Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Physiol Plant ; 176(4): e14463, 2024.
Article in English | MEDLINE | ID: mdl-39113602

ABSTRACT

The behavior of many plant enzymes depends on the metals and other ligands to which they are bound. A previous study demonstrated that tobacco Rubisco binds almost equally to magnesium and manganese and rapidly exchanges one metal for the other. The present study characterizes the kinetics of Rubisco and the plastidial malic enzyme when bound to either metal. When Rubisco purified from five C3 species was bound to magnesium rather than manganese, the specificity for CO2 over O2, (Sc/o) increased by 25% and the ratio of the maximum velocities of carboxylation / oxygenation (Vcmax/Vomax) increased by 39%. For the recombinant plastidial malic enzyme, the forward reaction (malate decarboxylation) was 30% slower and the reverse reaction (pyruvate carboxylation) was three times faster when bound to manganese rather than magnesium. Adding 6-phosphoglycerate and NADP+ inhibited carboxylation and oxygenation when Rubisco was bound to magnesium and stimulated oxygenation when it was bound to manganese. Conditions that favored RuBP oxygenation stimulated Rubisco to convert as much as 15% of the total RuBP consumed into pyruvate. These results are consistent with a stromal biochemical pathway in which (1) Rubisco when associated with manganese converts a substantial amount of RuBP into pyruvate, (2) malic enzyme when associated with manganese carboxylates a substantial portion of this pyruvate into malate, and (3) chloroplasts export additional malate into the cytoplasm where it generates NADH for assimilating nitrate into amino acids. Thus, plants may regulate the activities of magnesium and manganese in leaves to balance organic carbon and organic nitrogen as atmospheric CO2 fluctuates.


Subject(s)
Chloroplasts , Ribulose-Bisphosphate Carboxylase , Chloroplasts/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Ligands , Carbon Dioxide/metabolism , Manganese/metabolism , Carbon Cycle , Oxygen/metabolism , Photosynthesis/physiology , Magnesium/metabolism , Metals/metabolism , Kinetics , Carbon/metabolism , Malates/metabolism , Malate Dehydrogenase/metabolism
2.
Nat Commun ; 15(1): 6777, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117624

ABSTRACT

Metabolic rewiring during the proliferation-to-quiescence transition is poorly understood. Here, using a model of contact inhibition-induced quiescence, we conducted 13C-metabolic flux analysis in proliferating (P) and quiescent (Q) mouse embryonic fibroblasts (MEFs) to investigate this process. Q cells exhibit reduced glycolysis but increased TCA cycle flux and mitochondrial respiration. Reduced glycolytic flux in Q cells correlates with reduced glycolytic enzyme expression mediated by yes-associated protein (YAP) inhibition. The increased TCA cycle activity and respiration in Q cells is mediated by induced mitochondrial pyruvate carrier (MPC) expression, rendering them vulnerable to MPC inhibition. The malate-to-pyruvate flux, which generates NADPH, is markedly reduced by modulating malic enzyme 1 (ME1) dimerization in Q cells. Conversely, the malate dehydrogenase 1 (MDH1)-mediated oxaloacetate-to-malate flux is reversed and elevated in Q cells, driven by high mitochondrial-derived malate levels, reduced cytosolic oxaloacetate, elevated MDH1 levels, and a high cytoplasmic NAD+/NADH ratio. Transcriptomic analysis revealed large number of genes are induced in Q cells, many of which are associated with the extracellular matrix (ECM), while YAP-dependent and cell cycle-related genes are repressed. The results suggest that high TCA cycle flux and respiration in Q cells are required to generate ATP and amino acids to maintain de-novo ECM protein synthesis and secretion.


Subject(s)
Adaptor Proteins, Signal Transducing , Citric Acid Cycle , Contact Inhibition , Fibroblasts , Glycolysis , Malate Dehydrogenase , Mitochondria , Transcriptome , YAP-Signaling Proteins , Animals , YAP-Signaling Proteins/metabolism , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Fibroblasts/metabolism , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Mitochondria/metabolism , Malates/metabolism , Cell Proliferation , Pyruvic Acid/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics
3.
Bull Exp Biol Med ; 177(1): 22-25, 2024 May.
Article in English | MEDLINE | ID: mdl-38954297

ABSTRACT

We studied the respiratory activity of mitochondria in peripheral blood leukocytes from 36 patients with coronary heart disease (CHD) and a history of ventricular tachyarrhythmias required cardioverter-defibrillator implantation. The measurements were carried out in incubation buffers with different oxidation substrates (succinate and pyruvate-malate mixture). In pyruvate-malate incubation buffer, oxygen consumption rate and respiratory control coefficients in patients with triggered device did not differ significantly from those in patients without cardioverter-defibrillator triggering. At the same time, respiratory control coefficients were below the reference values. In succinate buffer, values of mitochondrial parameters were significantly lower in patients with triggered devices. Our findings indicate that mitochondria of patients with non-triggered cardioverters-defibrillators have better functional and metabolic plasticity. It was concluded that activity of respiratory processes in mitochondria could be an indicator that should be taken into the account when assessing the risk of developing ventricular tachyarrhythmias.


Subject(s)
Coronary Disease , Defibrillators, Implantable , Oxygen Consumption , Humans , Male , Middle Aged , Coronary Disease/physiopathology , Coronary Disease/therapy , Oxygen Consumption/physiology , Female , Mitochondria/metabolism , Aged , Tachycardia, Ventricular/physiopathology , Tachycardia, Ventricular/therapy , Pyruvic Acid/metabolism , Succinic Acid/metabolism , Malates/metabolism , Mitochondria, Heart/metabolism
4.
Planta ; 260(1): 33, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896325

ABSTRACT

MAIN CONCLUSION: γ-Aminobutyric acid alleviates acid-aluminum toxicity to roots associated with enhanced antioxidant metabolism as well as accumulation and transportation of citric and malic acids. Aluminum (Al) toxicity has become the main limiting factor for crop growth and development in acidic soils and is further being aggravated worldwide due to continuous industrial pollution. The current study was designed to examine effects of GABA priming on alleviating acid-Al toxicity in terms of root growth, antioxidant defense, citrate and malate metabolisms, and extensive metabolites remodeling in roots under acidic conditions. Thirty-seven-day-old creeping bentgrass (Agrostis stolonifera) plants were used as test materials. Roots priming with or without 0.5 mM GABA for 3 days were cultivated in standard nutrient solution for 15 days as control or subjected to nutrient solution containing 5 mM AlCl3·6H2O for 15 days as acid-Al stress treatment. Roots were sampled for determinations of root characteristics, physiological and biochemical parameters, and metabolomics. GABA priming significantly alleviated acid-Al-induced root growth inhibition and oxidative damage, despite it promoted the accumulation of Al in roots. Analysis of metabolomics showed that GABA priming significantly increased accumulations of organic acids, amino acids, carbohydrates, and other metabolites in roots under acid-Al stress. In addition, GABA priming also significantly up-regulated key genes related to accumulation and transportation of malic and citric acids in roots under acid-Al stress. GABA-regulated metabolites participated in tricarboxylic acid cycle, GABA shunt, antioxidant defense system, and lipid metabolism, which played positive roles in reactive oxygen species scavenging, energy conversion, osmotic adjustment, and Al ion chelation in roots.


Subject(s)
Agrostis , Aluminum , Antioxidants , Malates , Plant Roots , gamma-Aminobutyric Acid , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Antioxidants/metabolism , gamma-Aminobutyric Acid/metabolism , Aluminum/toxicity , Agrostis/drug effects , Agrostis/metabolism , Agrostis/physiology , Malates/metabolism , Citric Acid/metabolism , Oxidative Stress/drug effects
5.
Aquat Toxicol ; 273: 106986, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851027

ABSTRACT

For continuous pumping of blood, the heart needs a constant supply of energy (ATP) that is primarily met via oxidative phosphorylation in the mitochondria of cardiomyocytes. However, sustained high rates of electron transport for energy conversion redox reactions predisposes the heart to the production of reactive oxygen species (ROS) and oxidative stress. Mitochondrial ROS are fundamental drivers of responses to environmental stressors including metals but knowledge of how combinations of metals alter mitochondrial ROS homeodynamics remains sparse. We explored the effects and interactions of binary mixtures of copper (Cu), cadmium (Cd), and zinc (Zn), metals that are common contaminants of aquatic systems, on ROS (hydrogen peroxide, H2O2) homeodynamics in rainbow trout (Oncorhynchus mykiss) heart mitochondria. Isolated mitochondria were energized with glutamate-malate or succinate and exposed to a range of concentrations of the metals singly and in equimolar binary concentrations. Speciation analysis revealed that Cu was highly complexed by glutamate or Tris resulting in Cu2+ concentrations in the picomolar to nanomolar range. The concentration of Cd2+ was 7.2-7.5 % of the total while Zn2+ was 15 % and 21 % of the total during glutamate-malate and succinate oxidation, respectively. The concentration-effect relationships for Cu and Cd on mitochondrial H2O2 emission depended on the substrate while those for Zn were similar during glutamate-malate and succinate oxidation. Cu + Zn and Cu + Cd mixtures exhibited antagonistic interactions wherein Cu reduced the effects of both Cd and Zn, suggesting that Cu can mitigate oxidative distress caused by Cd or Zn. Binary combinations of the metals acted additively to reduce the rate constant and increase the half-life of H2O2 consumption while concomitantly suppressing thioredoxin reductase and stimulating glutathione peroxidase activities. Collectively, our study indicates that binary mixtures of Cu, Zn, and Cd act additively or antagonistically to modulate H2O2 homeodynamics in heart mitochondria.


Subject(s)
Cadmium , Hydrogen Peroxide , Mitochondria, Heart , Oncorhynchus mykiss , Water Pollutants, Chemical , Animals , Oncorhynchus mykiss/metabolism , Hydrogen Peroxide/metabolism , Water Pollutants, Chemical/toxicity , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Cadmium/toxicity , Copper/toxicity , Oxidative Stress/drug effects , Zinc/toxicity , Zinc/metabolism , Malates/metabolism , Succinic Acid/metabolism
6.
J Plant Physiol ; 300: 154297, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38945071

ABSTRACT

Programmed cell death (PCD) is a genetically regulated process of cell suicide essential for plant development. The 'malate valve' is a mechanism that ensures redox balance across different subcellular compartments. In broccoli, the BomMDH1 gene encodes malate dehydrogenase in mitochondria, a critical enzyme in the 'malate circulation' pathway. This study investigates the functional role of BomMDH1 in malate (MA)-induced apoptosis in bright yellow-2 (BY-2) suspension cells. Findings revealed that transgenic cells overexpressing BomMDH1 showed enhanced viability under MA-induced oxidative stress compared to wild-type (WT) cells. Overexpression of BomMDH1 also reduced levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2), and malondialdehyde (MDA), while increasing the expression of antioxidant enzyme genes such as NtAPX, NtAOX1a, NtSOD, and NtMDHAR. Additionally, treatment with salicylhydroxamic acid (SHAM), a characteristic inhibitor of mitochondrial respiration, further improved the anti-apoptotic activity of BY-2 cells. Overall, these results highlighted the function of the BomMDH1 gene and the potential of SHAM treatment in mitigating oxidative stress in BY-2 suspension cells.


Subject(s)
Malates , Nicotiana , Oxidative Stress , Reactive Oxygen Species , Oxidative Stress/drug effects , Malates/metabolism , Nicotiana/genetics , Nicotiana/drug effects , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Hydrogen Peroxide/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Mitochondria/metabolism , Malondialdehyde/metabolism , Gene Expression Regulation, Plant
7.
Mol Genet Metab ; 142(4): 108520, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945121

ABSTRACT

The malate aspartate shuttle (MAS) plays a pivotal role in transporting cytosolic reducing equivalents - electrons - into the mitochondria for energy conversion at the electron transport chain (ETC) and in the process of oxidative phosphorylation. The MAS consists of two pairs of cytosolic and mitochondrial isoenzymes (malate dehydrogenases 1 and 2; and glutamate oxaloacetate transaminases 1 and 2) and two transporters (malate-2-oxoglutarate carrier and aspartate glutamate carrier (AGC), the latter of which has two tissue-dependent isoforms AGC1 and AGC2). While the inner mitochondrial membrane is impermeable to NADH, the MAS forms one of the main routes for mitochondrial electron uptake by promoting uptake of malate. Inherited bi-allelic pathogenic variants in five of the seven components of the MAS have been described hitherto and cause a wide spectrum of symptoms including early-onset epileptic encephalopathy. This review provides an overview of reported patients suffering from MAS deficiencies. In addition, we give an overview of diagnostic procedures and research performed on patient-derived cellular models and tissues. Current cellular models are briefly discussed and novel ways to achieve a better understanding of MAS deficiencies are highlighted.


Subject(s)
Aspartic Acid , Malate Dehydrogenase , Malates , Mitochondria , Humans , Malates/metabolism , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , Aspartic Acid/metabolism , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/pathology , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/diagnosis , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/deficiency , Amino Acid Transport Systems, Acidic/metabolism , Oxidative Phosphorylation , Antiporters
8.
J Food Sci ; 89(8): 5047-5064, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38922911

ABSTRACT

In vegetable fermentation, pellicle is a common quality deterioration phenomenon. This study investigates the characteristics of glucose, organic acids, amino acids, and biogenic amines during the pellicle occurrence and disappearance of paocai. The results revealed a slight increase in pH of the fermentation system after pellicle occurred, and glucose was the main carbohydrate that microbial activity primary relied on. The microorganisms responsible for pellicle formation consumed organic acids in brine, but the lactic acid in paocai gradually increased and exceeded 25 mg/g. The appearance of pellicle caused a decrease in total free amino acids from 200.390 mg/100 g to 172.079 when pellicle occurred, whereas its impact on biogenic amines was not apparent. Through Kyoto Encyclopedia of Genes and Genomes pathway enrichment of metagenomics sequencing data, screening, and sorting of the key enzymes involved in organic acid metabolism, it was observed that the composition and species of the key microorganisms capable of metabolizing organic acids were more abundant before the appearance of pellicle. When pellicle occurred, lactic acid may be metabolized by Lactobacillus plantarum; in contrast, Lactobacillus and Pichia were associated with citric acid metabolism, and Lactobacillus, Pichia, Saccharomycodes, and Kazachstania were linked to malic acid metabolism. Moreover, Prevotella, Kazachstania, Lactobacillus, Vibrio, and Siphonobacter were implicated in succinic acid metabolism. Additionally, the production of tartaric acid and oxalic acid in paocai and brine resulted from abiotic effects. This knowledge offers a theoretical basis for precise control of paocai fermentation process. PRACTICAL APPLICATION: Our study revealed the specific situation of the metabolites produced by the microorganisms during the pollution and recovery process of pellicle in paocai fermentation, especially the effect of pellicle on the key process of organic acid metabolism. These research results provided theoretical basis for precise control of paocai fermentation.


Subject(s)
Amino Acids , Fermentation , Lactic Acid , Amino Acids/metabolism , Lactic Acid/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Citric Acid/metabolism , Hydrogen-Ion Concentration , Biogenic Amines/metabolism , Biogenic Amines/analysis , Glucose/metabolism , Malates/metabolism , Food Microbiology , Fermented Foods/microbiology , Vegetables/microbiology , Salts
9.
Clin Transl Med ; 14(5): e1680, 2024 May.
Article in English | MEDLINE | ID: mdl-38769668

ABSTRACT

BACKGROUND: A series of studies have demonstrated the emerging involvement of transfer RNA (tRNA) processing during the progression of tumours. Nevertheless, the roles and regulating mechanisms of tRNA processing genes in neuroblastoma (NB), the prevalent malignant tumour outside the brain in children, are yet unknown. METHODS: Analysis of multi-omics results was conducted to identify crucial regulators of downstream tRNA processing genes. Co-immunoprecipitation and mass spectrometry methods were utilised to measure interaction between proteins. The impact of transcriptional regulators on expression of downstream genes was measured by dual-luciferase reporter, chromatin immunoprecipitation, western blotting and real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) methods. Studies have been conducted to reveal impact and mechanisms of transcriptional regulators on biological processes of NB. Survival differences were analysed using the log-rank test. RESULTS: c-Myc was identified as a transcription factor driving tRNA processing gene expression and subsequent malate-aspartate shuttle (MAS) in NB cells. Mechanistically, c-Myc directly promoted the expression of glutamyl-prolyl-tRNA synthetase (EPRS) and leucyl-tRNA synthetase (LARS), resulting in translational up-regulation of glutamic-oxaloacetic transaminase 1 (GOT1) as well as malate dehydrogenase 1 (MDH1) via inhibiting general control nonrepressed 2 or activating mechanistic target of rapamycin signalling. Meanwhile, lamin A (LMNA) inhibited c-Myc transactivation via physical interaction, leading to suppression of MAS, aerobic glycolysis, tumourigenesis and aggressiveness. Pre-clinically, lobeline was discovered as a LMNA-binding compound to facilitate its interaction with c-Myc, which inhibited aminoacyl-tRNA synthetase expression, MAS and tumour progression of NB, as well as growth of organoid derived from c-Myc knock-in mice. Low levels of LMNA or elevated expression of c-Myc, EPRS, LARS, GOT1 or MDH1 were linked to a worse outcome and a shorter survival time of clinical NB patients. CONCLUSIONS: These results suggest that targeting c-Myc transactivation by LMNA inhibits tRNA processing essential for MAS and tumour progression.


Subject(s)
Proto-Oncogene Proteins c-myc , Humans , Mice , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Animals , Aspartic Acid/metabolism , Malates/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Neuroblastoma/metabolism , Neuroblastoma/genetics , Disease Progression , Transcriptional Activation/genetics , Cell Line, Tumor , Disease Models, Animal
10.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791318

ABSTRACT

Bryophyllum pinnatum (BP) is a medicinal plant used to treat many conditions when taken as a leaf juice, leaves in capsules, as an ethanolic extract, and as herbal tea. These preparations have been chemically analyzed except for decoctions derived from boiled green leaves. In preparation for a clinical trial to validate BP tea as a treatment for kidney stones, we used NMR and MS analyses to characterize the saturation kinetics of the release of metabolites. During boiling of the leaves, (a) the pH decreased to 4.8 within 14 min and then stabilized; (b) regarding organic acids, citric and malic acid were released with maximum release time (tmax) = 35 min; (c) for glycoflavonoids, quercetin 3-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside (Q-3O-ArRh), myricetin 3-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside (M-3O-ArRh), kappinatoside, myricitrin, and quercitrin were released with tmax = 5-10 min; and (d) the total phenolic content (TPC) and the total antioxidant capacity (TAC) reached a tmax at 55 min and 61 min, respectively. In summary, 24 g of leaves boiled in 250 mL of water for 61 min ensures a maximal release of key water-soluble metabolites, including organic acids and flavonoids. These metabolites are beneficial for treating kidney stones because they target oxidative stress and inflammation and inhibit stone formation.


Subject(s)
Kalanchoe , Kidney Calculi , Magnetic Resonance Spectroscopy , Plant Extracts , Plant Leaves , Kalanchoe/chemistry , Magnetic Resonance Spectroscopy/methods , Kidney Calculi/drug therapy , Kidney Calculi/metabolism , Kidney Calculi/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Kinetics , Mass Spectrometry/methods , Humans , Malates/chemistry , Malates/metabolism
11.
Bioresour Technol ; 403: 130843, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777233

ABSTRACT

The malic enzyme (ME) catalyzes the synthesis of L-malic acid (L-MA) from pyruvic acid and CO2 with NADH as the reverse reaction of L-MA decarboxylation. Carboxylation requires excess pyruvic acid, limiting its application. In this study, it was determined that CO2 was the carboxyl donor by parsing the effects of HCO3- and CO2, which provided a basis for improving the L-MA yield. Moreover, the concentration ratio of pyruvic acid to NADH was reduced from 70:1 to 5:1 using CO2 to inhibit decarboxylation and to introduce the ME mutant A464S with a 2-fold lower Km than that of the wild type. Finally, carboxylation was coupled with NADH regeneration, resulting in a maximum L-MA yield of 77 % based on the initial concentration of pyruvic acid. Strategic modifications, including optimal reactant ratios and efficient mutant ME, significantly enhanced L-MA synthesis from CO2, providing a promising approach to the biotransformation process.


Subject(s)
Biocatalysis , Carbon Dioxide , Malate Dehydrogenase , Malates , Pyruvic Acid , Malates/metabolism , Carbon Dioxide/metabolism , Malate Dehydrogenase/metabolism , Pyruvic Acid/metabolism , NAD/metabolism , Decarboxylation , Kinetics , Mutation
12.
Biotechnol J ; 19(5): e2400014, 2024 May.
Article in English | MEDLINE | ID: mdl-38719614

ABSTRACT

Microbial production of L-malic acid from renewable carbon sources has attracted extensive attention. The reduced cofactor NADPH plays a key role in biotransformation because it participates in both biosynthetic reactions and cellular stress responses. In this study, NADPH or its precursors nicotinamide and nicotinic acid were added to the fermentation medium of Aspergillus niger RG0095, which significantly increased the yield of malic acid by 11%. To further improve the titer and productivity of L-malic acid, we increased the cytoplasmic NADPH levels of A. niger by upregulating the NAD kinases Utr1p and Yef1p. Biochemical analyses demonstrated that overexpression of Utr1p and Yef1p reduced oxidative stress, while also providing more NADPH to catalyze the conversion of glucose into malic acid. Notably, the strain overexpressing Utr1p reached a malate titer of 110.72 ± 1.91 g L-1 after 108 h, corresponding to a productivity of 1.03 ± 0.02 g L-1 h-1. Thus, the titer and productivity of malate were increased by 24.5% and 44.7%, respectively. The strategies developed in this study may also be useful for the metabolic engineering of fungi to produce other industrially relevant bulk chemicals.


Subject(s)
Aspergillus niger , Fermentation , Malates , Metabolic Engineering , NADP , Aspergillus niger/metabolism , Aspergillus niger/genetics , Malates/metabolism , Metabolic Engineering/methods , NADP/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glucose/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism
13.
BMC Genom Data ; 25(1): 46, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783179

ABSTRACT

BACKGROUND: Primulina juliae has recently emerged as a novel functional vegetable, boasting a significant biomass and high calcium content. Various breeding strategies have been employed to the domestication of P. juliae. However, the absence of genome and transcriptome information has hindered the research of mechanisms governing the taste and nutrients in this plant. In this study, we conducted a comprehensive analysis, combining the full-length transcriptomics and metabolomics, to unveil the molecular mechanisms responsible for the development of nutrients and taste components in P. juliae. RESULTS: We obtain a high-quality reference transcriptome of P. juliae by combing the PacBio Iso-seq and Illumina sequencing technologies. A total of 58,536 cluster consensus sequences were obtained, including 28,168 complete protein coding transcripts and 8,021 Long Non-coding RNAs. Significant differences were observed in the composition and content of compounds related to nutrients and taste, particularly flavonoids, during the leaf development. Our results showed a decrease in the content of most flavonoids as leaves develop. Malate and succinate accumulated with leaf development, while some sugar metabolites were decreased. Furthermore, we identified the different accumulation of amino acids and fatty acids, which are associated with taste traits. Moreover, our transcriptomic analysis provided a molecular basis for understanding the metabolic variations during leaf development. We identified 4,689 differentially expressed genes in the two developmental stages, and through a comprehensive transcriptome and metabolome analysis, we discovered the key structure genes and transcription factors involved in the pathways. CONCLUSIONS: This study provides a high-quality reference transcriptome and reveals molecular mechanisms associated with the development of nutrients and taste components in P. juliae. These findings will enhance our understanding of the breeding and utilization of P. juliae as a vegetable.


Subject(s)
Metabolomics , Plant Leaves , Taste , Transcriptome , Taste/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling/methods , Nutrients/metabolism , Flavonoids/metabolism , Flavonoids/analysis , Amino Acids/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Metabolome/genetics , Malates/metabolism
14.
Acta Physiol (Oxf) ; 240(6): e14143, 2024 06.
Article in English | MEDLINE | ID: mdl-38577966

ABSTRACT

AIMS: Metabolic reprogramming in cancer cells has been linked to mitochondrial dysfunction. The mitochondrial 2-oxoglutarate/malate carrier (OGC) has been suggested as a potential target for preventing cancer progression. Although OGC is involved in the malate/aspartate shuttle, its exact role in cancer metabolism remains unclear. We aimed to investigate whether OGC may contribute to the alteration of mitochondrial inner membrane potential by transporting protons. METHODS: The expression of OGC in mouse tissues and cancer cells was investigated by PCR and Western blot analysis. The proton transport function of recombinant murine OGC was evaluated by measuring the membrane conductance (Gm) of planar lipid bilayers. OGC-mediated substrate transport was measured in proteoliposomes using 14C-malate. RESULTS: OGC increases proton Gm only in the presence of natural (long-chain fatty acids, FA) or chemical (2,4-dinitrophenol) protonophores. The increase in OGC activity directly correlates with the increase in the number of unsaturated bonds of the FA. OGC substrates and inhibitors compete with FA for the same protein binding site. Arginine 90 was identified as a critical amino acid for the binding of FA, ATP, 2-oxoglutarate, and malate, which is a first step towards understanding the OGC-mediated proton transport mechanism. CONCLUSION: OGC extends the family of mitochondrial transporters with dual function: (i) metabolite transport and (ii) proton transport facilitated in the presence of protonophores. Elucidating the contribution of OGC to uncoupling may be essential for the design of targeted drugs for the treatment of cancer and other metabolic diseases.


Subject(s)
2,4-Dinitrophenol , Fatty Acids , Animals , 2,4-Dinitrophenol/pharmacology , Mice , Fatty Acids/metabolism , Humans , Malates/metabolism , Mitochondria/metabolism , Ion Transport/drug effects , Membrane Potential, Mitochondrial/drug effects , Protons , Ketoglutaric Acids/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Membrane Transport Proteins
15.
J Biosci Bioeng ; 138(1): 13-20, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614832

ABSTRACT

6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), a derivative of glucosinolate with a six-carbon chain, is a compound found in wasabi and has diverse health-promoting properties. The biosynthesis of glucosinolates from methionine depends on a crucial step catalyzed methylthioalkylmalate synthases (MAMs), which are responsible for the generation of glucosinolates with varying chain lengths. In this study, our primary focus was the characterization of two methylthioalkyl malate synthases, MAM1-1 and MAM1-2, derived from Eutrema japonicum, commonly referred to as Japanese wasabi. Eutremajaponicum MAMs (EjMAMs) were expressed in an Escherichiacoli expression system, subsequently purified, and in vitro enzymatic activity was assayed. We explored the kinetic properties, optimal pH conditions, and cofactor preferences of EjMAMs and compared them with those of previously documented MAMs. Surprisingly, EjMAM1-2, categorized as a metallolyase family enzyme, displayed 20% of its maximum activity even in the absence of divalent metal cofactors or under high concentrations of EDTA. Additionally, we utilized AlphaFold2 to generate structural homology models of EjMAMs, and used in silico analysis and mutagenesis studies to investigate the key residues participating in catalytic activity. Moreover, we examined in vivo biosynthesis in E. coli containing Arabidopsis thaliana branched-chain amino acid transferase 3 (AtBCAT3) along with AtMAMs or EjMAMs and demonstrated that EjMAM1-2 exhibited the highest conversion rate among those MAMs, converting l-methionine to 2-(2-methylthio) ethyl malate (2-(2-MT)EM). EjMAM1-2 shows a unique property in vitro and highest activity on converting l-methionine to 2-(2-MT)EM in vivo which displays high potential for isothiocyanate biosynthesis in E. coli platform.


Subject(s)
Edetic Acid , Edetic Acid/chemistry , Kinetics , Escherichia coli/genetics , Escherichia coli/metabolism , Brassicaceae/metabolism , Brassicaceae/enzymology , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , Isothiocyanates/metabolism , Isothiocyanates/chemistry , Methionine/metabolism , Methionine/analogs & derivatives , Methionine/chemistry , Glucosinolates/metabolism , Glucosinolates/biosynthesis , Glucosinolates/chemistry , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/chemistry , Malates/metabolism , Malates/chemistry , Amino Acid Sequence , Models, Molecular
16.
Plant Physiol Biochem ; 208: 108535, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38503187

ABSTRACT

Aluminum (Al) toxicity is the major constraint on plant growth and productivity in acidic soils. An adaptive mechanism to enhance Al tolerance in plants is mediated malate exudation from roots through the involvement of ALMT (Al-activated malate transporter) channels. The underlying Al tolerance mechanisms of stylo (Stylosanthes guianensis), an important tropical legume that exhibits superior Al tolerance, remain largely unknown, and knowledge of the potential contribution of ALMT genes to Al detoxification in stylo is limited. In this study, stylo root growth was inhibited by Al toxicity, accompanied by increases in malate and citrate exudation from roots. A total of 11 ALMT genes were subsequently identified in the stylo genome and named SgALMT1 to SgALMT11. Diverse responses to metal stresses were observed for these SgALMT genes in stylo roots. Among them, the expressions of 6 out of the 11 SgALMTs were upregulated by Al toxicity. SgALMT2, a root-specific and Al-activated gene, was selected for functional characterization. Subcellular localization analysis revealed that the SgALMT2 protein is localized to the plasma membrane. The function of SgALMT2 in mediating malate release was confirmed by analysis of the malate exudation rate from transgenic composite stylo plants overexpressing SgALMT2. Furthermore, overexpression of SgALMT2 led to increased root growth in transgenic stylo plants treated with Al through decreased Al accumulation in roots. Taken together, the results of this study suggest that malate secretion mediated by SgALMT2 contributes to the ability of stylo to cope with Al toxicity.


Subject(s)
Aluminum , Fabaceae , Aluminum/toxicity , Aluminum/metabolism , Malates/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Fabaceae/metabolism
17.
Appl Environ Microbiol ; 90(4): e0000824, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38506527

ABSTRACT

Currently, the L-malic acid titer achieved through Aspergillus niger fermentation reaches 201 g/L, meeting industrial demands satisfactorily. However, the co-presence of structurally similar fumaric acid and succinic acid in fermentation products suggests a theoretical potential for further improvement in L-malic acid production. In the tricarboxylic acid cycle, fumarate reductase mediates the conversion of succinic acid to fumaric acid. Subsequently, fumarase catalyzes the conversion of fumaric acid to L-malic acid. Notably, both enzymatic reactions are reversible. Our investigation revealed that A. niger contains only one mitochondria-located fumarase FumA. Employing CRISPR-Cas9 technology, we performed a replacement of the fumA promoter with a doxycycline-induced promoter Tet. Under non-inducing condition, the conditional strain exhibited increased levels of fumaric acid and succinic acid. It strongly suggests that FumA mainly promotes the flow of fumaric acid to L-malic acid. Furthermore, a promoter PmfsA that is exclusively activated in a fermentation medium by calcium carbonate was identified through RNA-sequencing screening. Utilizing PmfsA to regulate fumA expression led to a 9.0% increase in L-malic acid titer, an 8.75% increase in yield (glucose to L-malic acid), and an 8.86% enhancement in productivity. This research serves as a significant step toward expediting the industrialization of L-malic acid synthesis via biological fermentation. Additionally, it offers valuable insights for the biosynthesis of other organic acids.IMPORTANCEThis study focuses on enhancing L-malic acid synthesis by modifying the tricarboxylic acid cycle within the mitochondria of Aspergillus niger. We emphasize the significant role of fumarase in converting fumaric acid into L-malic acid, enhancing our understanding of metabolic pathways in A. niger. The precise regulation of fumA is highlighted as a key factor in enhancing L-malic acid production. Furthermore, this research introduces a stringent conditional promoter (PmfsA), exclusively activated by CaCO3. The utilization of PmfsA for fumA expression resulted in heightened L-malic acid titers. The progress in metabolic engineering and bioprocess optimization holds promise for expediting industrial L-malic acid synthesis via biological fermentation. Moreover, it carries implications for the biosynthesis of various other organic acids.


Subject(s)
Aspergillus niger , Fumarate Hydratase , Fumarates , Aspergillus niger/genetics , Aspergillus niger/metabolism , Fumarate Hydratase/genetics , Fumarate Hydratase/metabolism , Malates/metabolism , Succinic Acid
18.
New Phytol ; 242(5): 2148-2162, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38501546

ABSTRACT

Although saline-alkali stress can improve tomato quality, the detailed molecular processes that balance stress tolerance and quality are not well-understood. Our research links nitric oxide (NO) and γ-aminobutyric acid (GABA) with the control of root malate exudation and fruit malate storage, mediated by aluminium-activated malate transporter 9/14 (SlALMT9/14). By modifying a specific S-nitrosylated site on pyruvate-dependent GABA transaminase 1 (SlGABA-TP1), we have found a way to enhance both plant's saline-alkali tolerance and fruit quality. Under saline-alkali stress, NO levels vary in tomato roots and fruits. High NO in roots leads to S-nitrosylation of SlGABA-TP1/2/3 at Cys316/258/316, reducing their activity and increasing GABA. This GABA then reduces malate exudation from roots and affects saline-alkali tolerance by interacting with SlALMT14. In fruits, a moderate NO level boosts SlGABA-TP1 expression and GABA breakdown, easing GABA's block on SlALMT9 and increasing malate storage. Mutants of SlGABA-TP1C316S that do not undergo S-nitrosylation maintain high activity, supporting malate movement in both roots and fruits under stress. This study suggests targeting SlGABA-TP1Cys316 in tomato breeding could significantly improve plant's saline-alkali tolerance and fruit quality, offering a promising strategy for agricultural development.


Subject(s)
Alkalies , Fruit , Malates , Nitric Oxide , Plant Roots , Solanum lycopersicum , gamma-Aminobutyric Acid , Solanum lycopersicum/genetics , Solanum lycopersicum/drug effects , Malates/metabolism , Nitric Oxide/metabolism , Alkalies/pharmacology , gamma-Aminobutyric Acid/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Fruit/genetics , Fruit/drug effects , 4-Aminobutyrate Transaminase/metabolism , 4-Aminobutyrate Transaminase/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/drug effects
19.
Adv Sci (Weinh) ; 11(22): e2310159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38514904

ABSTRACT

Vacuolar malic acid accumulation largely determines fruit acidity, a key trait for the taste and flavor of apple and other fleshy fruits. Aluminum-activated malate transporter 9 (ALMT9/Ma1) underlies a major genetic locus, Ma, for fruit acidity in apple, but how the protein transports malate across the tonoplast is unclear. Here, it is shown that overexpression of the coding sequence of Ma1 (Ma1α) drastically decreases fruit acidity in "Royal Gala" apple, leading to uncovering alternative splicing underpins Ma1's function. Alternative splicing generates two isoforms: Ma1ß is 68 amino acids shorter with much lower expression than the full-length protein Ma1α. Ma1ß does not transport malate itself but interacts with the functional Ma1α to form heterodimers, creating synergy with Ma1α for malate transport in a threshold manner (When Ma1ß/Ma1α ≥ 1/8). Overexpression of Ma1α triggers feedback inhibition on the native Ma1 expression via transcription factor MYB73, decreasing the Ma1ß level well below the threshold that leads to significant reductions in Ma1 function and malic acid accumulation in fruit. Overexpression of Ma1α and Ma1ß or genomic Ma1 increases both isoforms proportionally and enhances fruit malic acid accumulation. These findings reveal an essential role of alternative splicing in ALMT9-mediated malate transport underlying apple fruit acidity.


Subject(s)
Alternative Splicing , Malates , Malus , Malates/metabolism , Alternative Splicing/genetics , Malus/genetics , Malus/metabolism , Fruit/metabolism , Fruit/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Vacuoles/metabolism , Vacuoles/genetics , Gene Expression Regulation, Plant/genetics
20.
J Agric Food Chem ; 72(9): 4869-4879, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38407053

ABSTRACT

The efficient production of l-malic acid using Aspergillus niger requires overcoming challenges in synthesis efficiency and excessive byproduct buildup. This study addresses these hurdles, improving the activity of NADH-dependent malate dehydrogenase (Mdh) in the early stages of the fermentation process. By employing a constitutive promoter to express the Escherichia coli sthA responsible for the transfer of reducing equivalents between NAD(H) and NADP(H) in A. niger, the l-malic acid production was significantly elevated. However, this resulted in conidiation defects of A. niger, limiting industrial viability. To mitigate this, we discovered and utilized the PmfsA promoter, enabling the specific expression of sthA during the fermentation stage. This conditional expression strain showed similar phenotypes to its parent strain while exhibiting exceptional performance in a 5 L fermenter. Notably, it achieved a 65.5% increase in productivity, reduced fermentation cycle by 1.5 days, and lowered succinic acid by 76.2%. This work marks a promising advancement in industrial l-malic acid synthesis via biological fermentation, showcasing the potential of synthetic biology in A. niger for broader applications.


Subject(s)
Aspergillus niger , Aspergillus , Malates , Aspergillus niger/genetics , Aspergillus niger/metabolism , Malates/metabolism , Fermentation , Escherichia coli/genetics , Escherichia coli/metabolism , NAD/metabolism , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL