0354 and SP600125 addition attenuated MALT1's effect on Th2 and Th17 differentiation. Conclusion: MALT1 regulates Th2 and Th17 differentiation via NF-κB and JNK pathways, as well as correlates with disease activity and treatment outcome in RA.


Subject(s)
Arthritis, Rheumatoid , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , NF-kappa B , Osteoarthritis , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Cell Differentiation , Humans , Leukocytes, Mononuclear/immunology , MAP Kinase Signaling System/immunology , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Osteoarthritis/metabolism , Th17 Cells/immunology , Th2 Cells/immunology , Treatment Outcome
14.
Am J Pathol ; 192(2): 332-343, 2022 02.
Article in English | MEDLINE | ID: mdl-35144761

ABSTRACT

Dry eye disease (DED) features the inflammatory response of the ocular surface. Pro-inflammatory T helper 17 (Th17) cells are important for the pathogenesis of DED. In the present study a mouse DED model was used to discover two Th17 subsets in draining lymph nodes and conjunctivae based on the expression of IL-17 receptor E (IL-17RE) and CCR10: IL-17RElowCCR10- Th17 and IL-17REhighCCR10+ Th17. IL-17REhighCCR10+ Th17 expressed more retinoic acid-related orphan receptor gamma t but fewer T-box-expressed-in-T-cells than IL-17RElowCCR10- Th17. In addition, the former expressed higher IL-17A, IL-21, and IL-22 but fewer IFN-γ than the latter. Further analysis showed that IL-17REhighCCR10+ Th17 did not express IFN-γ in vivo, whereas IL-17RElowCCR10- Th17 contained IFN-γ-expressing Th17/Th1 cells. Moreover, IL-17REhighCCR10+ Th17 possessed more phosphorylated p38 mitogen-activated protein kinase (MAPK) and Jnk than IL-17RElowCCR10- Th17, suggesting higher activation of MAPK signaling in IL-17REhighCCR10+ Th17. In vitro treatment with IL-17C effectively maintained IL-17A expression in Th17 cells through p38 MAPK rather than Jnk MAPK. Furthermore, the adoptive transfer of the two Th17 subpopulations indicated their equivalent pathogenicity in DED. Interestingly, IL-17REhighCCR10+ Th17 cells were able to phenotypically polarize to IL-17RElowCCR10- Th17 cells in vivo. In conclusion, the current study revealed novel Th17 subsets with differential phenotypes, functions, and signaling status in DED, thus deepening the understanding of Th17 pathogenicity, and exhibited Th17 heterogeneity in DED.


Subject(s)
Dry Eye Syndromes/immunology , MAP Kinase Signaling System/immunology , Receptors, CCR10/immunology , Receptors, Interleukin-17/immunology , Th17 Cells/immunology , Animals , Disease Models, Animal , Dry Eye Syndromes/genetics , Dry Eye Syndromes/pathology , MAP Kinase Signaling System/genetics , Mice , Mice, Transgenic , Receptors, CCR10/genetics , Receptors, Interleukin-17/genetics , Th17 Cells/pathology
15.
Comput Math Methods Med ; 2022: 8660752, 2022.
Article in English | MEDLINE | ID: mdl-35132333

ABSTRACT

Swine pneumonia commonly known as swine pasteurellosis is an infectious disease of swine caused by Pasteurella multocida infection. It has been reported that Toll-like receptors (TLRs) play a vital role in swine pneumonia progression. However, the underlying mechanism has not been elucidated. This research was aimed at investigating the molecular mechanism by which TLR9 regulates swine pneumonia progression. Our findings illustrated that the HD-13 strain of Pasteurella multocida D (HD-13) accelerated TLR9 expression in porcine alveolar macrophage 3D4/21 cells; HD-13 activated the inflammatory response via accelerating TLR9 expression. Mechanistically, HD-13 activated mitogen-activated protein kinase (MAPK) and nuclear factor kB (NF-κB) signals. In conclusion, HD-13 may activate MAPK and NF-κB pathways via accelerating TLR9 expression, thereby accelerating the inflammatory response in the progression of swine pneumonia. TLR9 may serve as a novel therapeutic target for swine pneumonia. Our research may provide a theoretical basis for the prevention and treatment of swine pneumonia.


Subject(s)
Pasteurella Infections/veterinary , Pasteurella multocida/pathogenicity , Pneumonia/veterinary , Swine Diseases/immunology , Swine Diseases/microbiology , Toll-Like Receptor 9/immunology , Animals , Cells, Cultured , Computational Biology , Cytokines/genetics , Cytokines/immunology , Disease Progression , MAP Kinase Signaling System/immunology , NF-kappa B/immunology , Pasteurella Infections/immunology , Pasteurella Infections/microbiology , Pasteurella multocida/classification , Pasteurella multocida/immunology , Pneumonia/immunology , Pneumonia/microbiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/immunology , Sus scrofa , Swine , Swine Diseases/genetics , Toll-Like Receptor 9/genetics , Up-Regulation
16.
Int J Mol Sci ; 23(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35216128

ABSTRACT

The plant mitogen-activated protein kinase (MAPK) cascade plays an important role in mediating responses to biotic and abiotic stresses and is the main pathway through which extracellular stimuli are transduced intracellularly as signals. Our previous research showed that the GhMKK6-GhMPK4 cascade signaling pathway plays an important role in cotton immunity. To further analyze the role and regulatory mechanism of the GhMKK6-GhMPK4 cascade signaling pathway in cotton resistance to Fusarium wilt, we functionally analyzed GhMPK4. Our results show that silencing GhMPK4 reduces cotton tolerance to Fusarium wilt and reduces the expression of several resistance genes. Further experiments revealed that GhMPK4 is similar to GhMKK6, both of whose overexpression cause unfavorable cotton immune response characteristics. By using a yeast two-hybrid screening library and performing a bioinformatics analysis, we screened and identified a negative regulator of the MAPK kinase-protein phosphatase AP2C1. Through the functional analysis of AP2C1, it was found that, after being silenced, GhAP2C1 increased resistance to Fusarium wilt, but GhAP2C1 overexpression caused sensitivity to Fusarium wilt. These findings show that GhAP2C1 interacts together with GhMPK4 to regulate the immune response of cotton to Fusarium oxysporum, which provides important data for functionally analyzing and studying the feedback regulatory mechanism of the MAPK cascade and helps to clarify the regulatory mechanism through which the MAPK cascade acts in response to pathogens.


Subject(s)
Fusarium/immunology , Gossypium/immunology , Gossypium/metabolism , Immunity/immunology , Phosphoprotein Phosphatases/metabolism , Plant Diseases/immunology , Plant Proteins/metabolism , Disease Resistance/immunology , MAP Kinase Signaling System/immunology , Signal Transduction/immunology
17.
Mol Cell Biochem ; 477(4): 1009-1022, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34988856

ABSTRACT

Type 2 innate lymphoid cells (ILC2s) exert an increasingly important influence on the pathological process of allergic rhinitis (AR), which is affected by microRNAs-mediated post-transcriptional regulation. This study aims to investigate the function of miR-150-5p in AR patients and the mouse model of AR. The mouse model of AR was established using the OVA challenge. The expressions of miR-150-5p, ICAM-1, p-p38 and p-GATA-3 were evaluated via RT-qPCR and western blot analysis. The level of ILC2s was examined with flow cytometry. Concentrations of OVA-specific IgE, IL-13 and IL-5 in serum were evaluated using ELISA. Histopathological examination was conducted through H&E staining. The interplay between ICAM-1 and miR-150-5p was determined through the DLR assay. The decreased miR-150-5p expression and increased ICAM-1, p-p38 and p-GATA-3 expressions and ILC2s levels were detected in AR patients and AR mice compared with controls. Treatment with miR-150-5p lentivirus alleviated AR symptoms (sneezing, rubbing, mucosa inflammation, serum type 2 cytokines and OVA-specific IgE) and lowered the ILC2s level in AR mice. MiR-150-5p was found to directly bind to 3'-UTR of ICAM-1 and downregulate ICAM-1 expression, thereby descending the level of p-p38, p-GATA-3 and suppressing ILC2s function to alleviate AR symptoms. Treatment with Lenti-ICAM-1 counteracted these protective effects of miR-150-5p. Upregulation of miR-150-5p repressed the ICAM-1/p38 axis which was vital to ILC2s development and function, thereby alleviating allergic symptoms of AR.


Subject(s)
Intercellular Adhesion Molecule-1/immunology , Lymphocytes/immunology , MAP Kinase Signaling System/immunology , MicroRNAs/immunology , Rhinitis, Allergic/immunology , p38 Mitogen-Activated Protein Kinases/immunology , Adolescent , Adult , Animals , Female , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged
18.
PLoS Pathog ; 18(1): e1010253, 2022 01.
Article in English | MEDLINE | ID: mdl-35073369

ABSTRACT

Flagellin is a key bacterial virulence factor that can stimulate molecular immune signaling in both animals and plants. The detailed mechanisms of recognizing flagellin and mounting an efficient immune response have been uncovered in vertebrates; however, whether invertebrates can discriminate flagellin remains largely unknown. In the present study, the homolog of human SHOC2 leucine rich repeat scaffold protein in kuruma shrimp (Marsupenaeus japonicus), designated MjShoc2, was found to interact with Vibrio anguillarum flagellin A (FlaA) using yeast two-hybrid and pull-down assays. MjShoc2 plays a role in antibacterial response by mediating the FlaA-induced expression of certain antibacterial effectors, including lectin and antimicrobial peptide. FlaA challenge, via MjShoc2, led to phosphorylation of extracellular regulated kinase (Erk), and the subsequent activation of signal transducer and activator of transcription (Stat), ultimately inducing the expression of effectors. Therefore, by establishing the FlaA/MjShoc2/Erk/Stat signaling axis, this study revealed a new antibacterial strategy in shrimp, and provides insights into the flagellin sensing mechanism in invertebrates.


