Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.275
Filter
1.
Physiol Plant ; 176(4): e14453, 2024.
Article in English | MEDLINE | ID: mdl-39091124

ABSTRACT

Although used in in vitro culture to boost secondary metabolite production, UV-B radiation can seriously affect plant growth if not properly dosed. Rosemary callus can be used as an important source of effective ingredients in the food and medicine industry. To balance the positive and negative effects of UV-B on rosmary callus, this study investigated the effects of melatonin on rosemary callus under UV-B radiation. The results showed that melatonin improved rosemary callus growth, with fresh weight and dry weight increased by 15.81% and 8.30%, respectively. The addition of 100 µM melatonin increased antioxidant enzyme activity and NO content in rosemary callus. At the same time, melatonin also significantly reduced membrane lipid damage and H2O2 accumulation in rosemary callus under UV-B stress, with malondialdehyde (MDA) and H2O2 contents reduced by 13.03% and 14.55%, respectively. In addition, melatonin increased the total phenol and rosmarinic acid contents in rosemary callus by 19% and 54%, respectively. Melatonin significantly improved the antioxidant activity of the extracts from rosemary callus. These results suggest that exogenous melatonin can alleviate the adverse effects of UV-B stress on rosemary callus by promoting NO accumulation while further enhancing phenolic accumulation and biological activity.


Subject(s)
Antioxidants , Hydrogen Peroxide , Melatonin , Phenols , Rosmarinus , Ultraviolet Rays , Melatonin/pharmacology , Melatonin/metabolism , Rosmarinus/metabolism , Rosmarinus/drug effects , Rosmarinus/radiation effects , Antioxidants/metabolism , Phenols/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Stress, Physiological/radiation effects , Stress, Physiological/drug effects , Rosmarinic Acid , Cinnamates/metabolism , Cinnamates/pharmacology , Depsides/metabolism
2.
BMC Plant Biol ; 24(1): 742, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39095745

ABSTRACT

In this study, various constraints of Cd toxicity on growth, morpho-anatomical characters along with physiological and biochemical metabolic processes of Solanum melongena L. plants were analyzed. Conversely, ameliorative role of iron oxide nanoparticles (FeONPs) was examined against Cd stress. For this purpose, the following treatments were applied in completely randomized fashion; 3 mM CdCl2 solution applied with irrigation water, 40 and 80 ppm solutions of FeONPs applied via foliar spray. Regarding the results, Cd caused oxidative damage to plants' photosynthetic machinery, resulting in elevated levels of stress-markers like malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) along with slight increase in antioxidants activities, including glutathione (GsH), ascorbate (AsA), catalases (CAT), peroxidases (POD), superoxide dismutase (SOD), and ascorbate peroxidases (APX). Also, high Cd level in plants disturb ions homeostasis and reduced essential minerals uptake, including Ca and K. This ultimately reduced growth and development of S. melongena plants. In contrast, FeONPs supplementations improved antioxidants (enzymatic and non-enzymatic) defenses which in turn limited ROS generation and lowered the oxidative damage to photosynthetic machinery. Furthermore, it maintained ionic balance resulting in enhanced uptake of Ca and K nutrients which are necessary for photosynthesis, hence also improved photosynthesis rate of S. melongena plants. Overall, FeONPs foliar spray effectively mitigated Cd toxicity imposed on S. melongena plants.


Subject(s)
Antioxidants , Cadmium , Oxidative Stress , Solanum melongena , Oxidative Stress/drug effects , Antioxidants/metabolism , Cadmium/toxicity , Solanum melongena/drug effects , Solanum melongena/metabolism , Photosynthesis/drug effects , Malondialdehyde/metabolism
3.
PeerJ ; 12: e17837, 2024.
Article in English | MEDLINE | ID: mdl-39099653

ABSTRACT

Hexavalent chromium (Cr(VI)) is a hazardous metallic compound commonly used in industrial processes. The liver, responsible for metabolism and detoxification, is the main target organ of Cr(VI). Toxicity experiments were performed to investigate the impacts of low-dose exposure to Cr(VI) on rat livers. It was revealed that exposure of 0.05 mg/kg potassium dichromate (K2Cr2O7) and 0.25 mg/kg K2Cr2O7 notably increased malondialdehyde (MDA) levels and the expressions of P-AMPK, P-ULK, PINK1, P-Parkin, and LC3II/LC3I, and significantly reduced SOD activity and P-mTOR and P62 expression levels in liver. Electron microscopy showed that CR(VI) exposure significantly increased mitophagy and the destruction of mitochondrial structure. This study simulates the respiratory exposure mode of CR(VI) workers through intratracheal instillation of CR(VI) in rats. It confirms that autophagy in hepatocytes is induced by low concentrations of CR(VI) and suggest that the liver damage caused by CR(VI) may be associated with the AMPK-related PINK/Parkin signaling pathway.


Subject(s)
Chromium , Liver , Mitophagy , Protein Kinases , Signal Transduction , Ubiquitin-Protein Ligases , Animals , Chromium/toxicity , Mitophagy/drug effects , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Signal Transduction/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Rats , Male , Potassium Dichromate/toxicity , AMP-Activated Protein Kinases/metabolism , Rats, Sprague-Dawley , Malondialdehyde/metabolism
4.
BMC Gastroenterol ; 24(1): 245, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090535

ABSTRACT

BACKGROUND: Ferroptosis is a newly recognized form of regulatory cell death characterized by severe lipid peroxidation triggered by iron overload and the production of reactive oxygen species (ROS). However, the role of ferroptosis in severe acute pancreatitis(SAP) has not been fully elucidated. METHODS: We established four severe acute pancreatitis models of rats including the sham control group, the SAP group, the Fer -1-treated SAP (SAP + Fer-1) group, the 3-MA-treated SAP (SAP + 3-MA) group. The SAP group was induced by retrograde injection of sodium taurocholate into the pancreatic duct. The other two groups were intraperitoneally injected with ferroptosis inhibitor (Fer-1) and autophagy inhibitor (3-MA), respectively. The model of severe acute pancreatitis with amylase crest-related inflammatory factors was successfully established. Then we detected ferroptosis (GPX4, SLC7A1 etc.) and autophagy-related factors (LC3II, p62 ect.) to further clarify the relationship between ferroptosis and autophagy. RESULTS: Our study found that ferroptosis occurs during the development of SAP, such as iron and lipid peroxidation in pancreatic tissues, decreased levels of reduced glutathione peroxidase 4 (GPX 4) and glutathione (GSH), and increased malondialdehyde(MDA) and significant mitochondrial damage. In addition, ferroptosis related proteins such as GPX4, solute carrier family 7 member 11(SLC7A11) and ferritin heavy chain 1(FTH1) were significantly decreased. Next, the pathogenesis of ferroptosis in SAP was studied. First, treatment with the ferroptosis inhibitor ferrostatin-1(Fer-1) significantly alleviated ferroptosis in SAP. Interestingly, autophagy occurs during the pathogenesis of SAP, and autophagy promotes the occurrence of ferroptosis in SAP. Moreover, 3-methyladenine (3-MA) inhibition of autophagy can significantly reduce iron overload and ferroptosis in SAP. CONCLUSIONS: Our results suggest that ferroptosis is a novel pathogenesis of SAP and is dependent on autophagy. This study provides a new theoretical basis for the study of SAP.


Subject(s)
Autophagy , Disease Models, Animal , Ferroptosis , Lipid Peroxidation , Pancreatitis , Rats, Sprague-Dawley , Animals , Pancreatitis/metabolism , Pancreatitis/pathology , Rats , Male , Adenine/analogs & derivatives , Adenine/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Taurocholic Acid , Cyclohexylamines/pharmacology , Pancreas/pathology , Pancreas/metabolism , Phenylenediamines/pharmacology , Malondialdehyde/metabolism , Reactive Oxygen Species/metabolism , Acute Disease , Glutathione/metabolism , Iron/metabolism
5.
BMC Microbiol ; 24(1): 287, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095728

ABSTRACT

This study used berberine hydrochloride to treat the Asian paddle crab, Charybdis japonica infected with the Gram-negative bacterium Aeromonas hydrophila at concentrations of 0, 100, 200 and 300 mg/L. The effect of berberine hydrochloride on the survival rate and gut microbiota of C. japonica was investigated. Berberine hydrochloride improved the stability of the intestinal flora, with an increase in the abundance of probiotic species and a decrease in the abundance of both pathogenic bacteria after treatment with high concentrations of berberine hydrochloride. Berberine hydrochloride altered peroxidase activity (POD), malondialdehyde (MDA), and lipid peroxidation (LPO) in the intestinal tract compared to the control. Berberine hydrochloride could modulate the energy released from the enzyme activities of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) in the intestinal tract of C. japonica infected with A. hydrophila. Zona occludens 1 (ZO-1), Zinc finger E-box binding homeobox 1 (ZEB1), occludin and signal transducer, and activator of transcription5b (STAT5b) expression were also increased, which improved intestinal barrier function. The results of this study provide new insights into the role of berberine hydrochloride in intestinal immune mechanisms and oxidative stress in crustaceans.


Subject(s)
Aeromonas hydrophila , Antioxidants , Berberine , Gastrointestinal Microbiome , Gram-Negative Bacterial Infections , Berberine/pharmacology , Aeromonas hydrophila/drug effects , Aeromonas hydrophila/genetics , Gastrointestinal Microbiome/drug effects , Animals , Antioxidants/metabolism , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/drug therapy , Brachyura/microbiology , Brachyura/drug effects , Malondialdehyde/metabolism , Lipid Peroxidation/drug effects , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism
6.
Exp Dermatol ; 33(8): e15156, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39133032

ABSTRACT

This study investigates the carcinogenic potential of chronic dermal exposure (16 weeks) to sulfuric acid (SA) in immunocompetent mice. Clinical assessments, histopathological analyses, immunohistochemical analyses and biochemical assays were conducted to evaluate skin irritation, oxidative stress biomarkers and the potential carcinogenic effect of SA. Results indicated that prolonged exposure to SA leads to various alterations in skin structure, notably inflammation, preneoplastic and neoplastic proliferation in hair follicles, as well as hyperkeratosis and acanthosis, resulting in an increased epidermal thickness of 98.50 ± 21.6 µm. Immunohistochemistry analysis further corroborates these observations, showcasing elevated nuclear expression of p53 and Ki-67, with a significant mitotic index of (57.5% ± 2.5%). Moreover, biochemical analyses demonstrate that SA induces lipid peroxidation in the skin, evidenced by a high level of Malondialdehyde and a consequential reduction in catalase activity. These findings suggest that prolonged exposure to SA can induce skin neoplasms, highlighting the need for stringent safety measures in environments where SA is frequently used. This study underscores the potential occupational health risks associated with SA exposure.


Subject(s)
Skin Neoplasms , Sulfuric Acids , Animals , Skin Neoplasms/chemically induced , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Mice , Sulfuric Acids/adverse effects , Sulfuric Acids/toxicity , Oxidative Stress/drug effects , Lipid Peroxidation/drug effects , Female , Malondialdehyde/metabolism , Immunocompetence , Catalase/metabolism , Skin/pathology , Skin/metabolism , Skin/drug effects , Ki-67 Antigen/metabolism , Tumor Suppressor Protein p53/metabolism
7.
BMC Plant Biol ; 24(1): 744, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39098900

ABSTRACT

BACKGROUND: Soil contamination by heavy metals is a critical environmental challenge, with Pb being of particular concern due to its propensity to be readily absorbed and accumulated by plants, despite its lack of essential biological functions or beneficial roles in cellular metabolism. Within the scope of phytoremediation, the use of plants for the decontamination of various environmental matrices, the present study investigated the potential of activated charcoal (AC) to enhance the tolerance and mitigation capacity of S. sesban seedlings when exposed to Pb. The experiment was conducted as a factorial arrangement in a completely randomized design in hydroponic conditions. The S. sesban seedlings were subjected to a gradient of Pb concentrations (0, 0.02, 0.2, 2, and 10 mg/L) within the nutrient solution, alongside two distinct AC treatments (0 and 1% inclusion in the culture media). The study reached its conclusion after 60 days. RESULTS: The seedlings exposed to Pb without AC supplementation indicated an escalation in peroxidase (POX) activity, reactive oxygen species (ROS), and malondialdehyde (MDA) levels, signaling an increase in oxidative stress. Conversely, the incorporation of AC into the treatment regime markedly bolstered the antioxidative defense system, as evidenced by the significant elevation in antioxidant capacity and a concomitant reduction in the biomarkers of oxidative stress (POX, ROS, and MDA). CONCLUSIONS: With AC application, a notable improvement was observed in the chlorophyll a, total chlorophyll, and plant fresh and dry biomass. These findings illuminate the role of activated charcoal as a viable adjunct in phytoremediation strategies aimed at ameliorating heavy metal stress in plants.


Subject(s)
Biodegradation, Environmental , Charcoal , Hydroponics , Lead , Sesbania , Soil Pollutants , Charcoal/pharmacology , Lead/toxicity , Lead/metabolism , Sesbania/metabolism , Sesbania/drug effects , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Oxidative Stress/drug effects , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Chlorophyll/metabolism , Malondialdehyde/metabolism
8.
Medicine (Baltimore) ; 103(32): e39152, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121307

ABSTRACT

Evaluate the relationship between blood lead (Pb) levels and other biomedical markers and the risk of diabetes in gasoline station workers. The participants were separated into 2 groups: group A consisted of 26 workers from gasoline filling stations, while group B comprised 26 healthy individuals. Serum levels of malondialdehyde, IL-1ß, visfatin, insulin, fasting blood sugar, and vitamin D were assessed. Mean Pb level was significantly higher in group A compared to group B (almost 2.9 times higher levels) (14.43 ±â€…1.01 vs 5.01 ±â€…1.41, µg/dL). The levels of visfatin (23.19 ±â€…0.96 vs 3.88 ±â€…0.58, ng/mL), insulin (22.14 ±â€…1.31 vs 11.26 ±â€…0.75, mU/L), fasting blood sugar (118.4 ±â€…26.1 vs 82.7 ±â€…9.2, gm/dL), malondialdehyde (6.40 ±â€…0.27 vs 1.62 ±â€…0.21, nmol/mL), and IL-1ß (330.25 ±â€…10.34 vs 12.35 ± 1.43, pg/mL) were significantly higher in group A, meanwhile; vitamin D (11.99 ±â€…1.55 vs 35.41 ±â€…3.16, ng/mL) were significantly lower in group A. A positive association exists between blood Pb levels and increased inflammatory markers. Lead exposure increases serum insulin and fasting blood sugar, which suggests that it is diabetogenic and that increased inflammation is a possible cause.


Subject(s)
Blood Glucose , Gasoline , Hyperglycemia , Insulin , Lead , Malondialdehyde , Occupational Exposure , Humans , Lead/blood , Male , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Adult , Case-Control Studies , Hyperglycemia/blood , Hyperglycemia/chemically induced , Hyperglycemia/epidemiology , Retrospective Studies , Gasoline/adverse effects , Blood Glucose/analysis , Insulin/blood , Malondialdehyde/blood , Interleukin-1beta/blood , Biomarkers/blood , Middle Aged , Nicotinamide Phosphoribosyltransferase/blood , Vitamin D/blood , Female , Cytokines/blood
9.
Cryo Letters ; 45(5): 288-293, 2024.
Article in English | MEDLINE | ID: mdl-39126330

ABSTRACT

BACKGROUND: In reproductive biotechnology, sperm cryopreservation has a vital role to play. Cryopreservation of sperm produces reactive oxygen species (ROS), which disrupt sperm function and structural competence. Numerous protective chemicals, including fructans, have been used during sperm cryopreservation. OBJECTIVES: To evaluate the effect of different concentrations of the fructosan inulin on ram sperm quality parameters, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) production after freezing and thawing. MATERIALS AND METHODS: The pooled samples from four healthy rams were divided into seven equal aliquots and diluted in a Tris-base extender supplemented with 1, 2, 4, 8, 16, and 28 mM of inulin or without inulin supplementation (control). By using liquid nitrogen vapor, the semen was frozen and stored at 196 degree C. RESULTS: The total motility, viability, and DNA integrity were significantly improved after freeze-thawing with 28 mM inulin, compared to other treatment groups (P < 0.05). A Tris-based extender containing 16 and 28 mM of inulin displayed the highest levels of ram sperm membrane integrity when compared with the control (p <0.05). The abnormality of ram sperm was increased during freeze-thawing at control and 1 mM of inulin, compared to 16 and 28 mM of inulin (P < 0.05). Additionally, 28 mM of inulin decreased MDA and increased SOD activity in ram sperm in comparison with the other treatments (P < 0.05). CONCLUSION: As a result, 28 mM of inulin could be beneficial for the cryopreservation industry and reduce the harmful effects of freeze-thawing on ram sperm. Doi.org/10.54680/fr24510110512.


Subject(s)
Cryopreservation , Cryoprotective Agents , Inulin , Malondialdehyde , Semen Preservation , Sperm Motility , Spermatozoa , Superoxide Dismutase , Male , Cryopreservation/methods , Cryopreservation/veterinary , Inulin/pharmacology , Semen Preservation/methods , Semen Preservation/veterinary , Animals , Spermatozoa/drug effects , Spermatozoa/physiology , Sheep , Sperm Motility/drug effects , Cryoprotective Agents/pharmacology , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Semen Analysis , Cell Survival/drug effects , Freezing
10.
Acta Cir Bras ; 39: e395329, 2024.
Article in English | MEDLINE | ID: mdl-39109783

ABSTRACT

PURPOSE: To evaluate the neuroprotective effect of resveratrol, urapidil, and a combined administration of these drugs against middle cerebral artery occlusion (MCAO) induced ischemia/reperfusion (IR) injury model in rats. METHODS: Thirty-five rats were divided into five groups of seven animals each. Animals in IR, IR resveratrol (IRr), IR urapidil (IRu), and IR + combination of resveratrol and urapidil (IRc) were exposed to MCAO induced cerebral ischemia reperfusion injury model. Rats in IRr and IRu groups received 30-mg/kg resveratrol and 5-mg/kg urapidil respectively. Animals in IRc received a combined treatment of both drugs. At the end of the study, brain tissues were used for oxidative stress (malondialdehyde, glutathione, and superoxide dismutase), pro-apoptotic caspase-3, anti-apoptotic Bcl-2, and pro-inflammatory tumor necrosis factor-α cytokine level measurements. RESULTS: The MCAO model successfully replicated IR injury with significant histopathological changes, elevated tissue oxidative stress, and upregulated apoptotic and inflammatory protein expression in IR group compared to control group (p < 0.001). All parameters were significantly alleviated in IRr group compared to IR group (all p < 0.05). In IRu group, all parameters except for caspase-3 and Bcl-2 were also significantly different than IR group (all p < 0.05). The IRc group showed the biggest difference compared to IR group in all parameters (all p < 0.001). The IRc had higher superoxide dismutase and Bcl-2 levels, and lower caspase-3 levels compared to both IRr and IRu groups (all p < 0.05). Also, the IRc group had lower MDA and TNF-α levels compared to IRu group (all p < 0.05). CONCLUSIONS: The results indicate that combined treatment of resveratrol and urapidil may be a novel strategy to downregulate neurodegeneration in cerebral IR injury.


Subject(s)
Disease Models, Animal , Neuroprotective Agents , Oxidative Stress , Reperfusion Injury , Resveratrol , Stilbenes , Animals , Resveratrol/pharmacology , Resveratrol/therapeutic use , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Male , Oxidative Stress/drug effects , Stilbenes/therapeutic use , Stilbenes/pharmacology , Drug Therapy, Combination , Rats, Wistar , Infarction, Middle Cerebral Artery/drug therapy , Treatment Outcome , Rats , Tumor Necrosis Factor-alpha/analysis , Superoxide Dismutase/analysis , Superoxide Dismutase/metabolism , Malondialdehyde/analysis , Malondialdehyde/metabolism , Reproducibility of Results , Apoptosis/drug effects , Random Allocation , Brain Ischemia/drug therapy , Antioxidants/therapeutic use , Antioxidants/pharmacology , Caspase 3/metabolism , Caspase 3/analysis
11.
BMC Oral Health ; 24(1): 911, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39112979

ABSTRACT

AIM: The aim of the present study is to show how sodium nitrite alters the histology of submandibular salivary glands and livers of Albino rats, as well as how chlorogenic acid may have therapeutic benefits. METHODS: A sample size of thirty male Sprague Dawley Albino rats weighing between 100 and 150 g (5-6 weeks old) was randomly allocated into 3 equal groups. Group I: rats were used as controls and were given phosphate buffer solution, whereas Group II: rats were given an 80 mg/kg sodium nitrites (SN) daily dissolved in distilled water. The rats in Group III were given a daily dose of 80 mg/kg SN dissolved in distilled water and after 6 hours each rat received 50 mg/mL freshly prepared chlorogenic acid (CGA) every other day. For 12 weeks, all treatment modalities will be administered orally, every day. After the experiment, all rats were euthanized. Samples from salivary glands and livers were processed and stained with H&E and interleukin 6 (IL 6). Malondialdehyde (MDA) and superoxide dismutase (SOD) enzymes were detected using an ELISA assay. RESULTS: Groups III had nearly comparable findings to Group I regarding histological pattern with normal submandibular glands and livers features. Group III salivary gland treated with CGA exhibited higher SOD levels (20.60±4.81 U/g) in comparison to the SN group, and lower MDA levels (111.58±28.28 nmol/mg) in comparison to the SN treated samples. In comparison to the SN group, CGA treatment significantly reduced MDA levels in liver samples (167.56±21.17 nmol/mg) and raised SOD (30.85±6.77 U/g). CONCLUSIONS: Chlorogenic acid has a protective effect against salivary gland and liver toxicity induced by SN in rats. This was mediated via the anti-inflammatory and antioxidative properties of CGA and the restoration of oxidant/antioxidant balance in rat salivary gland and liver.


Subject(s)
Chlorogenic Acid , Liver , Malondialdehyde , Rats, Sprague-Dawley , Sodium Nitrite , Submandibular Gland , Superoxide Dismutase , Animals , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Male , Submandibular Gland/drug effects , Submandibular Gland/pathology , Submandibular Gland/metabolism , Rats , Liver/drug effects , Liver/pathology , Sodium Nitrite/pharmacology , Superoxide Dismutase/metabolism , Superoxide Dismutase/drug effects , Malondialdehyde/metabolism , Random Allocation , Interleukin-6/analysis , Interleukin-6/metabolism
12.
Sci Rep ; 14(1): 19202, 2024 08 19.
Article in English | MEDLINE | ID: mdl-39160181

ABSTRACT

Drought, which adversely affects plant growth and continuity of life and reduces product yield and quality, is one of the most common abiotic stresses at the globally. One of the polyamines that regulates plant development and reacts to abiotic stressors, including drought stress, is Putrescine (Put). This study compared the physiological and molecular effects of applying exogenous Put (10 µM) to barley (Hordeum vulgare cv. Burakbey) under drought stress (- 6.30 mPa PEG 6000). The 21-day drought stress imposed on the barley plant had a strong negative effect on plant metabolism in all experimental groups. Exogenous Put treatment under drought stress had a reformative effect on the cell cycle (transitions from G0-G1 to S and from S to G2-M), total protein content (almost 100%), endogenous polyamine content, malondialdehyde (MDA) (70%), and ascorbate peroxidase (APX) (62%) levels compared to the drought stress plants. Superoxide dismutase (SOD) (12%) and catalase (CAT) (32%) enzyme levels in the same group increased further after exogenous Put application, forming a response to drought stress. Consequently, it was discovered that the administration of exogenous Put in barley raises endogenous polyamine levels and then improves drought tolerance due to increased antioxidant capability, cell division stimulation, and total protein content.


Subject(s)
Droughts , Hordeum , Putrescine , Stress, Physiological , Hordeum/metabolism , Hordeum/genetics , Putrescine/metabolism , Malondialdehyde/metabolism , Cell Cycle , Antioxidants/metabolism , Catalase/metabolism , Superoxide Dismutase/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Polyamines/metabolism , Ascorbate Peroxidases/metabolism , Ascorbate Peroxidases/genetics , Gene Expression Regulation, Plant
13.
Nutrients ; 16(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125295

ABSTRACT

Type 2 diabetes and depression co-occur in a bidirectional manner. Curcumin supplements exhibit antidepressant effects that may mitigate depression by modulating neurotransmitters and reducing inflammatory and oxidative stress pathways. This study aimed to evaluate the efficacy of curcumin in improving depression severity in obese type 2 diabetes patients. The study employed a randomized, double-blind, placebo-controlled trial design with 227 participants. The primary end-point was depression severity assessed using the Patient Health Questionnaire-9. Biomarkers were measured at baseline and at 3-, 6-, 9-, and 12-month intervals. The biomarkers assessed were serotonin levels, pro-inflammatory cytokines (interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha), antioxidant activities (total antioxidant status, glutathione peroxidase, and superoxide dismutase), and malondialdehyde. After 12 months, the curcumin group exhibited significantly improved depression severity (p = 0.000001). The curcumin group had higher levels of serotonin (p < 0.0001) but lower levels of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha (p < 0.001 for all) than the placebo group. Total antioxidant status, glutathione peroxidase activity, and superoxide dismutase activity were elevated in the curcumin group, whereas malondialdehyde levels were greater in the placebo group (p < 0.001 for all). These findings suggest curcumin may have antidepressant effects on obese type 2 diabetes patients.


Subject(s)
Antioxidants , Biomarkers , Curcumin , Depression , Diabetes Mellitus, Type 2 , Obesity , Humans , Curcumin/pharmacology , Curcumin/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Male , Obesity/complications , Obesity/drug therapy , Double-Blind Method , Female , Middle Aged , Depression/drug therapy , Depression/etiology , Biomarkers/blood , Malondialdehyde/blood , Oxidative Stress/drug effects , Serotonin/metabolism , Serotonin/blood , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology , Adult , Glutathione Peroxidase/blood , Glutathione Peroxidase/metabolism , Superoxide Dismutase/blood , Superoxide Dismutase/metabolism , Cytokines/blood
14.
PeerJ ; 12: e17885, 2024.
Article in English | MEDLINE | ID: mdl-39161965

ABSTRACT

Background: Myocardial ischemia-reperfusion injury (MIRI) refers to severe damage to the ischemic myocardium following the restoration of blood flow, and it is a major complication of reperfusion therapy for myocardial infarction. Notably, drugs such as metoprolol have been utilized to reduce ischemia-reperfusion injury. Tanshinone IIA is a major constituent extracted from Salvia miltiorrhiza Bunge. Recently, tanshinone IIA has been studied extensively in animal models for controlling MIRI. Therefore, we conducted a meta-analysis on the application of tanshinone IIA in rat models with MIRI to evaluate the therapeutic effects of tanshinone IIA. Methods: A comprehensive search was conducted across PubMed, Web of Science, Embase, the Cochrane Library, the China National Knowledge Infrastructure database, the Wanfang database, and the Chinese Scientific Journal Database to gather studies on tanshinone IIA intervention in rat models with MIRI.We employed SYRCLE's risk of bias tool to assess study quality. The primary outcome indicators were superoxide dismutase (SOD) and malondialdehyde (MDA). Myocardial infarction area was a secondary outcome indicator. This study was registered at PROSPERO (registration number CRD 42022344447). Results: According to the inclusion and exclusion criteria, 15 eligible studies were selected from 295 initially identified studies. In rat models with MIRI, tanshinone IIA significantly increased SOD levels while reducing MDA levels and myocardial infarction area. Moreover, the duration of myocardial ischemia influenced the effectiveness of tanshinone IIA. However, additional high-quality research studies are needed to establish the efficacy and definitive guidelines for the use of tanshinone IIA. Animal studies demonstrated that tanshinone IIA exerted a significant therapeutic effect when the ischemia duration was less than 40 minutes. Tanshinone IIA was found to be more effective when administered via intravenous, intraperitoneal, and intragastric routes at doses above 5 mg/kg. Additionally, treatment with tanshinone IIA at all stages-prior to myocardial ischemia, after ischemia but before reperfusion, prior to ischemia and after reperfusion, and after reperfusion-showed satisfactory results. Conclusions: Tanshinone IIA enhanced SOD activity and reduced MDA levels, thereby ameliorating oxidative stress damage during MIRI. Additionally, it reduced the myocardial infarction area, indicating its effectiveness in mitigating MIRI-induced damage in rats and demonstrating a myocardial protective effect. These findings contribute valuable insights for developing MIRI treatment strategies.


Subject(s)
Abietanes , Disease Models, Animal , Myocardial Reperfusion Injury , Abietanes/pharmacology , Abietanes/therapeutic use , Animals , Myocardial Reperfusion Injury/drug therapy , Rats , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Myocardial Infarction/drug therapy
15.
J Assoc Physicians India ; 72(8): 36-39, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39163060

ABSTRACT

INTRODUCTION: Oxidative stress (OS) may have a role in the pathogenesis and severity of the coronavirus disease 2019 (COVID-19) disease. The present study was conducted to estimate the association of inflammatory markers, total antioxidant status (TAS), and malondialdehyde (MDA) levels with the severity of the disease and to identify their trends after recovery. MATERIALS AND METHODS: Adult patients admitted with moderate or severe COVID-19 were included after obtaining written informed consent from patient or next of kin. Patients who were critically ill, on ventilator, or in sepsis/septic shock were excluded. Levels of inflammatory markers, TAS, and OS as measured by MDA were estimated within 24 hours of admission and reevaluated at 12 weeks following discharge. RESULTS: The mean age of the 40 patients (42.5% females) was 55 ± 15 years. TAS values (in trolox equivalents/L) were significantly reduced in severe compared to moderate COVID-19 patients at admission (7.2 ± 4.19 vs 12.3 ± 5.21). These increased at 12 weeks after discharge. The MDA levels (in nmol/mL) were significantly higher in severe in comparison to moderate disease (7.1 ± 2.68 vs 4.1 ± 1.81). These values showed a downward trend 12 weeks after discharge in severe disease group. Admission levels of interleukin-6 (IL-6), D-dimer, and lactate dehydrogenase (LDH) were statistically higher in severe COVID-19 patients in contrast to moderate disease. CONCLUSION: Moderate and severe COVID-19 are associated with a state of high OS and a low total antioxidant levels which tend to recover at 3 months following discharge.


Subject(s)
Antioxidants , Biomarkers , COVID-19 , Malondialdehyde , Oxidative Stress , Severity of Illness Index , Humans , COVID-19/complications , Female , Male , Middle Aged , Antioxidants/metabolism , Malondialdehyde/blood , Adult , Biomarkers/blood , Aged , SARS-CoV-2
16.
Environ Health ; 23(1): 68, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138494

ABSTRACT

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) have been linked to adverse birth outcomes that have been reported to be induced by oxidative stress, but few epidemiological studies to date have evaluated associations between urinary PAH metabolites and oxidative stress biomarkers in pregnancy and identified critical periods for these outcomes and PAH exposures in pregnancy. METHODS: A cohort of pregnant women was recruited early in pregnancy from antenatal clinics at the University of California Los Angeles during 2016-2019. We collected urine samples up to three times during pregnancy in a total of 159 women enrolled in the cohort. A total of 7 PAH metabolites and 2 oxidative stress biomarkers [malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG)] were measured in all available urine samples. Using multiple linear regression models, we estimated the percentage change (%) and 95% confidence interval (CI) in 8-OHdG and MDA measured at each sample collection time per doubling of PAH metabolite concentrations. Furthermore, we used linear mixed models with a random intercept for participant to estimate the associations between PAH metabolite and oxidative stress biomarker concentrations across multiple time points in pregnancy. RESULTS: Most PAH metabolites were positively associated with both urinary oxidative stress biomarkers, MDA and 8-OHdG, with stronger associations in early and late pregnancy. A doubling of each urinary PAH metabolite concentration increased MDA concentrations by 5.8-41.1% and 8-OHdG concentrations by 13.8-49.7%. Linear mixed model results were consistent with those from linear regression models for each gestational sampling period. CONCLUSION: Urinary PAH metabolites are associated with increases in oxidative stress biomarkers during pregnancy, especially in early and late pregnancy.


Subject(s)
Biomarkers , Oxidative Stress , Polycyclic Aromatic Hydrocarbons , Humans , Female , Polycyclic Aromatic Hydrocarbons/urine , Los Angeles , Pregnancy , Adult , Biomarkers/urine , Young Adult , Environmental Pollutants/urine , 8-Hydroxy-2'-Deoxyguanosine/urine , Cohort Studies , Maternal Exposure/adverse effects , Malondialdehyde/urine
17.
Food Res Int ; 192: 114779, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147467

ABSTRACT

Rice bran protein fibril (RBPF)-high internal phase Pickering emulsions (HIPPEs) loaded with ß-carotene (CE) were constructed to enhance stability and bioavailability of CE. Rice bran (RB) protein with varying oxidation degrees was extracted from RB with varying storage period (0-10 days) to prepare RBPF by acid-heating (90 °C, 2-12 h) to stabilize HIPPEs. The influence of protein oxidation on the encapsulation properties of RBPF-HIPPEs was studied. The results showed that CE-HIPPEs could be stably stored for 56 days at 25 °C. When RB storage time was the same, the average particle size, lipid hydroperoxide content, and malondialdehyde content of CE-HIPPEs and the CE degradation rate initially fell, and then grew as the acid-heating time prolonged, while the ζ-potential value, viscosity, viscoelasticity, free fatty acid (FFA) release rate, and bioaccessibility first rose, and subsequently fell. When acid-heating time of RBPF was the same, the average particle size, lipid hydroperoxide content, and malondialdehyde content of CE-HIPPEs initially fell, and subsequently increased with RB storage time extended, while the ζ-potential value, viscosity, viscoelasticity, FFA release rate, and bioaccessibility initially increased, and then decreased. Overall, Moderate oxidation and moderate acid-heating enhanced the stability as well as rheological properties of CE-HIPPEs, thus improving the stability and bioaccessibility of CE. This study offered a new insight into the delivery of bioactive substances by protein fibril aggregates-based HIPPEs.


Subject(s)
Emulsions , Oryza , Oxidation-Reduction , Particle Size , beta Carotene , beta Carotene/chemistry , Oryza/chemistry , Biological Availability , Plant Proteins/chemistry , Viscosity , Malondialdehyde
18.
Med Sci Monit ; 30: e945045, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152631

ABSTRACT

BACKGROUND Neonatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of perinatal and postnatal morbidity and mortality worldwide. Catalase (CAT) activity detection is used to determine levels of inflammation and oxidative stress. Glutathione (GSH) is the most critical non-enzymatic endogenous antioxidant. Lipid peroxidation levels marked after hypoxia can be detected based on the level of malondialdehyde (MDA). Ischemia-modified albumin (IMA) is considered a biomarker for cardiac ischemia and is known to increase in the liver, brain, and kidney in states of insufficient oxygenation. We aimed to explain the results and relations between the oxidant and antioxidants to detail oxidant-antioxidant balance and cellular mechanisms. MATERIAL AND METHODS Serum levels of IMA and MDA, as an oxidative stress marker, and CAT and GSH, as antioxidant enzymes, were measured in first blood samples of 59 neonates diagnosed with HIE, with pH <7, base excess >12, and APGAR scores. RESULTS Neonates who were ≥37 weeks of gestation and had hypoxia were included. Compared with healthy newborns (n=32), CAT was statistically significantly lower in the hypoxia group (P=0.0001), while MDA serum levels were significantly higher in neonates with hypoxia (P=0.01). There was no difference between hypoxic and healthy neonates in GSH and IMA measurements (P=0.054, P=0.19 respectively). CONCLUSIONS HIE pathophysiology involves oxidative stress and mitochondrial energy production failure. Explaining the pathways between oxidant-antioxidant balance and cell death, which explains the pathophysiology of HIE, is essential to develop treatment strategies that will minimize the effects of oxygen deprivation on other body organs, especially the brain.


Subject(s)
Antioxidants , Biomarkers , Hypoxia-Ischemia, Brain , Malondialdehyde , Oxidative Stress , Humans , Infant, Newborn , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/blood , Hypoxia-Ischemia, Brain/physiopathology , Biomarkers/blood , Biomarkers/metabolism , Antioxidants/metabolism , Female , Male , Malondialdehyde/blood , Malondialdehyde/metabolism , Glutathione/blood , Glutathione/metabolism , Serum Albumin, Human/metabolism , Catalase/blood , Catalase/metabolism , Lipid Peroxidation
19.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126089

ABSTRACT

Tomato (Solanum lycopersicum L.), as one of the most valuable horticulture crops, was chosen to investigate the effect of nanoparticles (NPs) in the form of nano-ZnO combined with conventional fertilizer on the quality of tomato fruits, including their antioxidant potential (total antioxidant activity, lycopene and ß-carotene content), sugars content and allergenic potential (profilin and Bet v 1 content). Nano-ZnO was implemented during plant cultivation, applied by foliar spraying or directly via soil, at three different concentrations (50, 150 and 250 mg/L). The obtained results suggest that the usage of NPs during tomato plant cultivation had minor impacts on parameters such as total antioxidant activity or the content of selected allergens. Even though the total antioxidant activity was not affected by nano-ZnO, the malondialdehyde activity (MDA) content was notably decreased in fruits under nano-ZnO treatment. The content of lycopene and ß-carotene was significantly affected by the use of nano-ZnO. Moreover, the usage of nano-ZnO significantly increased the total sugar content in fruits treated with nanoparticles via foliar spraying. Based on the obtained results, it can be stated that nano-ZnO, regardless of the method of application, significantly affected tomato fruits which can be beneficial for fruit production.


Subject(s)
Antioxidants , Fruit , Solanum lycopersicum , Zinc Oxide , beta Carotene , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Solanum lycopersicum/chemistry , Solanum lycopersicum/growth & development , Fruit/chemistry , Fruit/drug effects , Fruit/metabolism , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Antioxidants/chemistry , beta Carotene/metabolism , beta Carotene/analysis , Lycopene , Nanoparticles/chemistry , Malondialdehyde/metabolism , Fertilizers/analysis , Carotenoids/metabolism , Carotenoids/analysis
20.
Turk J Gastroenterol ; 35(7): 523-531, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39128087

ABSTRACT

BACKGROUND/AIMS:  This study aimed to investigate the possible positive effects of arbutin in a trinitrobenzene sulfonic acid (TNBS)- induced experimental colitis model, to compare it with mesalazine, which is used in treating inflammatory bowel disease and to observe the effect of its concomitant use. MATERIALS AND METHODS:  Forty Wistar albino species male rats were randomized into 5 groups as control, colitis, colitis+arbutin (Arb), colitis+mesalazine (Mes), and colitis+mesalazine+arbutin (M+A). Proinflammatory cytokines [interleukin (IL)-6, IL-1ß, tumor necrosis factor alpha (TNF-α)] and oxidant/antioxidant parameters [malondialdehyde (MDA), superoxide dismutase inhibition (SOD) inhibition, myeloperoxidase (MPO), and catalase, glutathione peroxidase (GPx)] were processed from the samples. Histopathological evaluation evaluated goblet cell reduction, cellular infiltration, and mucosal loss. RESULTS:  When the treatment groups and the TNBS group were compared, statistical significance was achieved in MDA, MPO, SOD inhibition, GPx values, IL-6, IL-1ß and TNF-α levels. Histopathological evaluation revealed a statistically significant decrease in the mucosal loss value in the group where mesalazine and arbutin were used together compared to the TNBS group. CONCLUSION:  Our study's results elaborated that using arbutin alone or in combination with mesalazine produced positive effects in colitis-induced rats.


Subject(s)
Arbutin , Colitis , Disease Models, Animal , Mesalamine , Peroxidase , Rats, Wistar , Trinitrobenzenesulfonic Acid , Animals , Male , Arbutin/pharmacology , Arbutin/therapeutic use , Rats , Colitis/drug therapy , Colitis/chemically induced , Trinitrobenzenesulfonic Acid/toxicity , Mesalamine/pharmacology , Mesalamine/therapeutic use , Peroxidase/metabolism , Superoxide Dismutase/metabolism , Cytokines/metabolism , Malondialdehyde/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Tumor Necrosis Factor-alpha , Random Allocation , Glutathione Peroxidase/metabolism , Interleukin-1beta/metabolism , Oxidative Stress/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL