Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35.573
Filter
1.
Food Chem ; 462: 140920, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39208732

ABSTRACT

The use of direct injection ion mobility mass spectrometry (DI-IM-MS) to detect and identify betacyanin pigments in A. hortensis 'rubra' extracts was explored for the first time, with results compared to conventional LC-MS/MS analysis. The anti-inflammatory activities of leaf and seed extracts, alongside purified amaranthin and celosianin pigments, were investigated using a model of lipopolysaccharide (LPS)-activated murine macrophages. Extracts and purified pigments significantly inhibited the production of prostaglandin E2 and NO by up to 90% and 70%, respectively, and reduced the expression of Il6, Il1b, Nos2, and Cox2. Leaf and seed extracts also decreased secretion of Il6 and Il1b cytokines and reduced protein levels of Nos2 and Cox2. Furthermore, extracts and purified pigments demonstrated potent dose-dependent radical scavenging activity in a cellular antioxidant activity assay (CAA) without any cytotoxic effects. Our research highlights the promising biological potential of edible, climate-resilient A. hortensis 'rubra' as a valuable source of bioactive compounds.


Subject(s)
Lipopolysaccharides , Macrophages , Oxidative Stress , Plant Extracts , Mice , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , RAW 264.7 Cells , Oxidative Stress/drug effects , Macrophages/drug effects , Macrophages/immunology , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Cyclooxygenase 2/genetics , Cyclooxygenase 2/immunology , Cyclooxygenase 2/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Tandem Mass Spectrometry
2.
Biomaterials ; 313: 122816, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39250864

ABSTRACT

Pro-fibrotic M2-like macrophages are widely implicated in the pathogenesis and progression of lung fibrosis due to their production of pro-fibrotic growth factors and cytokines. Yeast beta-glucan (YBG) microparticles have shown potential as immunomodulators that can convert macrophage polarization from a pro-fibrotic phenotype to an anti-fibrotic phenotype through the engagement of the Dectin-1 receptor. However, the processing conditions used to fabricate YBG microparticles can lead to unpredictable immunomodulatory effects. Herein, we report the use of Pressurized Gas eXpanded liquids (PGX) Technology® to fabricate YBG (PGX-YBG) microparticles with higher surface areas, lower densities, and smaller and more uniform size distributions compared to commercially available spray-dried YBGs. PGX-YBG is shown to activate Dectin-1 more efficiently in vitro while avoiding significant TLR 2/4 activation. Furthermore, PGX-YBG microparticles effectively modulate M2-like fibrosis-inducing murine and human macrophages into fibrosis-suppressing macrophages both in vitro as well as in ex vivo precision-cut murine lung slices, suggesting their potential utility as a therapeutic for addressing a broad spectrum of fibrotic end-point lung diseases.


Subject(s)
Macrophages , beta-Glucans , Animals , beta-Glucans/chemistry , beta-Glucans/pharmacology , Macrophages/metabolism , Macrophages/drug effects , Mice , Humans , Mice, Inbred C57BL , Lectins, C-Type/metabolism , RAW 264.7 Cells , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/drug therapy , Saccharomyces cerevisiae , Particle Size
3.
J Ethnopharmacol ; 336: 118733, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39181281

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Smilax glabra rhizome has a long history been used for clinical purposes in traditional Chinese medicinal for treating various inflammatory conditions. Engeletin1 (ENG) is one of the most abundant bioactive compounds found in Smilax glabra rhizome, with anti-inflammatory, antioxidant, and ulcer-preventing activities. AIM OF THE STUDY: The purpose of this study was to investigate the ability of ENG to alleviate inflammatory symptoms and improve epithelial barrier integrity utilize a 2,4,6-trinitrobenzene sulfonic acid2 (TNBS)-induced murine model in Crohn's disease3 (CD)-like colitis, and to characterize the underlying anti-inflammatory mechanisms of action. MATERIALS AND METHODS: A colitis model was established in BALB/c mice and treated with ENG for 7 days. RAW264.7 macrophages were pre-treated with ENG and lipopolysaccharide4 (LPS) stimulation. The mice's weight and colon length were assessed. qPCR and Western blotting were used to analyze gene expression and TLR4-NFκB pathway. Flow cytometry was used to analyze the polarization states of the macrophages. RESULTS: Treatment with ENG was sufficient to significantly alleviate symptoms of inflammation and colonic epithelial barrier integrity in treated mice. Significant inhibition of TNF-α, IL-1ß, and IL-6 expression was observed following ENG treatment in vivo and in vitro. ENG was also determined to be capable of inhibiting the expression of iNOS and CD86, inhibited M1 macrophage polarization in vitro, as well as the TLR4-NFκB signaling pathway. Molecular docking showed a highly stable binding between ENG and TLR4. CONCLUSION: ENG has been proven to alleviate inflammation and ameliorate the damage of epithelial barrier in CD-like colitis. ENG also suppressed the M1 macrophages polarization and the inhibited inflammatory cytokines. TLR4-NFκB signaling pathway, especially TLR4, may be the target of ENG. These data offer a new insight into the therapeutic mechanisms of ENG.


Subject(s)
Anti-Inflammatory Agents , Colitis , Crohn Disease , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Trinitrobenzenesulfonic Acid , Animals , Male , Mice , Anti-Inflammatory Agents/pharmacology , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , Colon/drug effects , Colon/pathology , Colon/metabolism , Crohn Disease/drug therapy , Cytokines/metabolism , Disease Models, Animal , Flavonols , Glycosides , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred BALB C , NF-kappa B/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Smilax/chemistry , Toll-Like Receptor 4/metabolism
4.
J Ethnopharmacol ; 336: 118704, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39182703

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Viral pneumonia is the leading cause of death after SARS-CoV-2 infection. Despite effective at early stage, long-term treatment with glucocorticoids can lead to a variety of adverse effects and limited benefits. The Chinese traditional herb Pogostemonis Herba is the aerial part of Pogostemon Cablin (Blanco) Benth., which has potent antiviral, antibacterial, anti-inflammatory, and anticancer effects. It was used widely for treating various throat and respiratory diseases, including COVID-19, viral infection, cough, allergic asthma, acute lung injury and lung cancer. AIM OF THE STUDY: To investigate the antiviral and anti-inflammatory effects of chemical compounds from Pogostemonis Herba in SARS-CoV-2-infected hACE2-overexpressing mouse macrophage RAW264.7 cells and hACE2 transgenic mice. MATERIALS AND METHODS: The hACE2-overexpressing RAW264.7 cells were exposed with SARS-CoV-2. The cell viability was detected by CCK8 assay and cell apoptotic rate was by flow cytometric assay. The expressions of macrophage M1 phenotype markers (TNF-α and IL-6) and M2 markers (IL-10 and Arg-1) as well as the viral loads were detected by qPCR. The mice were inoculated intranasally with SARS-CoV-2 omicron variant to induce viral pneumonia. The levels of macrophages, neutrophils, and T cells in the lung tissues of infected mice were analyzed by full spectrum flow cytometry. The expressions of key proteins were detected by Western blot assay. RESULTS: Diosmetin-7-O-ß-D-glucopyranoside (DG) presented the strongest anti-SARS-CoV-2 activity. Intervention with DG at the concentrations of 0.625-2.5 µM not only reduced the viral replication, cell apoptosis, and the productions of inflammatory cytokines (IL-6 and TNF-α) in SARS-CoV-2-infected RAW264.7 cells, but also reversed macrophage polarity from M1 to M2 phenotype. Furthermore, treatment with DG (25-100 mg/kg) alleviated acute lung injury, and reduced macrophage infiltration in SARS-COV-2-infected mice. Mechanistically, DG inhibited SARS-COV-2 gene expression and HK3 translation via targeting YTHDF1, resulting in the inactivation of glycolysis-mediated NF-κB pathway. CONCLUSIONS: DG exerted the potent antiviral and anti-inflammatory activities. It reduced pneumonia in SARS-COV-2-infected mice via inhibiting the viral replication and accelerating M2 macrophage polarization via targeting YTHDF1, indicating its potential for COVID-19 treatment.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Macrophages , SARS-CoV-2 , Virus Replication , Animals , Mice , RAW 264.7 Cells , Virus Replication/drug effects , Macrophages/drug effects , Macrophages/metabolism , Macrophages/virology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Mice, Transgenic , Pogostemon/chemistry , Cytokines/metabolism , Apoptosis/drug effects , Lung/drug effects , Lung/virology , Lung/pathology , Glucosides/pharmacology , Glucosides/isolation & purification , Flavonoids/pharmacology , Flavonoids/isolation & purification , Flavonoids/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents/pharmacology , Male , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Humans
5.
Biomaterials ; 313: 122772, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39190942

ABSTRACT

Implant-associated infection (IAI) has become an intractable challenge in clinic. The healing of IAI is a complex physiological process involving a series of spatiotemporal connected events. However, existing titanium-based implants in clinic suffer from poor antibacterial effect and single function. Herein, a versatile surface platform based on the presentation of sequential function is developed. Fabrication of titania nanotubes and poly-γ-glutamic acid (γ-PGA) achieves the efficient incorporation of silver ions (Ag+) and the pH-sensitive release in response to acidic bone infection microenvironment. The optimized PGA/Ag platform exhibits satisfactory biocompatibility and converts macrophages from pro-inflammatory M1 to pro-healing M2 phenotype during the subsequent healing stage, which creates a beneficial osteoimmune microenvironment and promotes angio/osteogenesis. Furthermore, the PGA/Ag platform mediates osteoblast/osteoclast coupling through inhibiting CCL3/CCR1 signaling. These biological effects synergistically improve osseointegration under bacterial infection in vivo, matching the healing process of IAI. Overall, the novel integrated PGA/Ag surface platform proposed in this study fulfills function cascades under pathological state and shows great potential in IAI therapy.


Subject(s)
Anti-Bacterial Agents , Polyglutamic Acid , Silver , Titanium , Animals , Titanium/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mice , Polyglutamic Acid/chemistry , Polyglutamic Acid/analogs & derivatives , Silver/chemistry , Silver/pharmacology , Surface Properties , Nanotubes/chemistry , RAW 264.7 Cells , Prosthesis-Related Infections/drug therapy , Osseointegration/drug effects , Osteogenesis/drug effects , Osteoblasts/drug effects , Osteoblasts/cytology , Macrophages/drug effects , Macrophages/metabolism , Male , Wound Healing/drug effects , Prostheses and Implants
6.
Biomaterials ; 312: 122739, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39096840

ABSTRACT

The biofilm-induced "relatively immune-compromised zone" creates an immunosuppressive microenvironment that is a significant contributor to refractory infections in orthopedic endophytes. Consequently, the manipulation of immune cells to co-inhibit or co-activate signaling represents a crucial strategy for the management of biofilm. This study reports the incorporation of Mn2+ into mesoporous dopamine nanoparticles (Mnp) containing the stimulator of interferon genes (STING) pathway activator cGAMP (Mncp), and outer wrapping by M1-like macrophage cell membrane (m-Mncp). The cell membrane enhances the material's targeting ability for biofilm, allowing it to accumulate locally at the infectious focus. Furthermore, m-Mncp mechanically disrupts the biofilm through photothermal therapy and induces antigen exposure through photodynamic therapy-generated reactive oxygen species (ROS). Importantly, the modulation of immunosuppression and immune activation results in the augmentation of antigen-presenting cells (APCs) and the commencement of antigen presentation, thereby inducing biofilm-specific humoral immunity and memory responses. Additionally, this approach effectively suppresses the activation of myeloid-derived suppressor cells (MDSCs) while simultaneously boosting the activity of T cells. Our study showcases the efficacy of utilizing m-Mncp immunotherapy in conjunction with photothermal and photodynamic therapy to effectively mitigate residual and recurrent infections following the extraction of infected implants. As such, this research presents a viable alternative to traditional antibiotic treatments for biofilm that are challenging to manage.


Subject(s)
Biofilms , Indoles , Membrane Proteins , Polymers , Biofilms/drug effects , Polymers/chemistry , Animals , Indoles/chemistry , Indoles/pharmacology , Mice , Membrane Proteins/metabolism , Nanoparticles/chemistry , Photochemotherapy/methods , Porosity , Macrophages/metabolism , Macrophages/drug effects , Reactive Oxygen Species/metabolism , Female , Signal Transduction/drug effects , Photothermal Therapy , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Mice, Inbred C57BL
7.
Chem Biol Drug Des ; 104(4): e14615, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39358207

ABSTRACT

The higher prevalence of cancer and the unmet need for antioxidant/anti-inflammatory chemotherapeutic compounds with little side effect are of utmost importance. In addition, the increased likelihood of failure in clinical trials along with increasing development costs may have diminished the range of choices among newer drugs for clinical use. This has dictated the necessity to seek out novel medications by repurposing as it needs less time, effort, and resources to explore new uses of a current or unsuccessful medication. In this study, we examined the biological activity of 10 potential quinoline derivatives. Given the half-maximal inhibitory concentration (IC50 value) in lipopolysaccharide (LPS) induced inflammation of RAW264.7 mouse macrophages, all commercial FQs and selected quinolines (quinoline-4-carboxlic and quinoline-3-carboxylic acids) exerted impressively appreciable anti-inflammation affinities versus classical NSAID indomethacin without related cytotoxicities in inflamed macrophages. Conversely, all 14 tested compounds lacked antioxidative DPPH radical scavenging capacities as compared to ascorbic acid. Gemifloxacin, considerably unlike markets FQs, indomethacin and quinoline derivatives, exerted exceptional and differential antiproliferation propensities in colorectum SW480, HCT116, and CACO2, pancreatic PANC1, prostate PC3, mammary T47D, lung A375, and melanoma A549 adherent monolayers using the sulforhodamine B colorimetric method versus antineoplastic cisplatin. All quinoline derivatives and gemifloxacin alike, but not levofloxacin, ciprofloxacin, or indomethacin, displayed substantially selective viability reduction affinities in prolonged tumor incubations of cervical HELA and mammary MCF7 cells. Specifically kynurenic acid (hydrate), quinoline-2-carboxylic acid, quinoline-4-carboxylic acid, quinoline-3-carboxylic acid, and 1,2-dihydro-2-oxo-4-quinoline carboxylic acids possessed the most remarkable growth inhibition capacities against mammary MCF7 cell line, while quinoline-2-carboxylic acid was the only quinoline derivative with significant cytotoxicity on cervical HELA cancer cells. It is highly speculated that chelation with divalent metals via co-planarity with close proximity of the COOH and the N atom could have the potential molecular mechanism for optimally promising repurposed pharmacologies. Conclusively, this study revealed the considerably profound repurposed duality of cytotoxicity and anti-inflammation pharmacologies of quinoline derivatives. Activity-guided structural modifications of the present nuclear scaffolds can be inherently linked to the betterment and enhancement of their repurposed pharmacologies.