Subject(s)
Arthropod Proteins/immunology , Flagellin/immunology , Intracellular Signaling Peptides and Proteins/immunology , Penaeidae/immunology , Vibrio Infections/immunology , Animals , MAP Kinase Signaling System/immunology , Penaeidae/microbiology , STAT Transcription Factors/immunology , Vibrio
19.
Sci Rep ; 12(1): 1464, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087132

ABSTRACT

Glioblastoma (GBM) is the most common primary brain tumor with a median survival under two years. Using in silico and in vitro techniques, we demonstrate heterogeneous expression of CD97, a leukocyte adhesion marker, in human GBM. Beyond its previous demonstrated role in tumor invasion, we show that CD97 is also associated with upregulation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathways in GBM. While CD97 knockout decreased Akt activation, CD97 targeting did not alter MAPK/Erk activation, did not slow GBM cell proliferation in culture, and increased levels of glycolytic and oxidative phosphorylation metabolites. Treatment with a soluble CD97 inhibitor did not alter activation of the MAPK/Erk and PI3K/Akt pathways. Tumors with high CD97 expression were associated with immune microenvironment changes including increased naïve macrophages, regulatory T cells, and resting natural killer (NK) cells. These data suggest that, while CD97 expression is associated with conflicting effects on tumor cell proliferative and metabolic pathways that overall do not affect tumor cell proliferation, CD97 exerts pro-tumoral effects on the tumor immune microenvironment, which along with the pro-invasive effects of CD97 we previously demonstrated, provides impetus to continue exploring CD97 as a therapeutic target in GBM.


Subject(s)
Antigens, CD/metabolism , Brain Neoplasms/immunology , Glioblastoma/immunology , Receptors, G-Protein-Coupled/metabolism , Tumor Microenvironment/immunology , Activation, Metabolic/immunology , Antigens, CD/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/immunology , Gene Knockdown Techniques , Gene Knockout Techniques , Glioblastoma/genetics , Glioblastoma/pathology , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Metabolomics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
20.
J Biol Chem ; 298(3): 101634, 2022 03.
Article in English | MEDLINE | ID: mdl-35085550

ABSTRACT

While miRs have been extensively studied in the context of malignancy and tumor progression, their functions in regulating T-cell activation are less clear. In initial studies, we found reduced levels of miR-15a/16 at 3 to 18 h post-T-cell receptor (TCR) stimulation, suggesting a role for decreased levels of this miR pair in shaping T-cell activation. To further explore this, we developed an inducible miR15a/16 transgenic mouse model to determine how elevating miR-15a/16 levels during early stages of activation would affect T-cell proliferation and to identify TCR signaling pathways regulated by this miR pair. Doxycycline (DOX)-induced expression of miR-15a/16 from 0 to 18 h post-TCR stimulation decreased ex vivo T-cell proliferation as well as in vivo antigen-specific T-cell proliferation. We also combined bioinformatics and proteomics approaches to identify the mitogen-activated protein kinase kinase 1 (MEK1) (Map2k1) as a target of miR-15a/16. MEK1 targeting by miR-15a/16 was confirmed using miR mimics that decreased Map2k1 mRNA containing the 3'-UTR target nucleotide sequence (UGCUGCUA) but did not decrease Map2k1 containing a mutated control sequence (AAAAAAAA). Phosphorylation of downstream signaling molecules, extracellular signal-regulated protein kinase 1/2 (ERK1/2) and Elk1, was also decreased by DOX-induced miR-15a/16 expression. In addition to MEK1, ERK1 was subsequently found to be targeted by miR-15a/16, with DOX-induced miR-15a/16 reducing total ERK1 levels in T cells. These findings show that TCR stimulation reduces miR-15a/16 levels at early stages of T-cell activation to facilitate increased MEK1 and ERK1, which promotes the sustained MEK1-ERK1/2-Elk1 signaling required for optimal proliferation.


Subject(s)
MAP Kinase Signaling System , MicroRNAs , T-Lymphocytes , 3' Untranslated Regions , Animals , Lymphocyte Activation , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 1/immunology , MAP Kinase Kinase 1/metabolism , MAP Kinase Signaling System/immunology , Mice , MicroRNAs/genetics , MicroRNAs/immunology , MicroRNAs/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , ets-Domain Protein Elk-1/immunology , ets-Domain Protein Elk-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL