Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49.505
Filter
1.
Front Immunol ; 15: 1414594, 2024.
Article in English | MEDLINE | ID: mdl-39091506

ABSTRACT

Hepatitis B Virus (HBV) is a stealthy and insidious pathogen capable of inducing chronic necro-inflammatory liver disease and hepatocellular carcinoma (HCC), resulting in over one million deaths worldwide per year. The traditional understanding of Chronic Hepatitis B (CHB) progression has focused on the complex interplay among ongoing virus replication, aberrant immune responses, and liver pathogenesis. However, the dynamic progression and crucial factors involved in the transition from HBV infection to immune activation and intrahepatic inflammation remain elusive. Recent insights have illuminated HBV's exploitation of the sodium taurocholate co-transporting polypeptide (NTCP) and manipulation of the cholesterol transport system shared between macrophages and hepatocytes for viral entry. These discoveries deepen our understanding of HBV as a virus that hijacks hepatocyte metabolism. Moreover, hepatic niche macrophages exhibit significant phenotypic and functional diversity, zonal characteristics, and play essential roles, either in maintaining liver homeostasis or contributing to the pathogenesis of chronic liver diseases. Therefore, we underscore recent revelations concerning the importance of hepatic niche macrophages in the context of viral hepatitis. This review particularly emphasizes the significant role of HBV-induced metabolic changes in hepatic macrophages as a key factor in the transition from viral infection to immune activation, ultimately culminating in liver inflammation. These metabolic alterations in hepatic macrophages offer promising targets for therapeutic interventions and serve as valuable early warning indicators, shedding light on the disease progression.


Subject(s)
Hepatitis B virus , Hepatitis B, Chronic , Liver , Macrophages , Humans , Hepatitis B virus/immunology , Hepatitis B virus/physiology , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Animals , Liver/immunology , Liver/virology , Liver/metabolism , Liver/pathology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/metabolism , Hepatitis B, Chronic/virology , Inflammation/immunology , Inflammation/metabolism , Hepatocytes/metabolism , Hepatocytes/immunology , Hepatocytes/virology
2.
Front Cell Infect Microbiol ; 14: 1401462, 2024.
Article in English | MEDLINE | ID: mdl-39091675

ABSTRACT

Introduction: Bacterial urinary tract infections (UTI) are among the most common infectious diseases worldwide. The rise of multidrug-resistant (MDR) uropathogenic Escherichia coli (UPEC) UTI cases is a significant threat to healthcare systems. Several probiotic bacteria have been proposed as an alternative to combat MDR UTI. Lactic acid bacteria in the genus Limosilactobacillus are some of the most studied and used probiotics. However, strain-specific effects play a critical role in probiotic properties. L. reuteri KUB-AC5 (AC5), isolated from the chicken gut, confers antimicrobial and immunobiotic effects against some human pathogens. However, the antibacterial and immune modulatory effects of AC5 on UPEC have never been explored. Methods: Here, we investigated both the direct and indirect effects of AC5 against UPEC isolates (UTI89, CFT073, and clinical MDR UPEC AT31) in vitro. Using a spot-on lawn, agar-well diffusion, and competitive growth assays, we found that viable AC5 cells and cell-free components of this probiotic significantly reduced the UPEC growth of all strains tested. The human bladder epithelial cell line UM-UC-3 was used to assess the adhesion and pathogen-attachment inhibition properties of AC5 on UPEC. Results and discussion: Our data showed that AC5 can attach to UM-UC-3 and decrease UPEC attachment in a dose-dependent manner. Pretreatment of UPEC-infected murine macrophage RAW264.7 cells with viable AC5 (multiplicity of infection, MOI = 1) for 24 hours enhanced macrophage-killing activity and increased proinflammatory (Nos2, Il6, and Tnfa) and anti-inflammatory (Il10) gene expression. These findings indicate the gut-derived AC5 probiotic could be a potential urogenital probiotic against MDR UTI.


Subject(s)
Limosilactobacillus reuteri , Macrophages , Probiotics , Uropathogenic Escherichia coli , Probiotics/pharmacology , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/immunology , Limosilactobacillus reuteri/physiology , Animals , Mice , Macrophages/immunology , Macrophages/microbiology , Humans , Urothelium/microbiology , Urinary Tract Infections/microbiology , Urinary Tract Infections/prevention & control , Cell Line , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , RAW 264.7 Cells , Epithelial Cells/microbiology , Chickens , Bacterial Adhesion/drug effects
3.
Sci Immunol ; 9(98): eadq7306, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093959

ABSTRACT

Short-lived repair-promoting macrophages are recruited to foci of lung damage during influenza infection-and they are Ly6G positive (see related Research Article by Ruscitti et al.).


Subject(s)
Antigens, Ly , Macrophages, Alveolar , Animals , Antigens, Ly/metabolism , Antigens, Ly/immunology , Mice , Macrophages, Alveolar/immunology , Lung/immunology , Lung/cytology , Biomarkers , Macrophages/immunology , Orthomyxoviridae Infections/immunology , Humans
4.
Exerc Immunol Rev ; 30: 49-62, 2024.
Article in English | MEDLINE | ID: mdl-39094180

ABSTRACT

Moderate exercise is effective for maintaining or improving overall health. However, excessive exercise that exhausts the adaptive reserve of the body or its ability to positively respond to training stimuli can induce tissue damage and dysfunction of multiple organs and systems. Tissue injury, inflammation, and oxidative stress are reportedly induced in the skeletal muscles, liver, and kidneys after exercise. However, the precise mechanisms underlying acute tissue injury after intense exercise have not yet been fully elucidated. Studies using various experimental models of acute tissue injury, other than intense exercise, have demonstrated infiltration of inflammatory cells, including neutrophils and macrophages. These cells infiltrate injured tissues and induce inflammatory and oxidative stress responses by producing inflammatory cytokines and reactive oxygen species, thereby exacerbating tissue injury. In addition to the activation of blood neutrophils and increase in their levels during and/or after prolonged or intense exercise, chemokines that contribute to leukocyte migration are released, facilitating the migration of neutrophils and monocytes into tissues. Therefore, neutrophils and macrophages, activated by exhaustive exercise, may infiltrate tissues and contribute to exhaustive exercise-induced tissue injury. Recently, the contributions of neutrophils and macrophages to various tissue injuries caused by exhaustive exercise have been reported. In this review, we summarize the involvement of neutrophils and monocytes/macrophages in exhaustive exercise-induced non-skeletal muscle tissue injury. In addition, we present novel data demonstrating the contribution of neutrophils and macrophages to exhaustive exercise-induced cardiac and pulmonary injuries. Our study findings and the evidence presented in this review suggest that neutrophils and macrophages may play pivotal roles in exhaustive exercise-induced tissue injuries.


Subject(s)
Exercise , Macrophages , Neutrophils , Neutrophils/immunology , Neutrophils/metabolism , Humans , Macrophages/immunology , Exercise/physiology , Animals , Liver/immunology , Liver/pathology , Liver/metabolism , Liver/injuries , Lung Injury/immunology , Lung Injury/etiology , Heart Injuries/immunology , Heart Injuries/etiology , Oxidative Stress , Kidney/immunology , Kidney/pathology
5.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3901-3911, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39099364

ABSTRACT

The aim of this study was to investigate the potential mechanism by which cryptotanshinone(CTS) may exert its anti-myo-cardial ischemic effect through the regulation of macrophage polarization via the dendritic cell-associated C-type lectin 1(Dectin-1) signaling pathway. Male C57BL/6 mice, aged six weeks, were utilized to establish myocardial ischemia models and were subsequently divided into five groups: sham, model, CTS low-dose(21 mg·kg~(-1)·d~(-1)), CTS high-dose(84 mg·kg~(-1)·d~(-1)), and dapagliflozin(0.14 mg·kg~(-1)·d~(-1)). The cardiac function, serum enzyme levels, Dectin-1 expression, macrophage polarization, and neutrophil infiltration in the myocardial infarction area were assessed in each group. An in vitro model of M1-type macrophages was constructed using lipopolysaccharide/interfe-ron-γ(LPS/IFN-γ) stimulated RAW264.7 cells to investigate the impact of CTS on macrophage polarization and to examine alterations in key proteins within the Dectin-1 signaling pathway. In the CTS group, compared to the model group mice, there was a significant improvement in the cardiac function and myocardial injury, along with a notable increase in the ratio of M2/M1-type macrophages in the myocardial infarcted area and a decrease in neutrophil infiltration. Additionally, Dectin-1 exhibited low expression. The results of in vitro experiments demonstrated that CTS can decrease the expression of M1-type marker genes and increase the expression of M2-type marker genes. Besides, it can decrease the levels of Dectin-1 and the phosphorylation of its associated proteins, including spleen tyrosine kinase(Syk), protein kinase B(Akt), nuclear factor-kappaB p65(NF-κB p65), and extracellular signal-regulated protein kinases(ERK1/2). Additionally, CTS was found to enhance the phosphorylation of signal transducer and activator of transcription-6(STAT6). The above results suggest that CTS exerts its anti-myocardial ischemic injury effect by regulating macrophage polarization through the Dectin-1 signaling pathway.


Subject(s)
Lectins, C-Type , Macrophages , Mice, Inbred C57BL , Myocardial Ischemia , Phenanthrenes , Signal Transduction , Animals , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Male , Mice , Signal Transduction/drug effects , Macrophages/drug effects , Macrophages/immunology , Myocardial Ischemia/drug therapy , Myocardial Ischemia/immunology , Myocardial Ischemia/genetics , Myocardial Ischemia/metabolism , Phenanthrenes/pharmacology , Humans
6.
Stem Cell Res Ther ; 15(1): 242, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39098899

ABSTRACT

BACKGROUND: Mesenchymal stromal cell (MSC)-derived exosomes (MSC-Exo) have been recognized for their significant role in regulating macrophage polarization, a process crucial to the pathogenesis of abdominal aortic aneurysm (AAA). However, the therapeutic effects of MSC-Exo on AAA remain largely unexplored. Therefore, this study aimed to investigate the functional and mechanistic aspects of MSC-Exo in the progression of AAA. METHODS: The MSC-derived exosomes were characterized using Transmission Electron Microscopy, Nanoparticle Tracking Analysis, and Western blotting. An experimental mouse model of AAA was established through the administration of angiotensin II (Ang II) in male apoe-/- mice and calcium chloride (CaCl2) in male C57/B6 mice, with subsequent tail vein injection of exosomes to evaluate their efficacy against AAA. Macrophage polarization was assessed using immunofluorescence staining and WB analysis. Mechanistic analysis was performed using 4D Label-free Proteomics analysis. RESULTS: We found that intravenous administration of MSC-Exo induced M2 polarization of macrophages within an inflammatory environment, effectively impeding AAA development in Ang II or CaCl2-induced AAA model. The therapeutic efficacy of MSC-Exo treatment was dependent on the presence of macrophages. Mechanistically, MSC-Exo suppressed the levels of cluster of differentiation 74 (CD74), modulating macrophage polarization through the TSC2-mTOR-AKT pathway. These findings highlight the potential of MSC-Exo as a therapeutic strategy for AAA by modulating macrophage polarization.


Subject(s)
Aortic Aneurysm, Abdominal , Exosomes , Macrophages , Mesenchymal Stem Cells , Mice, Inbred C57BL , Animals , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/chemically induced , Exosomes/metabolism , Mice , Mesenchymal Stem Cells/metabolism , Macrophages/metabolism , Macrophages/immunology , Male , Disease Models, Animal , Angiotensin II/metabolism , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/genetics , Calcium Chloride
7.
Front Immunol ; 15: 1448092, 2024.
Article in English | MEDLINE | ID: mdl-39104523

ABSTRACT

Introduction: The immunomodulatory properties of mesenchymal stromal cells (MSC) have been well-characterized in in-vitro and in-vivo models. We have previously shown that liver MSC (L-MSC) are superior inhibitors of T-cell activation/proliferation, NK cell cytolytic function, and macrophage activation compared to adipose (A-MSC) and bone marrow MSC (BM-MSC) in-vitro. Method: To test these observations in-vivo, we infused these types of MSC into mice with unilateral renal artery stenosis (RAS), an established model of kidney inflammation. Unilateral RAS was induced via laparotomy in 11-week-old, male 129-S1 mice under general anesthesia. Control mice had sham operations. Human L-MSC, AMSC, and BM-MSC (5x105 cells each) or PBS vehicle were injected intra-arterially 2 weeks after surgery. Kidney morphology was studied 2 weeks after infusion using micro-MRI imaging. Renal inflammation, apoptosis, fibrosis, and MSC retention were studied ex-vivo utilizing western blot, immunofluorescence, and immunohistological analyses. Results: The stenotic kidney volume was smaller in all RAS mice, confirming significant injury, and was improved by infusion of all MSC types. All MSC-infused groups had lower levels of plasma renin and proteinuria compared to untreated RAS. Serum creatinine improved in micetreated with BM- and L-MSC. All types of MSC located to and were retained within the stenotic kidneys, but L-MSC retention was significantly higher than A- and BM-MSC. While all groups of MSC-treated mice displayed reduced overall inflammation and macrophage counts, L-MSC showed superior potency in-vivo at localizing to the site of inflammation and inducing M2 (reparative) macrophage polarization to reduce inflammatory changes. Discussion: These in-vivo findings extend our in-vitro studies and suggest that L-MSC possess unique anti-inflammatory properties that may play a role in liver-induced tolerance and lend further support to their use as therapeutic agents for diseases with underlying inflammatory pathophysiology.


Subject(s)
Ischemia , Liver , Macrophages , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Mice , Mesenchymal Stem Cell Transplantation/methods , Male , Humans , Liver/pathology , Liver/immunology , Ischemia/therapy , Ischemia/immunology , Macrophages/immunology , Disease Models, Animal , Inflammation/immunology , Inflammation/therapy , Macrophage Activation , Renal Artery Obstruction/therapy , Renal Artery Obstruction/immunology , Kidney/pathology , Kidney/immunology
8.
Front Immunol ; 15: 1375528, 2024.
Article in English | MEDLINE | ID: mdl-39104525

ABSTRACT

Tissue-resident macrophages (TRMs) are an integral part of the innate immune system, but their biology is not well understood in the context of cancer. Distinctive resident macrophage populations are identified in different organs in mice using fate mapping studies. They develop from the yolk sac and self-maintain themselves lifelong in specific tissular niches. Similarly, breast-resident macrophages are part of the mammary gland microenvironment. They reside in the breast adipose tissue stroma and close to the ductal epithelium and help in morphogenesis. In breast cancer, TRMs may promote disease progression and metastasis; however, precise mechanisms have not been elucidated. TRMs interact intimately with recruited macrophages, cytotoxic T cells, and other immune cells along with cancer cells, deciding further immunosuppressive or cytotoxic pathways. Moreover, triple-negative breast cancer (TNBC), which is generally associated with poor outcomes, can harbor specific TRM phenotypes. The influence of TRMs on adipose tissue stroma of the mammary gland also contributes to tumor progression. The complex crosstalk between TRMs with T cells, stroma, and breast cancer cells can establish a cascade of downstream events, understanding which can offer new insight for drug discovery and upcoming treatment choices. This review aims to acknowledge the previous research done in this regard while exploring existing research gaps and the future therapeutic potential of TRMs as a combination or single agent in breast cancer.


Subject(s)
Breast Neoplasms , Macrophages , Tumor Microenvironment , Humans , Animals , Female , Tumor Microenvironment/immunology , Macrophages/immunology , Macrophages/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Adipose Tissue/immunology , Adipose Tissue/metabolism , Adipose Tissue/cytology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism
9.
Front Immunol ; 15: 1386658, 2024.
Article in English | MEDLINE | ID: mdl-39104537

ABSTRACT

Alcohol ingestion is a widespread habituation that evolved along with a growing population, altering physiological conditions through immunomodulatory function. There is much research that has reported that consumption of alcohol at low and heavy levels causes different biological impacts, including cellular injury, leading to systemic dysfunction and increased inflammatory markers. In the fate of professional phagocytic cells, efferocytosis is an inevitable mechanism activated by the apoptotic cells, thus eliminating them and preventing the accumulation of cell corpses/debris in the microenvironment. Subsequently, it promotes the tissue repair mechanism and maintains cellular homeostasis. Unfortunately, defective efferocytosis is widely found in several inflammatory and age-related diseases such as atherosclerosis, autoimmune diseases, lung injury, fatty liver disease, and neurodegenerative diseases. Alcohol abuse is one of the factors that provoke an immune response that increases the rate of morbidity and mortality in parallel in systemic disease patients. Information regarding the emergence of immunomodulation during alcoholic pathogenesis and its association with efferocytosis impairment remain elusive. Hence, here in this review, we discussed the mechanism of efferocytosis, the role of defective efferocytosis in inflammatory diseases, and the role of alcohol on efferocytosis impairment.


Subject(s)
Alcoholic Intoxication , Efferocytosis , Animals , Humans , Alcoholic Intoxication/immunology , Alcoholic Intoxication/metabolism , Apoptosis , Efferocytosis/immunology , Ethanol , Inflammation/immunology , Macrophages/immunology , Macrophages/metabolism , Phagocytes/immunology , Phagocytes/metabolism
10.
J Immunol Res ; 2024: 4481452, 2024.
Article in English | MEDLINE | ID: mdl-39104595

ABSTRACT

Exosome-derived microRNAs (miRNAs) are emerging as pivotal players in the pathophysiology of sepsis, representing a new frontier in both the diagnosis and treatment of this complex condition. Sepsis, a severe systemic response to infection, involves intricate immune and nonimmune mechanisms, where exosome-mediated communication can significantly influence disease progression and outcomes. During the progress of sepsis, the miRNA profile of exosomes undergoes notable alterations, is reflecting, and may affect the progression of the disease. This review comprehensively explores the biology of exosome-derived miRNAs, which originate from both immune cells (such as macrophages and dendritic cells) and nonimmune cells (such as endothelial and epithelial cells) and play a dynamic role in modulating pathways that affect the course of sepsis, including those related to inflammation, immune response, cell survival, and apoptosis. Taking into account these dynamic changes, we further discuss the potential of exosome-derived miRNAs as biomarkers for the early detection and prognosis of sepsis and advantages over traditional biomarkers due to their stability and specificity. Furthermore, this review evaluates exosome-based therapeutic miRNA delivery systems in sepsis, which may pave the way for targeted modulation of the septic response and personalized treatment options.


Subject(s)
Biomarkers , Exosomes , MicroRNAs , Sepsis , Humans , Exosomes/metabolism , Sepsis/diagnosis , Sepsis/therapy , Sepsis/genetics , Sepsis/immunology , MicroRNAs/genetics , Animals , Prognosis , Macrophages/immunology , Macrophages/metabolism
11.
Front Immunol ; 15: 1425466, 2024.
Article in English | MEDLINE | ID: mdl-39100672

ABSTRACT

Introduction: Genetic mutations in critical nodes of pulmonary epithelial function are linked to the pathogenesis of pulmonary fibrosis (PF) and other interstitial lung diseases. The slow progression of these pathologies is often intermitted and accelerated by acute exacerbations, complex non-resolving cycles of inflammation and parenchymal damage, resulting in lung function decline and death. Excess monocyte mobilization during the initial phase of an acute exacerbation, and their long-term persistence in the lung, is linked to poor disease outcome. Methods: The present work leverages a clinical idiopathic PF dataset and a murine model of acute inflammatory exacerbations triggered by mutation in the alveolar type-2 cell-restricted Surfactant Protein-C [SP-C] gene to spatially and phenotypically define monocyte/macrophage changes in the fibrosing lung. Results: SP-C mutation triggered heterogeneous CD68+ macrophage activation, with highly active peri-injured cells relative to those sampled from fully remodeled and healthy regions. Ingenuity pathway analysis of sorted CD11b-SigF+CD11c+ alveolar macrophages defined asynchronous activation of extracellular matrix re-organization, cellular mobilization, and Apolipoprotein E (Apoe) signaling in the fibrosing lung. Cell-cell communication analysis of single cell sequencing datasets predicted pro-fibrogenic signaling (fibronectin/Fn1, osteopontin/Spp1, and Tgfb1) emanating from Trem2/TREM2 + interstitial macrophages. These cells also produced a distinct lipid signature from alveolar macrophages and monocytes, characterized by Apoe expression. Mono- and di-allelic genetic deletion of ApoE in SP-C mutant mice had limited impact on inflammation and mortality up to 42 day after injury. Discussion: Together, these results provide a detailed spatio-temporal picture of resident, interstitial, and monocyte-derived macrophages during SP-C induced inflammatory exacerbations and end-stage clinical PF, and propose ApoE as a biomarker to identify activated macrophages involved in tissue remodeling.


Subject(s)
Pulmonary Fibrosis , Animals , Mice , Humans , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/metabolism , Phenotype , Disease Models, Animal , Pulmonary Surfactant-Associated Protein C/genetics , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mutation , Macrophage Activation/genetics , Macrophage Activation/immunology , Apolipoproteins E/genetics , Male , Inflammation/immunology , Disease Progression , Macrophages/immunology , Macrophages/metabolism , Lung/pathology , Lung/immunology , Lung/metabolism , Mice, Inbred C57BL , Female , Monocytes/immunology , Monocytes/metabolism
12.
Front Immunol ; 15: 1429523, 2024.
Article in English | MEDLINE | ID: mdl-39100675

ABSTRACT

Venous thromboembolism (VTE) poses a notable risk of morbidity and mortality. The natural resolution of the venous thrombus might be a potential alternative treatment strategy for VTE. Monocytes/macrophages merge as pivotal cell types in the gradual resolution of the thrombus. In this review, the vital role of macrophages in inducing inflammatory response, augmenting neovascularization, and facilitating the degradation of fibrin and collagen during thrombus resolution was described. The two phenotypes of macrophages involved in thrombus resolution and their dual functions were discussed. Macrophages expressing various factors, including cytokines and their receptors, adhesion molecules, chemokine receptors, vascular endothelial growth factor receptors, profibrinolytic- or antifibrinolytic-related enzymes, and other elements, are explored for their potential to promote or attenuate thrombus resolution. Furthermore, this review provides a comprehensive summary of new and promising therapeutic candidate drugs associated with monocytes/macrophages that have been demonstrated to promote or impair thrombus resolution. However, further clinical trials are essential to validate their efficacy in VTE therapy.


Subject(s)
Macrophages , Monocytes , Venous Thrombosis , Humans , Monocytes/immunology , Monocytes/metabolism , Macrophages/immunology , Macrophages/metabolism , Animals , Venous Thrombosis/immunology , Venous Thrombosis/metabolism , Venous Thromboembolism/immunology , Venous Thromboembolism/pathology , Venous Thromboembolism/drug therapy
13.
Front Immunol ; 15: 1430057, 2024.
Article in English | MEDLINE | ID: mdl-39100678

ABSTRACT

The protozoan parasite Entamoeba histolytica is the causative agent of amebiasis, with clinical outcomes ranging from asymptomatic infections to severe invasive diseases. The innate immune system, particularly macrophages, is of paramount importance in resisting the invasion of host tissues and organs by the trophozoites of E. histolytica. Parasite-derived pathogenic factors, such as lectins, play a pivotal role in the promotion of macrophage polarization phenotypes that have undergone alteration. Nevertheless, the precise mechanisms by which E. histolytica modulates immune polarization remain largely unknown. The current study focused on the immunomodulatory effects of the Igl-C fragment of E. histolytica Gal/GalNAc lectin on macrophage polarization. These results demonstrated that Igl-C could induce the secretion of IL-1ß, IL-6, and other cytokines, activating a mixed M1/M2 polarization state. M1 polarization of macrophages occurs in the early stages and gradually transitions to M2 polarization in the later stages, which may contribute to the persistence of the infection. Igl-C induces the macrophage M1 phenotype and causes the release of immune effector molecules, including iNOS and cytokines, by activating the NF-κB p65 and JAK-STAT1 transcription factor signaling pathways. Furthermore, Igl-C supports the macrophage M2 phenotype via JAK-STAT3 and IL-4-STAT6 pathways, which activate arginase expression in later stages, contributing to the tissue regeneration and persistence of the parasite. The involvement of distinct signaling pathways in mediating this response highlights the complex interplay between the parasite and the host immune system. These findings enhance our understanding of the Igl-C-mediated pathogenic mechanisms during E. histolytica infection.


Subject(s)
Entamoeba histolytica , Entamoebiasis , Lectins , Macrophages , Entamoeba histolytica/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Entamoebiasis/immunology , Entamoebiasis/parasitology , Animals , Mice , Lectins/metabolism , Lectins/immunology , Cytokines/metabolism , Macrophage Activation , Humans , Signal Transduction , Protozoan Proteins/immunology , Protozoan Proteins/metabolism
14.
Sci Rep ; 14(1): 17949, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095453

ABSTRACT

Stroke is a leading cause of permanent disability worldwide. Despite intensive research over the last decades, key anti-inflammatory strategies that have proven beneficial in pre-clinical animal models have often failed in translation. The importance of neutrophils as pro- and anti-inflammatory peripheral immune cells has often been overlooked in ischemic stroke. However, neutrophils rapidly infiltrate into the brain parenchyma after stroke and secrete an array of pro-inflammatory factors including reactive oxygen species, proteases, cytokines, and chemokines exacerbating damage. In this study, we demonstrate the neuroprotective and anti-inflammatory effect of benserazide, a clinically used DOPA decarboxylase inhibitor, using both in vitro models of inflammation and in vivo mouse models of focal cerebral ischemia. Benserazide significantly attenuated PMA-induced NETosis in isolated human neutrophils. Furthermore, benserazide was able to protect both SH-SY5Y and iPSC-derived human cortical neurons when challenged with activated neutrophils demonstrating the clinical relevance of this study. Additional in vitro data suggest the ability of benserazide to polarize macrophages towards M2-phenotypes following LPS stimulation. Neuroprotective effects of benserazide are further demonstrated by in vivo studies where peripheral administration of benserazide significantly attenuated neutrophil infiltration into the brain, altered microglia/macrophage phenotypes, and improved the behavioral outcome post-stroke. Overall, our data suggest that benserazide could serve as a drug candidate for the treatment of ischemic stroke. The importance of our results for future clinical trials is further underlined as benserazide has been approved by the European Medicines Agency as a safe and effective treatment in Parkinson's disease when combined with levodopa.


Subject(s)
Benserazide , Ischemic Stroke , Neuroprotective Agents , Neutrophils , Benserazide/pharmacology , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Humans , Ischemic Stroke/drug therapy , Ischemic Stroke/immunology , Ischemic Stroke/metabolism , Mice , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Disease Models, Animal , Recovery of Function/drug effects , Male , Mice, Inbred C57BL , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Microglia/drug effects , Microglia/metabolism , Neurons/drug effects , Neurons/metabolism
15.
Sci Rep ; 14(1): 17916, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095563

ABSTRACT

Activating antibody-dependent cellular cytotoxicity (ADCC) by targeting claudin-18 isoform 2 (CLDN18.2) using zolbetuximab, a monoclonal antibody against CLDN18.2, has been considered a promising novel therapeutic strategy for gastric cancer (GC). However, the impact of CLDN18.2 expression on natural killer (NK) cells and monocytes/macrophages-crucial effector cells of ADCC-in GC has not been fully investigated. In the present study, we assessed the impact of CLDN18.2 expression on clinical outcomes, molecular features, and the frequencies of tumor-infiltrating NK cells and macrophages, as well as peripheral blood NK cells and monocytes, in GC by analyzing our own GC cohorts. The expression of CLDN18.2 did not significantly impact clinical outcomes of GC patients, while it was significantly and positively associated with Epstein-Barr virus (EBV) status and PD-L1 expression. The frequencies of tumor-infiltrating NK cells and macrophages, as well as peripheral blood NK cells and monocytes, were comparable between CLDN18.2-positive and CLDN18.2-negative GCs. Importantly, both CLDN18.2 expression and the number of tumor-infiltrating NK cells were significantly higher in EBV-associated GC compared to other molecular subtypes. Our findings support the effectiveness of zolbetuximab in CLDN18.2-positive GC, and offer a novel insight into the treatment of this cancer type, highlighting its potential effectiveness for CLDN18.2-positive/EBV-associated GC.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , Claudins , Killer Cells, Natural , Stomach Neoplasms , Humans , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Male , Female , Claudins/metabolism , Claudins/genetics , Middle Aged , Aged , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism
16.
Int J Immunopathol Pharmacol ; 38: 3946320241272550, 2024.
Article in English | MEDLINE | ID: mdl-39101927

ABSTRACT

OBJECTIVE: To explore the effect of miR-370-3p on LPS triggering, in particular its involvement in disease progression by targeting the TLR4-NLRP3-caspase-1 cellular pyroptosis pathway in macrophages. METHODS: Human macrophage RAW264.7 was divided into 6 groups: control, LPS, LPS + inhibitor-NC, LPS + miR-370-3p inhibitor, LPS + mimics-NC and LPS + miR-370-3p mimics. RT-qPCR was used to detect the expression level of miR-370-3p and analyzed comparatively. CCK-8 and flow cytometry assays were used to detect cell viability and apoptosis. ELISA assay was used to detect the levels of IL-1ß and TNF-α in the supernatant of the cells. The WB assay was used to detect TLR4, NLRP3, Caspase-1 and GSDMD levels. RESULTS: After LPS induction, macrophage miR-370-3p levels decreased, cell viability decreased, and apoptosis increased. At the same time, the levels of TLR4, NLRP3, Caspase-1 and GSDMD increased in the cells, and the levels of IL-1ß and TNF-α increased in the cell supernatant. Compared with the LPS group, the significantly higher expression level of miR-370-3p in the cells of the LPS + miR-370-3p mimics group was accompanied by significantly higher cell viability, significantly lower apoptosis rate, significantly lower levels of TLR4, NLRP3, Caspase-1, and GSDMD in the cells, and significantly lower levels of IL-1ß and TNF-α in the cell supernatant. CONCLUSION: MiR-370-3p may be involved in anti-infective immune responses by targeting and inhibiting the macrophage TLR4-NLRP3-caspase-1 cellular pyroptosis pathway.


Subject(s)
Caspase 1 , Lipopolysaccharides , Macrophages , MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Toll-Like Receptor 4 , MicroRNAs/genetics , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Humans , Caspase 1/metabolism , Caspase 1/genetics , Mice , RAW 264.7 Cells , Animals , Signal Transduction , Interleukin-1beta/metabolism , Cell Survival/drug effects , Bacterial Infections/immunology
17.
Mikrochim Acta ; 191(9): 548, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39162887

ABSTRACT

Macrophages are among the most important components of the innate immune system where the interaction of pathogens and their phagocytosis occur as the first barrier of immunity. When nanomaterials interact with the human body, they have to face macrophages as well. Thus, understanding of nanomaterials-macrophage interactions and underlying mechanisms is crucial. For this purpose, various methods are used. In this study, surface-enhanced Raman scattering (SERS) is proposed by studying lipopolysaccharide (LPS) induced macrophage polarization using gold nanoparticles (AuNPs) as an alternative to the current approaches. For this purpose, the murine macrophage cell line, RAW 264.7 cells, was polarized by LPS, and polarization mechanisms were characterized by nitrite release and reactive oxygen species (ROS) formation and monitored using SERS. The spectral changes were interpreted based on the molecular pathways induced by LPS. Furthermore, polarized macrophages by LPS were exposed to the toxic AuNPs doses to monitor the enhanced phagocytosis and related spectral changes. It was observed that LPS induced macrophage polarization and enhanced AuNP phagocytosis by activated macrophages elucidated clearly from SERS spectra in a label-free non-destructive manner.


Subject(s)
Gold , Lipopolysaccharides , Macrophages , Metal Nanoparticles , Phagocytosis , Reactive Oxygen Species , Spectrum Analysis, Raman , Lipopolysaccharides/pharmacology , Spectrum Analysis, Raman/methods , Animals , Mice , Gold/chemistry , Macrophages/cytology , Macrophages/immunology , Macrophages/drug effects , Metal Nanoparticles/chemistry , RAW 264.7 Cells , Phagocytosis/drug effects , Reactive Oxygen Species/metabolism
18.
Mol Immunol ; 173: 88-98, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39088935

ABSTRACT

Tanshinone I (Tan I) has been proven to exert an anti-inflammatory effect, but the complete mechanism remains unclear. In this study, Tan I was described to have no effect on Syk expression in resting or LPS-stimulated macrophages ex vivo, but dramatically suppressed Syk phosphorylation and CD80, CD86, and IL-1ß expression of macrophages. The inflammatory activity of macrophages in ApoC3-transgenic (ApoC3TG) mice is upregulated by Syk activation. Tan I was determined to downregulate Syk phosphorylation and inflammatory activity of macrophages in ApoC3TG mice, both ex vivo and in vivo. Intraperitoneal injection of Tan I (4 mg/kg) effectively alleviated DSS-induced colitis in mice, accompanying with suppressing the activation of intestinal macrophages. Mechanistically, Tan I-treated macrophages exhibited a decrease in cytoplasmic ROS, NLRP3, GSDMD, and IL-1ß, which suggested that the alternative pathway of inflammasome activation in macrophages was suppressed. The SPR assay demonstrated that Tan I bound to Syk protein with a dissociation constant (KD) of 2.473 × 10-6 M. When Syk expression was knocked down by its shRNA, the inhibitory effects of Tan I on macrophages were blocked. Collectively, Tanshinone I effectively alleviated DSS-induced colitis in mice by inhibiting Syk-stimulated inflammasome activation, hence suppressing the inflammatory activity of macrophages.


Subject(s)
Abietanes , Colitis , Dextran Sulfate , Inflammasomes , Macrophages , Syk Kinase , Animals , Syk Kinase/metabolism , Abietanes/pharmacology , Inflammasomes/metabolism , Inflammasomes/drug effects , Mice , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Colitis/chemically induced , Colitis/immunology , Colitis/drug therapy , Colitis/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Male
19.
Mol Cancer ; 23(1): 168, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164758

ABSTRACT

BACKGROUND: Information transmission between primary tumor cells and immunocytes or stromal cells in distal organs is a critical factor in the formation of pre-metastatic niche (PMN). Understanding this mechanism is essential for developing effective therapeutic strategy against tumor metastasis. Our study aims to prove the hypothesis that circ-0034880-enriched tumor-derived extracellular vesicles (TEVs) mediate the formation of PMN and colorectal cancer liver metastasis (CRLM), and targeting circ-0034880-enriched TEVs might be an effective therapeutic strategy against PMN formation and CRLM. METHODS: We utilized qPCR and FISH to measure circRNAs expression levels in human CRC plasma, primary CRC tissues, and liver metastatic tissues. Additionally, we employed immunofluorescence, RNA sequencing, and in vivo experiments to assess the effect mechanism of circ-0034880-enriched TEVs on PMN formation and CRC metastasis. DARTS, CETSA and computational docking modeling were applied to explore the pharmacological effects of Ginsenoside Rb1 in impeding PMN formation. RESULTS: We found that circ-0034880 was highly enriched in plasma extracellular vesicles (EVs) derived from CRC patients and closely associated with CRLM. Functionally, circ-0034880-enriched TEVs entered the liver tissues and were absorbed by macrophages in the liver through bloodstream. Mechanically, TEVs-released circ-0034880 enhanced the activation of SPP1highCD206+ pro-tumor macrophages, reshaping the metastasis-supportive host stromal microenvironment and promoting overt metastasis. Importantly, our mechanistic findings led us to discover that the natural product Ginsenoside Rb1 impeded the activation of SPP1highCD206+ pro-tumor macrophages by reducing circ-0034880 biogenesis, thereby suppressing PMN formation and inhibiting CRLM. CONCLUSIONS: Circ-0034880-enriched TEVs facilitate strong interaction between primary tumor cells and SPP1highCD206+ pro-tumor macrophages, promoting PMN formation and CRLM. These findings suggest the potential of using Ginsenoside Rb1 as an alternative therapeutic agent to reshape PMN formation and prevent CRLM.


Subject(s)
Colorectal Neoplasms , Extracellular Vesicles , Liver Neoplasms , Osteopontin , RNA, Circular , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Extracellular Vesicles/metabolism , Liver Neoplasms/secondary , Liver Neoplasms/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Mice , Animals , RNA, Circular/genetics , Osteopontin/metabolism , Osteopontin/genetics , Cell Line, Tumor , Tumor Microenvironment , Male , Female , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Macrophages/immunology , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic/drug effects
20.
J Med Microbiol ; 73(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39158416

ABSTRACT

Introduction. Mycobacterium abscessus (MABS) is a pathogenic bacterium that can cause severe lung infections, particularly in individuals with cystic fibrosis. MABS colonies can exhibit either a smooth (S) or rough (R) morphotype, influenced by the presence or absence of glycopeptidolipids (GPLs) on their surface, respectively. Despite the clinical significance of these morphotypes, the relationship between GPL levels, morphotype and the pathogenesis of MABS infections remains poorly understood.Gap statement. The mechanisms and implications of GPL production and morphotypes in clinical MABS infections are unclear. There is a gap in understanding their correlation with infectivity and pathogenicity, particularly in patients with underlying lung disease.Aim. This study aimed to investigate the correlation between MABS morphology, GPL and infectivity by analysing strains from cystic fibrosis patients' sputum samples.Methodology. MABS was isolated from patient sputum samples and categorized by morphotype, GPL profile and replication rate in macrophages. A high-content ex vivo infection model using THP-1 cells assessed the infectivity of both clinical and laboratory strains.Results. Our findings revealed that around 50 % of isolates displayed mixed morphologies. GPL analysis confirmed a consistent relationship between GPL content and morphotype that was only found in smooth isolates. Across morphotype groups, no differences were observed in vitro, yet clinical R strains were observed to replicate at higher levels in the THP-1 infection model. Moreover, the proportion of infected macrophages was notably higher among clinical R strains compared to their S counterparts at 72 h post-infection. Clinical variants also infected THP-1 cells at significantly higher rates compared to laboratory strains, highlighting the limited translatability of lab strain infection data to clinical contexts.Conclusion. Our study confirmed the general correlation between morphotype and GPL levels in smooth strains yet unveiled more variability within morphotype groups than previously recognized, particularly during intracellular infection. As the R morphotype is the highest clinical concern, these findings contribute to the expanding knowledge base surrounding MABS infections, offering insights that can steer diagnostic methodologies and treatment approaches.


Subject(s)
Glycolipids , Macrophages , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Mycobacterium abscessus/isolation & purification , Mycobacterium abscessus/classification , Humans , Macrophages/microbiology , Macrophages/immunology , Mycobacterium Infections, Nontuberculous/microbiology , Glycolipids/analysis , THP-1 Cells , Cystic Fibrosis/microbiology , Cystic Fibrosis/complications , Sputum/microbiology , Glycopeptides
SELECTION OF CITATIONS
SEARCH DETAIL