Subject(s)
Anti-Inflammatory Agents , Antineoplastic Agents , Antioxidants , Carboxylic Acids , Cell Proliferation , Quinolines , Quinolines/chemistry , Quinolines/pharmacology , Humans , Mice , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , RAW 264.7 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Macrophages/drug effects , Macrophages/metabolism , Lipopolysaccharides/pharmacology , Cell Line, Tumor , Structure-Activity Relationship
8.
Arch Microbiol ; 206(11): 423, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361043

ABSTRACT

Minor ginsenosides produced by ß-glucosidase are interesting biologically and pharmacologically. In this study, new ginsenoside-hydrolyzing glycosidase from Furfurilactobacillus rossiae DCYL3 was cloned and expressed in Escherichia coli strain BL21. The enzyme converted Rb1 and Gyp XVII into Rd and compound K following the pathways: Rb1→Rd and Gyp XVII→F2→CK, respectively at optimal condition: 40 °C, 15 min, and pH 6.0. Furthermore, we examined the cytotoxicity, NO production, ROS generation, and gene expression of Gynostemma extract (GE) and bioconverted Gynostemma extract (BGE) in vitro against A549 cell lines for human lung cancer and macrophage RAW 264.7 cells for antiinflammation, respectively. As a result, BGE demonstrated significantly greater toxicity than GE against lung cancer at a dose of 500 µg/mL but in normal cells showed lower toxicity. Then, we indicated an enhanced generation of ROS, which may be boosting cancer cell toxicity. By blocking the intrinsic way, BGE increased p53, Bax, Caspase 3, 9, and while Bcl2 is decreased. At 500 µg/mL, the BGE sample was less toxic in normal cells and decreased the LPS-treated NO and ROS level to reduce inflammation. In addition, BGE inhibited the expression of pro-inflammatory genes COX-2, iNOS, IL-6, and IL-8 in RAW 264.7 cells than the sample of GE. In conclusion, FrBGL3 has considerable downstream applications for high-yield, low-cost, effective manufacture of minor ginsenosides. Moreover, the study's findings imply that BGE would be potential materials for anti-cancer and anti-inflammatory agent after consideration of future studies.


•The first time ß-glucosidase (FrBGL3) from Furfurilactobacillus rossiae was identified and characterized.•FrBGL3 activity in ginsenoside and gypenoside bioconversion were found and confirmed.•Application in Gynostemma extract bioconversion by FrBGL3 boosts anti-inflammatory and anti-cancer activities.


Subject(s)
beta-Glucosidase , Mice , Animals , Humans , RAW 264.7 Cells , A549 Cells , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , beta-Glucosidase/chemistry , Cloning, Molecular , Ginsenosides/metabolism , Ginsenosides/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Reactive Oxygen Species/metabolism , Macrophages/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Nitric Oxide/metabolism , Clostridiales/genetics , Clostridiales/enzymology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism
9.
Biol Direct ; 19(1): 86, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350193

ABSTRACT

The immune response gene 1 (IRG1) and its metabolite itaconate are implicated in modulating inflammation and oxidative stress, with potential relevance to sepsis-induced myocardial dysfunction (SIMD). This study investigates their roles in SIMD using both in vivo and in vitro models. Mice were subjected to lipopolysaccharide (LPS)-induced sepsis, and cardiac function was assessed in IRG1 knockout (IRG1-/-) and wild-type mice. Exogenous 4-octyl itaconate (4-OI) supplementation was also examined for its protective effects. In vitro, bone marrow-derived macrophages and RAW264.7 cells were treated with 4-OI following Nuclear factor, erythroid 2 like 2 (NRF2)-small interfering RNA administration to elucidate the underlying mechanisms. Our results indicate that IRG1 deficiency exacerbates myocardial injury during sepsis, while 4-OI administration preserves cardiac function and reduces inflammation. Mechanistic insights reveal that 4-OI activates the NRF2/HO-1 pathway, promoting macrophage polarization and attenuating inflammation. These findings underscore the protective role of the IRG1/itaconate axis in SIMD and suggest a therapeutic potential for 4-OI in modulating macrophage responses.


Subject(s)
Inflammation , Macrophages , Mice, Knockout , NF-E2-Related Factor 2 , Animals , Mice , Macrophages/drug effects , Inflammation/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Succinates/pharmacology , RAW 264.7 Cells , Monocytes/metabolism , Antigens, Ly/genetics , Antigens, Ly/metabolism , Sepsis/genetics , Male , Lipopolysaccharides , Mice, Inbred C57BL , Hydro-Lyases
10.
World J Gastroenterol ; 30(35): 4011-4013, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39351054

ABSTRACT

This editorial examines the therapeutic potential of traditional Chinese medicine (TCM) for aggressive cancers, particularly liver cancer. It highlights the study by Huang et al, which shows how Calculus bovis, a component of the TCM Pien Tze Huang, suppresses liver cancer by inhibiting M2 macrophage polarization via the Wnt/ß-catenin pathway. This research emphasizes the importance of transitioning from effective TCM formulations to isolating active components and understanding their mechanisms. While the study provides valuable insights, it primarily focuses on the Wnt/ß-catenin pathway and does not delve deeply into the mechanisms of individual components. Future research should aim to comprehensively study these components, explore their interactions, and validate findings through clinical trials. This approach will integrate traditional wisdom with modern scientific validation, advancing the development of innovative cancer treatments based on TCM formulations.


Subject(s)
Drugs, Chinese Herbal , Liver Neoplasms , Medicine, Chinese Traditional , Humans , Medicine, Chinese Traditional/methods , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Wnt Signaling Pathway/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Animals , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology
11.
Front Immunol ; 15: 1408377, 2024.
Article in English | MEDLINE | ID: mdl-39351237

ABSTRACT

Tumor associated macrophages (TAMs) are the predominant innate immune cells in the tumor microenvironment (TME). Cytokines induce the differentiation of macrophages into distinct types of TAMs, primarily characterized by two phenotypes: M1-polarized and M2-polarized. Cancer growth is suppressed by M1-polarized macrophages and promoted by M2-polarized macrophages. The regulation of macrophage M1 polarization has emerged as a promising strategy for cancer immunotherapy. Polysaccharides are important bioactive substances found in numerous plants, manifesting a wide range of noteworthy biological actions, such as immunomodulation, anti-tumor effects, antioxidant capabilities, and antiviral functions. In recent years, there has been a significant increase in interest regarding the immunomodulatory and anti-tumor properties of polysaccharides derived from plants. The regulatory impact of polysaccharides on the immune system is mainly associated with the natural immune response, especially with the regulation of macrophages. This review provides a thorough analysis of the regulatory effects and mechanisms of plant polysaccharides on TAMs. Additionally, an analysis of potential opportunities for clinical translation of plant polysaccharides as immune adjuvants is presented. These insights have greatly advanced the research of plant polysaccharides for immunotherapy in tumor-related applications.


Subject(s)
Immunotherapy , Neoplasms , Polysaccharides , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Neoplasms/therapy , Neoplasms/immunology , Polysaccharides/pharmacology , Immunotherapy/methods , Animals , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/drug effects , Macrophage Activation/drug effects , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism
12.
Cell Death Dis ; 15(10): 717, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39353883

ABSTRACT

Immune checkpoint inhibitors (ICIs) immunotherapy facilitates new approaches to achieve precision cancer treatment. A growing number of patients with non-small cell lung cancer (NSCLC) have benefited from treatment with neoadjuvant ICIs combined with chemotherapy. However, the mechanisms and associations between the therapeutic efficacy of neoadjuvant pembrolizumab and chemotherapy (NAPC) and macrophage subsets are still unclear. We performed single-cell RNA sequencing (scRNA-seq) and identified a novel FABP4+C1q+ macrophage subtype, which exhibited stronger proinflammatory cytokine production and phagocytic ability. This subtype was found to be more abundant in tumor tissues and lymph nodes of major pathological response (MPR) patients compared to non-MPR patients, and was associated with a good efficacy of NAPC. Multiplex fluorescent immunohistochemical (mIHC) staining was subsequently used to verify our findings. Further mechanistic studies indicated that FABP4 and C1q regulate the expression of proinflammatory cytokines synergistically. In addition, FABP4 and C1q promote fatty acid synthesis, enhance anti-apoptosis ability and phagocytic ability of macrophage via the interaction of AMPK/JAK/STAT axis. This study provides novel insights into the underlying mechanisms and predictive biomarkers of NAPC. Our findings contribute to improving the prognosis of patients with NSCLC by potentially guiding more precise patient selection and treatment strategies. NOVELTY & IMPACT STATEMENTS: We identified a group of macrophages (FABP4+C1q+ macrophages) related to the therapeutic efficacy of neoadjuvant chemoimmunotherapy. FABP4+C1q+ macrophages highly expressed proinflammatory cytokines-related genes and had a strong cytokine production and phagocytic ability. We believe that our study provides a novel insight into the synergistic mechanism of neoadjuvant ICI combined with chemotherapy and may lead to improved clinical outcomes in patients with NSCLC in the future.


Subject(s)
Antibodies, Monoclonal, Humanized , Carcinoma, Non-Small-Cell Lung , Fatty Acid-Binding Proteins , Lung Neoplasms , Macrophages , Neoadjuvant Therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Animals , AMP-Activated Protein Kinases/metabolism , Janus Kinases/metabolism , Mice , Female , Male , STAT Transcription Factors/metabolism , Middle Aged , Signal Transduction/drug effects
13.
Front Cell Infect Microbiol ; 14: 1443719, 2024.
Article in English | MEDLINE | ID: mdl-39224705

ABSTRACT

Mycobacterium abscessus (Mab) is an opportunistic nontuberculous mycobacterium responsible of difficult-to-treat pulmonary infections in vulnerable patients, such as those suffering from Cystic Fibrosis (CF), where it represents a major cause of morbidity and mortality. Additionally, due to the intrinsic extensive antimicrobial resistance spectrum displayed by this species and the side effects reported for some available antibiotics, the therapeutic management of such infections remains extremely difficult. In the present study, we show that phosphatidylserine liposomes (PS-L) enhance intracellular mycobacterial killing of Mab infected human macrophages with functional or pharmacologically inhibited cystic fibrosis conductance regulator (CFTR), by a mechanism involving phagosome acidification and reactive oxygen species (ROS) production. Additionally, PS-L significantly reduce proinflammatory response of Mab infected macrophages in terms of NF-kB activation and TNF-α production, irrespective of CFTR inhibition. Altogether, these results represent the proof of concept for a possible future development of PS-L as a therapeutic strategy against difficult-to-treat Mab infection.


Subject(s)
Liposomes , Macrophages , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Phagosomes , Phosphatidylserines , Reactive Oxygen Species , Humans , Mycobacterium abscessus/drug effects , Reactive Oxygen Species/metabolism , Liposomes/metabolism , Macrophages/microbiology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Phagosomes/microbiology , Phagosomes/metabolism , Phosphatidylserines/metabolism , Mycobacterium Infections, Nontuberculous/microbiology , Tumor Necrosis Factor-alpha/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , NF-kappa B/metabolism , Cystic Fibrosis/microbiology
14.
Carbohydr Polym ; 345: 122574, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39227108

ABSTRACT

The healing of chronic diabetic wounds remains a formidable challenge in modern times. In this study, a novel traditional Chinese medicine microneedle patch was designed based on the physiological characteristics of wounds, with properties including hemostasis, anti-inflammatory, antioxidant, antimicrobial, and induction of angiogenesis. Initially, white peony polysaccharide (BSP) with hemostatic properties and carboxymethyl chitosan (CMCS) with antimicrobial capabilities were used as materials for microneedle fabrication. To endow it with antimicrobial, procoagulant, and adhesive properties. Among them, loaded with ROS-sensitive nanoparticles of Astragalus polysaccharides (APS) based on effective components baicalein (Bai) and berberine (Ber) from Scutellaria baicalensis (SB) and Coptis chinensis (CC) drugs (APB@Ber). Together, they are constructed into multifunctional traditional Chinese medicine composite microneedles (C/B@APB@Ber). Bai and Ber synergistically exert anti-inflammatory and antimicrobial effects. Microneedle patches loaded with BSP and APS exhibited significant effects on cell proliferation and angiogenesis induction. The combination of composite polysaccharides enabled the microneedles to adhere stably to wounds and provide sufficient strength to penetrate the biofilm and induce dispersion. The combination of composite polysaccharides enabled the microneedles to adhere stably to wounds and provide sufficient strength to penetrate the biofilm and induce dispersion. Therefore, traditional Chinese medicine multifunctional microneedle patches offer potential medical value in promoting the healing of diabetic wounds.


Subject(s)
Astragalus propinquus , NF-kappa B , Nanoparticles , Polysaccharides , Reactive Oxygen Species , Wound Healing , Wound Healing/drug effects , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Astragalus propinquus/chemistry , Mice , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , RAW 264.7 Cells , Needles , Macrophages/drug effects , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Chitosan/chemistry , Chitosan/pharmacology , Cell Proliferation/drug effects
15.
Carbohydr Polym ; 345: 122571, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39227106

ABSTRACT

Konjac glucomannan (KGM) molecular chains contain a small amount of acetyl groups and a large number of hydroxyl groups, thereby exhibiting exceptional water retention and gel-forming properties. To meet diverse requirements, KGM undergoes modification processes such as oxidation, acetylation, grafting, and cationization, which reduce its viscosity, enhance its mechanical strength, and improve its water solubility. Researchers have found that KGM and its derivatives can regulate the polarization of macrophages, inducing their transformation into classically activated M1-type macrophages or alternatively activated M2-type macrophages, and even facilitating the interconversion between M1 and M2 phenotypes. Concurrently, the modulation of macrophage polarization states holds significant importance for chronic wound healing, inflammatory bowel disease (IBD), antitumor therapy, tissue engineering scaffolds, oral vaccines, pulmonary delivery, and probiotics. Therefore, KGM has the advantages of both immunomodulatory effects (biological activity) and gel-forming properties (physicochemical properties), giving it significant advantages in a variety of biomedical engineering applications.


Subject(s)
Macrophages , Mannans , Mannans/chemistry , Mannans/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Humans , Animals , Tissue Engineering/methods
16.
BMC Cancer ; 24(1): 1129, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256694

ABSTRACT

BACKGROUND: Breast cancer metastasis remains the leading cause of cancer-related deaths in women worldwide. Infiltration of tumor-associated macrophages (TAMs) in the tumor stroma is known to be correlated with reduced overall survival. The inhibitors of TAMs are sought after for reprogramming the tumor microenvironment. Signal transducer and activator of transcription 3 (STAT3) is well known to contribute in pro-tumoral properties of TAMs. 2-Methoxyestradiol (2ME2), a potent anticancer and antiangiogenic agent, has been in clinical trials for treatment of breast cancer. Here, we investigated the potential of 2ME2 in modulating the pro-tumoral effects of TAMs in breast cancer. METHODS: THP-1-derived macrophages were polarized to macrophages with or without 2ME2. The effect of 2ME2 on macrophage surface markers and anti-inflammatory genes was determined by Western blotting, flow cytometry, immunofluorescence, qRT‒PCR. The concentration of cytokines secreted by cells was monitored by ELISA. The effect of M2 macrophages on malignant properties of breast cancer cells was determined using colony formation, wound healing, transwell, and gelatin zymography assays. An orthotopic model of breast cancer was used to determine the effect of 2ME2 on macrophage polarization and metastasis in vivo. RESULTS: First, our study found that polarization of monocytes to alternatively activated M2 macrophages is associated with the reorganization of the microtubule cytoskeleton. At lower concentrations, 2ME2 treatment depolymerized microtubules and reduced the expression of CD206 and CD163, suggesting that it inhibits the polarization of macrophages to M2 phenotype. However, the M1 polarization was not significantly affected at these concentrations. Importantly, 2ME2 inhibited the expression of several anti-inflammatory cytokines and growth factors, including CCL18, TGF-ß, IL-10, FNT, arginase, CXCL12, MMP9, and VEGF-A, and hindered the metastasis-promoting effects of M2 macrophages. Concurrently, 2ME2 treatment reduced the expression of CD163 in tumors and inhibited lung metastasis in the orthotopic breast cancer model. Mechanistically, 2ME2 treatment reduced the phosphorylation and nuclear translocation of STAT3, an effect which was abrogated by colivelin. CONCLUSIONS: Our study presents novel findings on mechanism of 2ME2 from the perspective of its effects on the polarization of the TAMs via the STAT3 signaling in breast cancer. Altogether, the data supports further clinical investigation of 2ME2 and its derivatives as therapeutic agents to modulate the tumor microenvironment and immune response in breast carcinoma.


Subject(s)
2-Methoxyestradiol , Breast Neoplasms , STAT3 Transcription Factor , Tumor-Associated Macrophages , 2-Methoxyestradiol/pharmacology , Humans , Female , STAT3 Transcription Factor/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Mice , Animals , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor Microenvironment/drug effects , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Cell Line, Tumor , Macrophage Activation/drug effects , THP-1 Cells , Xenograft Model Antitumor Assays , Cytokines/metabolism
17.
BMC Pulm Med ; 24(1): 444, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261812

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a group of chronic interstitial pulmonary diseases characterized by myofibroblast proliferation and extracellular matrix (ECM) deposition. However, current treatments are not satisfactory. Therefore, more effective therapies need to be explored. Cepharanthine (CEP) is a naturally occurring alkaloid that has recently been reported to have multiple pharmacological effects, particularly in chronic inflammation. METHODS: For in vivo experiments, first, a pulmonary fibrosis murine model was generated via tracheal injection of bleomycin (BLM). Second, the clinical manifestations and histopathological changes of the mice were used to verify that treatment with CEP might significantly reduce BLM-induced fibrosis. Furthermore, flow cytometric analysis was used to analyze the changes in the number of M2 macrophages in the lung tissues before and after treatment with CEP to explore the relationship between macrophage M2 polarization and pulmonary fibrosis. In vitro, we constructed two co-culture systems (THP-1 and MRC5 cells, RAW264.7 and NIH 3T3 cells), and measured the expression of fibrosis-related proteins to explore whether CEP could reduce pulmonary fibrosis by regulating macrophage M2 polarization and fibroblast activation. RESULTS: The results showed that the intranasal treatment of CEP significantly attenuated the symptoms of pulmonary fibrosis induced by BLM in a murine model. Our findings also indicated that CEP treatment markedly reduced the expression of fibrosis markers, including TGF-ß1, collagen I, fibronectin and α-SMA, in the mouse lung. Furthermore, in vitro studies demonstrated that CEP attenuated pulmonary fibrosis by inhibiting fibroblast activation through modulating macrophage M2 polarization and reducing TGF-ß1 expression. CONCLUSIONS: This study demonstrated the potential and efficacy of CEP in the treatment of pulmonary fibrosis. In particular, this study revealed a novel mechanism of CEP in inhibiting fibroblast activation by regulating macrophage M2 polarization and reducing the expression of fibrosis-associated factors. Our findings open a new direction for future research into the treatment of pulmonary fibrosis.


Subject(s)
Benzylisoquinolines , Bleomycin , Disease Models, Animal , Macrophages , Animals , Benzylisoquinolines/pharmacology , Mice , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Inbred C57BL , Pulmonary Fibrosis/drug therapy , Lung/pathology , Lung/drug effects , Humans , RAW 264.7 Cells , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Transforming Growth Factor beta1/metabolism , NIH 3T3 Cells , Benzodioxoles
18.
Mediators Inflamm ; 2024: 1484806, 2024.
Article in English | MEDLINE | ID: mdl-39262415

ABSTRACT

Background: Colitis is a refractory intestinal inflammatory disease significantly affecting the quality of a patient's life and increasing the risk of exacerbation. The primary factors leading to colitis encompass infections, insufficient blood flow, and the buildup of collagen as well as white blood cells. Among various available therapeutics, 5-methoxytryptophan (5-MTP) has emerged as one of the protectants by inhibiting inflammatory damage. Nonetheless, there is no report on the role of 5-MTP in the treatment of colitis. Materials and Methods: To verify the anti-inflammatory effect of 5-MTP in vivo, we first constructed mouse model with dextran sulfate sodium-induced colitis. Furthermore, the macrophage infiltration and release of inflammatory factors through western blot (WB) and hematoxylin-eosin staining analyses were examined. Intestinal epithelial cell tight junction damage and apoptosis were investigated by WB analysis, immunofluorescence, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Finally, we examined the generation of cellular inflammation and analyzed the influence of 5-MTP on M1 polarization at the cellular level. Results: This study initially confirmed that 5-MTP possessed an excellent therapeutic effect on colitis. 5-MTP inhibits macrophage infiltration and the generation of inflammatory factors. In addition to its effects on immune cells, 5-MTP significantly inhibits intestinal epithelial cell tight junction damage and apoptosis in vivo. Moreover, it inhibits inflammation and M1 polarization response in vitro. Conclusion: 5-MTP counteracts excessive inflammation, thereby preventing intestinal epithelial tight junction damage. In addition, inhibition of apoptosis suggests that 5-MTP may be a potential therapeutic agent for colitis.


Subject(s)
Colitis , Dextran Sulfate , Intestinal Mucosa , Mice, Inbred C57BL , Tryptophan , Animals , Dextran Sulfate/toxicity , Colitis/chemically induced , Colitis/drug therapy , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Tryptophan/analogs & derivatives , Tryptophan/pharmacology , Inflammation/drug therapy , Male , Apoptosis/drug effects , Macrophages/drug effects , Macrophages/metabolism , Humans , Disease Models, Animal , Tight Junctions/drug effects , Tight Junctions/metabolism
19.
Int J Nanomedicine ; 19: 9175-9193, 2024.
Article in English | MEDLINE | ID: mdl-39263632

ABSTRACT

Purpose: Ischemic stroke is a refractory disease wherein the reperfusion injury caused by sudden restoration of blood supply is the main cause of increased mortality and disability. However, current therapeutic strategies for the inflammatory response induced by cerebral ischemia-reperfusion (I/R) injury are unsatisfactory. This study aimed to develop a functional nanoparticle (MM/ANPs) comprising apelin-13 (APNs) encapsulated in macrophage membranes (MM) modified with distearoyl phosphatidylethanolamine-polyethylene glycol-RVG29 (DSPE-PEG-RVG29) to achieve targeted therapy against ischemic stroke. Methods: MM were extracted from RAW264.7. PLGA was dissolved in dichloromethane, while Apelin-13 was dissolved in water, and CY5.5 was dissolved in dichloromethane. The precipitate was washed twice with ultrapure water and then resuspended in 10 mL to obtain an aqueous solution of PLGA nanoparticles. Subsequently, the cell membrane was evenly dispersed homogeneously and mixed with PLGA-COOH at a mass ratio of 1:1 for the hybrid ultrasound. DSPE-PEG-RVG29 was added and incubated for 1 h to obtain MM/ANPs. Results: In this study, we developed a functional nanoparticle delivery system (MM/ANPs) that utilizes macrophage membranes coated with DSPE-PEG-RVG29 peptide to efficiently deliver Apelin-13 to inflammatory areas using ischemic stroke therapy. MM/ANPs effectively cross the blood-brain barrier and selectively accumulate in ischemic and inflamed areas. In a mouse I/R injury model, these nanoparticles significantly improved neurological scores and reduced infarct volume. Apelin-13 is gradually released from the MM/ANPs, inhibiting NLRP3 inflammasome assembly by enhancing sirtuin 3 (SIRT3) activity, which suppresses the inflammatory response and pyroptosis. The positive regulation of SIRT3 further inhibits the NLRP3-mediated inflammation, showing the clinical potential of these nanoparticles for ischemic stroke treatment. The biocompatibility and safety of MM/ANPs were confirmed through in vitro cytotoxicity tests, blood-brain barrier permeability tests, biosafety evaluations, and blood compatibility studies. Conclusion: MM/ANPs offer a highly promising approach to achieve ischemic stroke-targeted therapy inhibiting NLRP3 inflammasome-mediated pyroptosis.


Subject(s)
Inflammasomes , Ischemic Stroke , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Nanoparticles , Pyroptosis , Animals , Mice , Ischemic Stroke/drug therapy , RAW 264.7 Cells , Pyroptosis/drug effects , Nanoparticles/chemistry , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Macrophages/drug effects , Macrophages/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Male , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/chemistry , Polyethylene Glycols/chemistry , Mice, Inbred C57BL , Reperfusion Injury/drug therapy , Phosphatidylethanolamines/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism
20.
J Med Virol ; 96(9): e29906, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39262090

ABSTRACT

Influenza virus-induced viral pneumonia is a major threat to human health, and specific therapeutic agents for viral pneumonia are still lacking. MoringaA (MA) is an anti-influenza virus active compound isolated from Moringa seeds, which can inhibit influenza virus by activating the TFEB-autophagic lysosomal pathway in host cells. In this study, we obtained exosomes from M2-type macrophages and encapsulated and delivered MA (MA-Exos), and we investigated the efficacy of MA-Exos in antiviral and viral pneumonia in vivo and in vitro, respectively. In addition, we provided insights into the mechanism by which MA-Exos regulates TFEB-lysosomal autophagy by RNA sequencing. The MA-Exos showed broad-spectrum inhibition of IAV, and significant promotion of the autophagic lysosomal pathway. Meanwhile, we found that GCN5 gene and protein were significantly down-regulated in IAV-infected cells after MA-Exos intervention, indicating its blocking the acetylation of TFEB by GCN5. In addition, MA-Exos also significantly promoted autophagy in lung tissue cells of mice with viral pneumonia. MA-Exos can inhibit and clear influenza virus by mediating the TFEB-autophagy lysosomal pathway by a mechanism related to the down-regulation of histone acetyltransferase GCN5. Our study provides a strategy for targeting MA-Exos for the treatment of viral pneumonia from both antiviral and virus-induced inflammation inhibition pathways.


Subject(s)
Antiviral Agents , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Exosomes , Influenza A virus , Lysosomes , Animals , Mice , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Lysosomes/metabolism , Lysosomes/drug effects , Lysosomes/virology , Exosomes/metabolism , Antiviral Agents/pharmacology , Autophagy/drug effects , Humans , Influenza A virus/drug effects , Influenza A virus/physiology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/drug therapy , Macrophages/virology , Macrophages/drug effects , Lung/virology
SELECTION OF CITATIONS
SEARCH DETAIL