Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.156
Filter
1.
CNS Neurosci Ther ; 30(7): e14842, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39014518

ABSTRACT

AIMS: Spinocerebellar Ataxia Type 3 (SCA3) is a rare genetic ataxia that impacts the entire brain and is characterized as a neurodegenerative disorder affecting the neural network. This study explores how alterations in the functional hierarchy, connectivity, and structural changes within specific brain regions significantly contribute to the heterogeneity of symptom manifestations in patients with SCA3. METHODS: We prospectively recruited 51 patients with SCA3 and 59 age-and sex-matched healthy controls. All participants underwent comprehensive multimodal neuroimaging and clinical assessments. In SCA3 patients, an innovative approach utilizing gradients in resting-state functional connectivity (FC) was employed to examine atypical patterns of hierarchical processing topology from sensorimotor to supramodal regions in the cerebellum and cerebrum. Coupling analyses of abnormal FC and structural connectivity among regions of interest (ROIs) in the brain were also performed to characterize connectivity alterations. Additionally, relationships between quantitative ROI values and clinical variables were explored. RESULTS: Patients with SCA3 exhibited either compression or expansion within the primary sensorimotor-to-supramodal gradient through four distinct calculation methods, along with disruptions in FC and structural connectivity coupling. A comprehensive correlation was identified between the altered gradients and the clinical manifestations observed in patients. Notably, altered fractional anisotropy values were not significantly correlated with clinical variables. CONCLUSION: Abnormal gradients and connectivity in the cerebellar and cerebral cortices in SCA3 patients may contribute to disrupted motor-to-supramodal functions. Moreover, these findings support the potential utility of FCG analysis as a biomarker for diagnosing SCA3 and assessing treatment efficacy.


Subject(s)
Machado-Joseph Disease , Magnetic Resonance Imaging , Humans , Female , Male , Machado-Joseph Disease/physiopathology , Machado-Joseph Disease/diagnostic imaging , Machado-Joseph Disease/complications , Machado-Joseph Disease/pathology , Middle Aged , Adult , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/physiopathology , Brain/pathology , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Prospective Studies , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/pathology , Diffusion Tensor Imaging/methods
2.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000316

ABSTRACT

We aimed to produce a mouse model of spinocerebellar ataxia type 3 (SCA3) using the mouse blood-brain barrier (BBB)-penetrating adeno-associated virus (AAV)-PHP.B. Four-to-five-week-old C57BL/6 mice received injections of high-dose (2.0 × 1011 vg/mouse) or low-dose (5.0 × 1010 vg/mouse) AAV-PHP.B encoding a SCA3 causative gene containing abnormally long 89 CAG repeats [ATXN3(Q89)] under the control of the ubiquitous chicken ß-actin hybrid (CBh) promoter. Control mice received high doses of AAV-PHP.B encoding ATXN3 with non-pathogenic 15 CAG repeats [ATXN3(Q15)] or phosphate-buffered saline (PBS) alone. More than half of the mice injected with high doses of AAV-PHP.B encoding ATXN3(Q89) died within 4 weeks after the injection. No mice in other groups died during the 12-week observation period. Mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89) exhibited progressive motor uncoordination starting 4 weeks and a shorter stride in footprint analysis performed at 12 weeks post-AAV injection. Immunohistochemistry showed thinning of the molecular layer and the formation of nuclear inclusions in Purkinje cells from mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89). Moreover, ATXN3(Q89) expression significantly reduced the number of large projection neurons in the cerebellar nuclei to one third of that observed in mice expressing ATXN3(Q15). This AAV-based approach is superior to conventional methods in that the required number of model mice can be created simply by injecting AAV, and the expression levels of the responsible gene can be adjusted by changing the amount of AAV injected. Moreover, this method may be applied to produce SCA3 models in non-human primates.


Subject(s)
Ataxin-3 , Dependovirus , Disease Models, Animal , Genetic Vectors , Machado-Joseph Disease , Mice, Inbred C57BL , Animals , Dependovirus/genetics , Machado-Joseph Disease/genetics , Machado-Joseph Disease/therapy , Machado-Joseph Disease/metabolism , Machado-Joseph Disease/pathology , Mice , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Ataxin-3/genetics , Ataxin-3/metabolism , Injections, Intravenous , Blood-Brain Barrier/metabolism , Promoter Regions, Genetic
3.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38850215

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3) is primarily characterized by progressive cerebellar degeneration, including gray matter atrophy and disrupted anatomical and functional connectivity. The alterations of cerebellar white matter structural network in SCA3 and the underlying neurobiological mechanism remain unknown. Using a cohort of 20 patients with SCA3 and 20 healthy controls, we constructed cerebellar structural networks from diffusion MRI and investigated alterations of topological organization. Then, we mapped the alterations with transcriptome data from the Allen Human Brain Atlas to identify possible biological mechanisms for regional selective vulnerability to white matter damage. Compared with healthy controls, SCA3 patients exhibited reduced global and nodal efficiency, along with a widespread decrease in edge strength, particularly affecting edges connected to hub regions. The strength of inter-module connections was lower in SCA3 group and negatively correlated with the Scale for the Assessment and Rating of Ataxia score, International Cooperative Ataxia Rating Scale score, and cytosine-adenine-guanine repeat number. Moreover, the transcriptome-connectome association study identified the expression of genes involved in synapse-related and metabolic biological processes. These findings suggest a mechanism of white matter vulnerability and a potential image biomarker for the disease severity, providing insights into neurodegeneration and pathogenesis in this disease.


Subject(s)
Cerebellum , Connectome , Machado-Joseph Disease , Transcriptome , Humans , Male , Female , Cerebellum/diagnostic imaging , Cerebellum/pathology , Middle Aged , Adult , Machado-Joseph Disease/genetics , Machado-Joseph Disease/diagnostic imaging , Machado-Joseph Disease/pathology , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Magnetic Resonance Imaging
4.
Rural Remote Health ; 24(2): 8376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38909987

ABSTRACT

INTRODUCTION: Physical activity and lifestyle programs are scarce for people with hereditary ataxias and neurodegenerative diseases. Aboriginal families in the Top End of Australia who have lived with Machado-Joseph disease (MJD) for generations co-designed a physical activity and lifestyle program called the Staying Strong Toolbox. The aim of the present study was to explore feasibility and impact of the program on walking and moving around. METHODS: A mixed-methods, multiple case study design was used to pilot the Staying Strong Toolbox. Eight individuals with MJD participated in the program for 4 weeks. Participants tailored their own program using the Toolbox workbook. Families, support workers and researchers facilitated each individual's program. Feasibility was determined through program participation, adherence, coinciding or serious adverse events, participant acceptability and cost. Impact was determined through measures of mobility, ataxia, steps, quality of life, wellbeing and goal attainment, assessed before and after the program. RESULTS: All participants completed the program, averaging five activity sessions per week, 66 minutes per session, of walking (63.5%), strengthening/balance-based activities (16%), cycling (11.4%) and activities of daily living, cultural and lifestyle activities (10.5%). Seven participants were assessed on all measures on three occasions (baseline, pre-program and post-program), while one participant could not complete post-program measures due to ceremonial responsibilities. All had significant improvements in mobility, steps taken and ataxia severity (p<0.05) after the program. Quality of life and wellbeing were maintained. CONCLUSION: The program helped participants remain 'strong on the inside and outside'. Participants recommended implementation in 4-week blocks and for the program to be shared internationally. The Staying Strong Toolbox program was feasible for families with MJD. The program had a positive impact on walking and moving around, with participants feeling stronger on the outside (physically) and inside (emotionally, spiritually, psychosocially). The program could be adapted for use by other families with MJD.


Subject(s)
Exercise , Machado-Joseph Disease , Adult , Female , Humans , Male , Middle Aged , Activities of Daily Living , Australia , Feasibility Studies , Life Style , Machado-Joseph Disease/prevention & control , Quality of Life , Walking , Australian Aboriginal and Torres Strait Islander Peoples
5.
Parkinsonism Relat Disord ; 124: 107013, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843619

ABSTRACT

INTRODUCTION: Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disease characterized by increasingly worsening ataxia and non-ataxia features, negatively impacting patients' quality of life. This study was designed to test formally evaluate whether oral trehalose was effective in SCA3 patients. METHODS: In this double-blind, randomized controlled trial, SCA3 patients received either 100 g oral trehalose or 30 g maltose to improve ataxia severity over six months. We also measured other clinical (non-ataxia), patient-reported (quality of life, motivations), and safety endpoints. An unscheduled interim analysis was conducted using two-way ANOVAs to analyze the interaction between time (baseline, 3-months, 6-months) and intervention (Trehalose vs. Placebo). RESULTS: Fifteen participants (Trehalose = 7 vs. Placebo = 8) completed the study at the time of interim analysis. There was no interaction effect on the ataxia severity, and available data suggested an estimated sample size of 132 (66 per arm) SCA3 patients required to demonstrate changes in a 6-month trial. There were significant interaction effects for executive function (ƞ2 = 0.28-0.43). Safety data indicated that 100 g oral trehalose was well-tolerated. CONCLUSION: We performed an unplanned interim analysis due to a slow recruitment rate. The new estimated sample size was deemed unfeasible, leading to premature termination of the clinical trial. In this small, current sample of SCA3 patients, 100 g oral trehalose did not differentially impact on ataxia severity compared to placebo. Interestingly, our findings may suggest an improvement in executive function. Future efforts will require a large multi-country, multi-center study to investigate the potential effect of trehalose.


Subject(s)
Machado-Joseph Disease , Trehalose , Humans , Trehalose/administration & dosage , Trehalose/pharmacology , Double-Blind Method , Male , Female , Middle Aged , Machado-Joseph Disease/drug therapy , Adult , Administration, Oral , Aged , Severity of Illness Index , Quality of Life , Outcome Assessment, Health Care
6.
Epigenetics ; 19(1): 2368995, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38900099

ABSTRACT

Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar ataxia (SCA) caused by a polyglutamine expansion in the ataxin-3 protein, which initiates a cascade of pathogenic events, including transcriptional dysregulation. Genotype-phenotype correlations in MJD are incomplete, suggesting an influence of additional factors, such as epigenetic modifications, underlying the MJD pathogenesis. DNA methylation is known to impact the pathophysiology of neurodegenerative disorders through gene expression regulation and increased methylation has been reported for other SCAs. In this work we aimed to analyse global methylation in MJD carriers. Global 5-mC levels were quantified in blood samples of 33 MJD mutation carriers (patients and preclinical subjects) and 33 healthy controls, matched by age, sex, and smoking status. For a subset of 16 MJD subjects, a pilot follow-up analysis with two time points was also conducted. No differences were found in median global 5-mC levels between MJD mutation carriers and controls and no correlations between methylation levels and clinical or genetic variables were detected. Also, no alterations in global 5-mC levels were observed over time. Our findings do not support an increase in global blood methylation levels associated with MJD.


Subject(s)
DNA Methylation , Heterozygote , Machado-Joseph Disease , Mutation , Humans , Machado-Joseph Disease/genetics , Machado-Joseph Disease/blood , Male , Female , Adult , Middle Aged , Case-Control Studies , Ataxin-3/genetics , 5-Methylcytosine/metabolism , 5-Methylcytosine/blood , Aged , Epigenesis, Genetic
7.
Cell Biol Toxicol ; 40(1): 48, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900277

ABSTRACT

Aggregation of aberrant proteins is a common pathological hallmark in neurodegeneration such as polyglutamine (polyQ) and other repeat-expansion diseases. Here through overexpression of ataxin3 C-terminal polyQ expansion in Drosophila gut enterocytes, we generated an intestinal obstruction model of spinocerebellar ataxia type3 (SCA3) and reported a new role of nuclear-associated endosomes (NAEs)-the delivery of polyQ to the nucleoplasm. In this model, accompanied by the prominently increased RAB5-positive NAEs are abundant nucleoplasmic reticulum enriched with polyQ, abnormal nuclear envelope invagination, significantly reduced endoplasmic reticulum, indicating dysfunctional nucleocytoplasmic trafficking and impaired endomembrane organization. Consistently, Rab5 but not Rab7 RNAi further decreased polyQ-related NAEs, inhibited endomembrane disorganization, and alleviated disease model. Interestingly, autophagic proteins were enriched in polyQ-related NAEs and played non-canonical autophagic roles as genetic manipulation of autophagic molecules exhibited differential impacts on NAEs and SCA3 toxicity. Namely, the down-regulation of Atg1 or Atg12 mitigated while Atg5 RNAi aggravated the disease phenotypes both in Drosophila intestines and compound eyes. Our findings, therefore, provide new mechanistic insights and underscore the fundamental roles of endosome-centered nucleocytoplasmic trafficking and homeostatic endomembrane allocation in the pathogenesis of polyQ diseases.


Subject(s)
Autophagy , Endosomes , Peptides , Animals , Peptides/metabolism , Endosomes/metabolism , Cell Nucleus/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Active Transport, Cell Nucleus , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Machado-Joseph Disease/metabolism , Machado-Joseph Disease/genetics , Machado-Joseph Disease/pathology , Enterocytes/metabolism , Disease Models, Animal , Ataxin-3/metabolism , Ataxin-3/genetics , Drosophila/metabolism
8.
Rev Neurol (Paris) ; 180(5): 378-382, 2024 May.
Article in English | MEDLINE | ID: mdl-38580500

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is a neurodegenerative disease caused by expanded polyglutamine repeats in exon 10 of the ataxin-3 gene, ATXN3. The accumulation of mutant ATXN3 protein leads to severe clinical manifestations and premature death. Clinically, SCA3 pathology is characterized by progressive ataxia leading to motor incoordination that may affect balance, gait and speech, and neuropathologically by a progressive degeneration of the spinal cord and cerebellum, as well as the cerebral cortex and basal ganglia. Although SCA3 is a rare disease, it is the most common autosomal dominant spinocerebellar ataxia worldwide. Its geographical distribution varies worldwide, with peak prevalence in certain regions of Brazil, Portugal and China. In 1994, the identification of the polyglutamine expansion in the ATXN3 gene made it possible not only to diagnose this pathology but also to dissect the mechanisms leading to cellular degeneration. As a monogenic disease for which only symptomatic treatment is available, the ATXN3 gene represents an attractive therapeutic target for gene editing strategies.


Subject(s)
Ataxin-3 , Gene Editing , Machado-Joseph Disease , Humans , Machado-Joseph Disease/therapy , Machado-Joseph Disease/genetics , Ataxin-3/genetics , Gene Editing/methods , Genetic Therapy/methods , Animals , Repressor Proteins/genetics
9.
Mov Disord Clin Pract ; 11(7): 879-885, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38576115

ABSTRACT

BACKGROUND: Phenotypes of CANVAS are increasingly diversified, including bradykinesia and dysautonomia, so that its primary differential diagnoses are multiple system atrophy-cerebellar type (MSA-c), and spinocerebellar ataxia type 3 (SCA3). This case series aims to highlight key molecular imaging findings in CANVAS. CASES: We report a case series of six patients with CANVAS who underwent nuclear medicine examinations in our center and 13 patients from the literature. These include 18F-FDG brain positron emission tomography (PET), single photon emission computed tomography (SPECT) of dopamine transporter (DaT) activity, and 123I-MIBG cardiac scintigraphy of noradrenergic transmission. CONCLUSIONS: In CANVAS, 18F-FDG brain PET mainly shows cerebellar hypometabolism, with preserved brainstem and striatum metabolism, contrasting with SCA3 and MSA-c. Dopaminergic denervation on scintigraphy seems to be associated with clinical parkinsonism, ranging from normal to severely impaired DaT SPECT. Additionally, 123I-MIBG cardiac scintigraphy might show denervation in CANVAS, similar to SCA3, but not in most MSA-c patients.


Subject(s)
Tomography, Emission-Computed, Single-Photon , Humans , Male , Diagnosis, Differential , Middle Aged , Female , Aged , Tomography, Emission-Computed, Single-Photon/methods , Molecular Imaging/methods , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/metabolism , Multiple System Atrophy/diagnosis , Positron-Emission Tomography/methods , Fluorodeoxyglucose F18 , Brain/diagnostic imaging , Brain/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Machado-Joseph Disease/diagnostic imaging , Machado-Joseph Disease/diagnosis , Machado-Joseph Disease/metabolism , 3-Iodobenzylguanidine
10.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612794

ABSTRACT

The spinocerebellar ataxias (SCA) comprise a group of inherited neurodegenerative diseases. Machado-Joseph Disease (MJD) or spinocerebellar ataxia 3 (SCA3) is the most common autosomal dominant form, caused by the expansion of CAG repeats within the ataxin-3 (ATXN3) gene. This mutation results in the expression of an abnormal protein containing long polyglutamine (polyQ) stretches that confers a toxic gain of function and leads to misfolding and aggregation of ATXN3 in neurons. As a result of the neurodegenerative process, SCA3 patients are severely disabled and die prematurely. Several screening approaches, e.g., druggable genome-wide and drug library screenings have been performed, focussing on the reduction in stably overexpressed ATXN3(polyQ) protein and improvement in the resultant toxicity. Transgenic overexpression models of toxic ATXN3, however, missed potential modulators of endogenous ATXN3 regulation. In another approach to identify modifiers of endogenous ATXN3 expression using a CRISPR/Cas9-modified SK-N-SH wild-type cell line with a GFP-T2A-luciferase (LUC) cassette under the control of the endogenous ATXN3 promotor, four statins were identified as potential activators of expression. We here provide an overview of the high throughput screening approaches yet performed to find compounds or genomic modifiers of ATXN3(polyQ) toxicity in different SCA3 model organisms and cell lines to ameliorate and halt SCA3 progression in patients. Furthermore, the putative role of cholesterol in neurodegenerative diseases (NDDs) in general and SCA3 in particular is discussed.


Subject(s)
Machado-Joseph Disease , Spinocerebellar Ataxias , Humans , Animals , Machado-Joseph Disease/genetics , Translational Research, Biomedical , Spinocerebellar Ataxias/genetics , Translational Science, Biomedical , Animals, Genetically Modified
11.
Biochem J ; 481(6): 461-480, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38497605

ABSTRACT

Machado-Joseph disease (MJD) is a devastating and incurable neurodegenerative disease characterised by progressive ataxia, difficulty speaking and swallowing. Consequently, affected individuals ultimately become wheelchair dependent, require constant care, and face a shortened life expectancy. The monogenic cause of MJD is expansion of a trinucleotide (CAG) repeat region within the ATXN3 gene, which results in polyglutamine (polyQ) expansion within the resultant ataxin-3 protein. While it is well established that the ataxin-3 protein functions as a deubiquitinating (DUB) enzyme and is therefore critically involved in proteostasis, several unanswered questions remain regarding the impact of polyQ expansion in ataxin-3 on its DUB function. Here we review the current literature surrounding ataxin-3's DUB function, its DUB targets, and what is known regarding the impact of polyQ expansion on ataxin-3's DUB function. We also consider the potential neuroprotective effects of ataxin-3's DUB function, and the intersection of ataxin-3's role as a DUB enzyme and regulator of gene transcription. Ataxin-3 is the principal pathogenic protein in MJD and also appears to be involved in cancer. As aberrant deubiquitination has been linked to both neurodegeneration and cancer, a comprehensive understanding of ataxin-3's DUB function is important for elucidating potential therapeutic targets in these complex conditions. In this review, we aim to consolidate knowledge of ataxin-3 as a DUB and unveil areas for future research to aid therapeutic targeting of ataxin-3's DUB function for the treatment of MJD and other diseases.


Subject(s)
Machado-Joseph Disease , Neoplasms , Neurodegenerative Diseases , Humans , Ataxin-3/genetics , Ataxin-3/metabolism , Machado-Joseph Disease/genetics , Machado-Joseph Disease/metabolism , Machado-Joseph Disease/pathology , Neurodegenerative Diseases/genetics
12.
Mol Ther ; 32(5): 1359-1372, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38429929

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3) is the most common dominantly inherited ataxia. Currently, no preventive or disease-modifying treatments exist for this progressive neurodegenerative disorder, although efforts using gene silencing approaches are under clinical trial investigation. The disease is caused by a CAG repeat expansion in the mutant gene, ATXN3, producing an enlarged polyglutamine tract in the mutant protein. Similar to other paradigmatic neurodegenerative diseases, studies evaluating the pathogenic mechanism focus primarily on neuronal implications. Consequently, therapeutic interventions often overlook non-neuronal contributions to disease. Our lab recently reported that oligodendrocytes display some of the earliest and most progressive dysfunction in SCA3 mice. Evidence of disease-associated oligodendrocyte signatures has also been reported in other neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Here, we assess the effects of anti-ATXN3 antisense oligonucleotide (ASO) treatment on oligodendrocyte dysfunction in premanifest and symptomatic SCA3 mice. We report a severe, but modifiable, deficit in oligodendrocyte maturation caused by the toxic gain-of-function of mutant ATXN3 early in SCA3 disease that is transcriptionally, biochemically, and functionally rescued with anti-ATXN3 ASO. Our results highlight the promising use of an ASO therapy across neurodegenerative diseases that requires glial targeting in addition to affected neuronal populations.


Subject(s)
Ataxin-3 , Disease Models, Animal , Machado-Joseph Disease , Oligodendroglia , Oligonucleotides, Antisense , Animals , Oligodendroglia/metabolism , Mice , Machado-Joseph Disease/genetics , Machado-Joseph Disease/therapy , Machado-Joseph Disease/pathology , Machado-Joseph Disease/metabolism , Ataxin-3/genetics , Ataxin-3/metabolism , Humans , Repressor Proteins/genetics , Repressor Proteins/metabolism , Mice, Transgenic
14.
Mol Brain ; 17(1): 15, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443995

ABSTRACT

Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3, is a fatal neurodegenerative disease that causes loss of balance and motor co-ordination, eventually leading to paralysis. It is caused by the autosomal dominant inheritance of a long CAG trinucleotide repeat sequence within the ATXN3 gene, encoding for an expanded polyglutamine (polyQ) repeat sequence within the ataxin-3 protein. Ataxin-3 containing an expanded polyQ repeat is known to be highly prone to intraneuronal aggregation, and previous studies have demonstrated that protein quality control pathways, such as autophagy, are impaired in MJD patients and animal models of the disease. In this study, we tested the therapeutic potential of spermidine on zebrafish and rodent models of MJD to determine its capacity to induce autophagy and improve functional output. Spermidine treatment of transgenic MJD zebrafish induced autophagy and resulted in increased distances swum by the MJD zebrafish. Interestingly, treatment of the CMVMJD135 mouse model of MJD with spermidine added to drinking water did not produce any improvement in motor behaviour assays, neurological testing or neuropathology. In fact, wild type mice treated with spermidine were found to have decreased rotarod performance when compared to control animals. Immunoblot analysis of protein lysates extracted from mouse cerebellar tissue found little differences between the groups, except for an increased level of phospho-ULK1 in spermidine treated animals, suggesting that autophagy was indeed induced. As we detected decreased motor performance in wild type mice following treatment with spermidine, we conducted follow up studies into the effects of spermidine treatment in zebrafish. Interestingly, we found that in addition to inducing autophagy, spermidine treatment also induced apoptosis, particularly in wild type zebrafish. These findings suggest that spermidine treatment may not be therapeutically beneficial for the treatment of MJD, and in fact warrants caution due to the potential negative side effects caused by induction of apoptosis.


Subject(s)
Machado-Joseph Disease , Neurodegenerative Diseases , Humans , Animals , Mice , Spermidine/pharmacology , Spermidine/therapeutic use , Zebrafish , Apoptosis , Autophagy , Disease Models, Animal
15.
Neurobiol Dis ; 193: 106456, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423193

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) is a heritable proteinopathy disorder, whose causative gene, ATXN3, undergoes alternative splicing. Ataxin-3 protein isoforms differ in their toxicity, suggesting that certain ATXN3 splice variants may be crucial in driving the selective toxicity in SCA3. Using RNA-seq datasets we identified and determined the abundance of annotated ATXN3 transcripts in blood (n = 60) and cerebellum (n = 12) of SCA3 subjects and controls. The reference transcript (ATXN3-251), translating into an ataxin-3 isoform harbouring three ubiquitin-interacting motifs (UIMs), showed the highest abundance in blood, while the most abundant transcript in the cerebellum (ATXN3-208) was of unclear function. Noteworthy, two of the four transcripts that encode full-length ataxin-3 isoforms but differ in the C-terminus were strongly related with tissue expression specificity: ATXN3-251 (3UIM) was expressed in blood 50-fold more than in the cerebellum, whereas ATXN3-214 (2UIM) was expressed in the cerebellum 20-fold more than in the blood. These findings shed light on ATXN3 alternative splicing, aiding in the comprehension of SCA3 pathogenesis and providing guidance in the design of future ATXN3 mRNA-lowering therapies.


Subject(s)
Machado-Joseph Disease , Humans , Machado-Joseph Disease/metabolism , Ataxin-3/genetics , Ataxin-3/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Cerebellum/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
16.
Sci Rep ; 14(1): 3236, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38332227

ABSTRACT

Machado-Joseph disease (MJD) is a neurodegenerative disorder characterized by widespread neuronal death affecting the cerebellum. Cell therapy can trigger neuronal replacement and neuroprotection through bystander effects providing a therapeutic option for neurodegenerative diseases. Here, human control (CNT) and MJD iPSC-derived neuroepithelial stem cells (NESC) were established and tested for their therapeutic potential. Cells' neuroectodermal phenotype was demonstrated. Brain organoids obtained from the Control NESC showed higher mRNA levels of genes related to stem cells' bystander effects, such as BDNF, NEUROD1, and NOTCH1, as compared with organoids produced from MJD NESC, suggesting that Control NESC have a higher therapeutic potential. Graft-derived glia and neurons, such as cells positive for markers of cerebellar neurons, were detected six months after NESC transplantation in mice cerebella. The graft-derived neurons established excitatory and inhibitory synapses in the host cerebella, although CNT neurons exhibited higher excitatory synapse numbers compared with MJD neurons. Cell grafts, mainly CNT NESC, sustained the bystander effects through modulation of inflammatory interleukins (IL1B and IL10), neurotrophic factors (NGF), and neurogenesis-related proteins (Msi1 and NeuroD1), for six months in the mice cerebella. Altogether this study demonstrates the long-lasting therapeutic potential of human iPSC-derived NESC in the cerebellum.


Subject(s)
Induced Pluripotent Stem Cells , Machado-Joseph Disease , Mice , Animals , Humans , Induced Pluripotent Stem Cells/metabolism , Bystander Effect , Neurons/metabolism , Cerebellum/metabolism , Machado-Joseph Disease/metabolism
17.
Eur J Pharmacol ; 967: 176370, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38320719

ABSTRACT

At least seven dominantly inherited spinocerebellar ataxias (SCA) are caused by expansions of polyglutamine (polyQ)-encoding CAG repeat. The misfolded and aggregated polyQ-expanded proteins increase reactive oxygen species (ROS), cellular toxicity, and neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of coumarin derivatives LM-021, LMDS-1, LMDS-2, and pharmacological chaperone tafamidis using mouse BV-2 microglia and SCA3 ataxin-3 (ATXN3)/Q75-GFP SH-SY5Y cells. The four tested compounds displayed anti-inflammatory activity by suppressing nitric oxide (NO), interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α production, and CD68 antigen (CD68) and histocompatibility-2 (MHCII) expression in lipopolysaccharides (LPS)/interferon (IFN)-γ-stimulated BV-2 microglia. In retinoic acid-differentiated ATXN3/Q75-GFP-expressing SH-SY5Y cells inflamed with LPS/IFN-γ-primed BV-2 conditioned medium, treatment with test compounds mitigated the increased caspase 1 activity and lactate dehydrogenase release, reduced ROS and ATXN3/Q75 aggregation, and promoted neurite outgrowth. Examination of IL-1ß and IL-6-mediated signaling pathways revealed that LM-021, LMDS-1, LMDS-2, and tafamidis decreased NLR family pyrin domain containing 1 (NLRP1), c-Jun N-terminal kinase/c-Jun proto-oncogene (JNK/JUN), inhibitor of kappa B (IκBα)/P65, mitogen-activated protein kinase 14/signal transducer and activator of transcription 1 (P38/STAT1), and/or Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling. The study results suggest the potential of LM-021, LMDS-1, LMDS-2, and tafamidis in treating SCA3 and probable other polyQ diseases.


Subject(s)
Machado-Joseph Disease , Neuroblastoma , Animals , Humans , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Interleukin-1beta/antagonists & inhibitors , Interleukin-6 , Lipopolysaccharides/pharmacology , Machado-Joseph Disease/drug therapy , Machado-Joseph Disease/genetics , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
18.
Hum Brain Mapp ; 45(3): e26624, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38376240

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3) is an inherited movement disorder characterized by a progressive decline in motor coordination. Despite the extensive functional connectivity (FC) alterations reported in previous SCA3 studies in the cerebellum and cerebellar-cerebral pathways, the influence of these FC disturbances on the hierarchical organization of cerebellar functional regions remains unclear. Here, we compared 35 SCA3 patients with 48 age- and sex-matched healthy controls using a combination of voxel-based morphometry and resting-state functional magnetic resonance imaging to investigate whether cerebellar hierarchical organization is altered in SCA3. Utilizing connectome gradients, we identified the gradient axis of cerebellar hierarchical organization, spanning sensorimotor to transmodal (task-unfocused) regions. Compared to healthy controls, SCA3 patients showed a compressed hierarchical organization in the cerebellum at both voxel-level (p < .05, TFCE corrected) and network-level (p < .05, FDR corrected). This pattern was observed in both intra-cerebellar and cerebellar-cerebral gradients. We observed that decreased intra-cerebellar gradient scores in bilateral Crus I/II both negatively correlated with SARA scores (left/right Crus I/II: r = -.48/-.50, p = .04/.04, FDR corrected), while increased cerebellar-cerebral gradients scores in the vermis showed a positive correlation with disease duration (r = .48, p = .04, FDR corrected). Control analyses of cerebellar gray matter atrophy revealed that gradient alterations were associated with cerebellar volume loss. Further FC analysis showed increased functional connectivity in both unimodal and transmodal areas, potentially supporting the disrupted cerebellar functional hierarchy uncovered by the gradients. Our findings provide novel evidence regarding alterations in the cerebellar functional hierarchy in SCA3.


Subject(s)
Connectome , Machado-Joseph Disease , Humans , Machado-Joseph Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Cerebellum/pathology , Cerebellar Cortex
19.
J Clin Invest ; 134(5)2024 03 01.
Article in English | MEDLINE | ID: mdl-38227368

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the ataxin-3 (ATXN3) gene. No effective treatment is available for this disorder, other than symptom-directed approaches. Bile acids have shown therapeutic efficacy in neurodegenerative disease models. Here, we pinpointed tauroursodeoxycholic acid (TUDCA) as an efficient therapeutic, improving the motor and neuropathological phenotype of SCA3 nematode and mouse models. Surprisingly, transcriptomic and functional in vivo data showed that TUDCA acts in neuronal tissue through the glucocorticoid receptor (GR), but independently of its canonical receptor, the farnesoid X receptor (FXR). TUDCA was predicted to bind to the GR, in a similar fashion to corticosteroid molecules. GR levels were decreased in disease-affected brain regions, likely due to increased protein degradation as a consequence of ATXN3 dysfunction being restored by TUDCA treatment. Analysis of a SCA3 clinical cohort showed intriguing correlations between the peripheral expression of GR and the predicted age at disease onset in presymptomatic subjects and FKBP5 expression with disease progression, suggesting this pathway as a potential source of biomarkers for future study. We have established a novel in vivo mechanism for the neuroprotective effects of TUDCA in SCA3 and propose this readily available drug for clinical trials in SCA3 patients.


Subject(s)
Machado-Joseph Disease , Neurodegenerative Diseases , Taurochenodeoxycholic Acid , Mice , Adult , Animals , Humans , Machado-Joseph Disease/drug therapy , Machado-Joseph Disease/genetics , Machado-Joseph Disease/metabolism , Receptors, Glucocorticoid/genetics , Mice, Transgenic
20.
Sci Rep ; 14(1): 1529, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233440

ABSTRACT

There is no FDA-approved drug for neurological disorders like spinocerebellar ataxia type 3. CAG repeats mutation in the ATXN3 gene, causing spinocerebellar ataxia type 3 disease. Symptoms include sleep cycle disturbance, neurophysiological abnormalities, autonomic dysfunctions, and depression. This research focuses on drug discovery against ATXN3 using phytochemicals of different plants. Three phytochemical compounds (flavonoids, diterpenoids, and alkaloids) were used as potential drug candidates and screened against the ATXN3 protein. The 3D structure of ATXN3 protein and phytochemicals were retrieved and validation of the protein was 98.1% Rama favored. The protein binding sites were identified for the interaction by CASTp. ADMET was utilized for the pre-clinical analysis, including solubility, permeability, drug likeliness and toxicity, and chamanetin passed all the ADMET properties to become a lead drug candidate. Boiled egg analysis attested that the ligand could cross the gastrointestinal tract. Pharmacophore analysis showed that chamanetin has many hydrogen acceptors and donors which can form interaction bonds with the receptor proteins. Chamanetin passed all the screening analyses, having good absorption, no violation of Lipinski's rule, nontoxic properties, and good pharmacophore properties. Chamanetin was one of the lead compounds with a - 7.2 kcal/mol binding affinity after screening the phytochemicals. The stimulation of ATXN3 showed stability after 20 ns of interaction in an overall 50 ns MD simulation. Chamanetin (Flavonoid) was predicted to be highly active against ATXN3 with good drug-like properties. In-silico active drug against ATXN3 from a plant source and good pharmacokinetics parameters would be excellent drug therapy for SC3, such as flavonoids (Chamanetin).


Subject(s)
Machado-Joseph Disease , Humans , Ataxin-3/genetics , Machado-Joseph Disease/drug therapy , Machado-Joseph Disease/genetics , Computer Simulation , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/chemistry , Flavonoids/pharmacology , Flavonoids/therapeutic use , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL