Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Toxicol Sci ; 201(1): 129-144, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38851877

ABSTRACT

Lorcaserin is a 5-hydroxytryptamine 2C (serotonin) receptor agonist and a nongenotoxic rat carcinogen, which induced mammary tumors in male and female rats in a 2-yr bioassay. Female Sprague Dawley rats were treated by gavage daily with 0, 30, or 100 mg/kg lorcaserin, replicating bioassay dosing but for shorter duration, 12 or 24 wk. To characterize exposure and eliminate possible confounding by a potentially genotoxic degradation product, lorcaserin and N-nitroso-lorcaserin were quantified in dosing solutions, terminal plasma, mammary, and liver samples using ultra-high-performance liquid chromatography-electrospray tandem mass spectrometry. N-nitroso-lorcaserin was not detected, supporting lorcaserin classification as nongenotoxic carcinogen. Mammary DNA samples (n = 6/dose/timepoint) were used to synthesize PCR products from gene segments encompassing hotspot cancer driver mutations, namely regions of Apc, Braf, Egfr, Hras, Kras, Nfe2l2, Pik3ca, Setbp1, Stk11, and Tp53. Mutant fractions (MFs) in the amplicons were quantified by CarcSeq, an error-corrected next-generation sequencing approach. Considering all recovered mutants, no significant differences between lorcaserin dose groups were observed. However, significant dose-responsive increases in Pik3ca H1047R mutation were observed at both timepoints (ANOVA, P < 0.05), with greater numbers of mutants and mutants with greater MFs observed at 24 wk as compared with 12 wk. These observations suggest lorcaserin promotes outgrowth of spontaneously occurring Pik3ca H1047R mutant clones leading to mammary carcinogenesis. Importantly, this work reports approaches to analyze clonal expansion and demonstrates CarcSeq detection of the carcinogenic impact (selective Pik3ca H0147R mutant expansion) of a nongenotoxic carcinogen using a treatment duration as short as 3 months.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Mutation , Rats, Sprague-Dawley , Animals , Female , Class I Phosphatidylinositol 3-Kinases/genetics , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Rats , Carcinogens/toxicity , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/genetics , Dose-Response Relationship, Drug , Benzazepines
2.
J Cell Biochem ; 125(7): e30606, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38779980

ABSTRACT

The Hippo pathway, a signaling cascade involved in the regulation of organ size and several other processes, acts as a conduit between extracellular matrix (ECM) cues and cellular responses. We asked whether the basement membrane (BM), a specialized ECM component known to induce quiescence and differentiation in mammary epithelial cells, would regulate the localization, activity, and interactome of YAP, a Hippo pathway effector. To address this question, we used a broad range of experimental approaches, including 2D and 3D cultures of both mouse and human mammary epithelial cells, as well as the developing mouse mammary gland. In contrast to malignant cells, nontumoral cells cultured with a reconstituted BM (rBM) displayed higher concentrations of YAP in the cytoplasm. Incidentally, when in the nucleus of rBM-treated cells, YAP resided preferentially at the nuclear periphery. In agreement with our cell culture experiments, YAP exhibited cytoplasmic predominance in ductal cells of developing mammary epithelia, where a denser BM is found. Conversely, terminal end bud (TEB) cells with a thinner BM displayed higher nucleus-to-cytoplasm ratios of YAP. Bioinformatic analysis revealed that genes regulated by YAP were overrepresented in the transcriptomes of microdissected TEBs. Consistently, mouse epithelial cells exposed to the rBM expressed lower levels of YAP-regulated genes, although the protein level of YAP and Hippo components were slightly altered by the treatment. Mass spectrometry analysis identified a differential set of proteins interacting with YAP in cytoplasmic fractions of mouse epithelial cells in the absence or presence of rBM. In untreated cells, YAP interactants were enriched in processes related to ubiquitin-mediated proteolysis, whereas in cells exposed to rBM YAP interactants were mainly key proteins related to amino acid, amino sugar, and carbohydrate metabolism. Collectively, we unraveled that the BM induces YAP translocation or retention in the cytoplasm of nontumoral epithelial cells and that in the cytoplasm YAP seems to undertake novel functions in metabolic pathways.


Subject(s)
Adaptor Proteins, Signal Transducing , Basement Membrane , Cytoplasm , Epithelial Cells , Transcription Factors , YAP-Signaling Proteins , Animals , Humans , Mice , Epithelial Cells/metabolism , YAP-Signaling Proteins/metabolism , Female , Cytoplasm/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Basement Membrane/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , Mammary Glands, Human/metabolism , Mammary Glands, Human/cytology , Cell Nucleus/metabolism , Signal Transduction
3.
PLoS One ; 19(4): e0300728, 2024.
Article in English | MEDLINE | ID: mdl-38683862

ABSTRACT

Feeding high-gain diets and an inadequate energy and protein ratio during pre-puberty may lead to impaired growth and mammary gland development of heifers. Thus, frequent application of bovine somatotropin (bST) may prevent future losses in productivity, improve mammary development and animal performance. We aimed to evaluate the effects of bST on digestibility, performance, blood metabolites, mammary gland development, and carcass composition of high-performance prepubertal Holstein × Gyr heifers. Thirty-four Holstein × Gyr heifers with an average initial body weight of 218 ± 49 kg and 14 ± 4 months of age were submitted to an 84-day trial evaluating the effects of no bST or bST injections. Treatments were randomly assigned to each animal within one of the tree blocks. The bST did not influence digestibility or performance parameters. Regarding blood results, IGF1 concentration presented an interaction between treatment and day, where bST heifers had the highest IGF1 concentration. Heifers receiving bST also showed increased ribeye area; however, only an experimental day effect for backfat thickness was observed, with greater accumulation of carcass fat on day 84. Heifers receiving bST had lower pixels/mm² on parenchyma, characteristic of greater parenchymal tissue. Moreover, heifers on bST treatment also had reduced pixels/mm2, characteristic of reduced fat pad tissue. Lastly, bST injections did not influence liver and muscle gene expression, nor most genes evaluated in mammary gland tissue, except for IGFBP3 expression, which was greater for bST heifers. In summary, we confirm the efficacy of bST injections to overcome the detrimental effects of high-gain diets on mammary gland growth and to improve lean carcass gain of prepubertal Holstein × Gyr heifers.


Subject(s)
Growth Hormone , Animals , Cattle , Female , Growth Hormone/blood , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/drug effects , Insulin-Like Growth Factor I/metabolism , Diet/veterinary , Animal Feed/analysis , Sexual Maturation/drug effects , Body Composition/drug effects , Animal Nutritional Physiological Phenomena , Insulin-Like Growth Factor Binding Protein 3/blood , Insulin-Like Growth Factor Binding Protein 3/metabolism
4.
J Dairy Res ; 91(1): 84-88, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38584304

ABSTRACT

The protein composition in goat milk undergoes changes throughout the different lactation periods, displaying distinct characteristics that are influenced by the dynamic nature of protein composition and concentration during the transition from colostrum secretion to mature milk. To evaluate the dynamics of whey proteins of Saanen goats during the colostral phase and the first month of lactation, 110 milk samples from 11 healthy mammary halves of seven Saanen goats were selected through a clinical evaluation. Whey was obtained by rennet coagulation of the mammary secretion. The biuret method determined total protein concentration, and their fractions were identified by 12% dodecyl sulfate-polyacrylamide gel electrophoresis. Maximum concentrations of all protein fractions were observed in the first 12 h of lactation, reducing throughout the study. Modification of the protein predominance was also observed. The transition from colostrum secretion to milk occurred 5 or 7 d postpartum.


Subject(s)
Colostrum , Goats , Lactation , Mammary Glands, Animal , Milk , Whey Proteins , Animals , Colostrum/chemistry , Female , Lactation/physiology , Whey Proteins/analysis , Milk/chemistry , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/chemistry , Milk Proteins/analysis , Postpartum Period
5.
J Dairy Sci ; 107(6): 4017-4032, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38246540

ABSTRACT

Holstein cattle carrying a prolactin receptor gene mutation (SLICK) exhibit short and sleek hair coats (short-haired Holstein [SLK]) enhancing thermotolerance and productivity compared with wild type-haired Holstein (WT) under tropical conditions. The objectives were to unravel the physiological and molecular mechanisms that confer an advantage to this slick genotype in Puerto Rico and determine potential correlations between metabolites and physiological variables. At 160 ± 3 DIM we compared vaginal temperatures (VT) and voluntary solar radiation exposure (VSRE) during 48 h between 9 SLK and 9 WT Holsteins, whereas a subsample of 7 SLK and 7 WT were used to assess udder skin temperature, mammary gland hemodynamics and transcriptomics, and blood plasma untargeted metabolomics at a single time point. The SLK cattle showed lower VT throughout the day and greater VSRE at 1000 h and 1100 h compared with their WT counterparts. Total mammary blood flow (MBF) was greater in SLK Holsteins compared with WT. The metabolite 9-nitrooctadecenoic acid was identified as a potential biomarker for MBF; moreover, SLK cattle had greater amounts of this metabolite in their plasma. Prostaglandin D2 synthase (PTGS) was upregulated in the slick mammary gland, while plasma prostaglandin D2 was positively correlated with milk yield and increased in SLK Holsteins compared with WT. Interestingly, the arachidonic acid metabolism pathway was enriched in the mammary gland transcriptome and perturbed in the blood metabolome in the SLK Holsteins. In conclusion, SLK Holsteins exhibited lower body temperatures, greater VSRE, enhanced blood supply to the mammary gland, and alterations in genes and metabolites involved in arachidonic acid metabolism at the mammary gland and blood plasma. The usage of the SLK Holstein cattle genetics in dairy operations could be a feasible alternative to mitigate the adverse consequences of heat stress.


Subject(s)
Lactation , Mammary Glands, Animal , Animals , Cattle , Female , Mammary Glands, Animal/metabolism , Puerto Rico , Hemodynamics , Transcriptome , Metabolomics
6.
Chemosphere ; 313: 137358, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36427587

ABSTRACT

The aim of the present study was to evaluate whether early postnatal exposure to a glyphosate-based herbicide (GBH) alters pre-pubertal mammary development in Friesian lambs. To this end, from postnatal day 1-14, ewe lambs were exposed subcutaneously or orally to GBH (2 mg/kg bw/day) or vehicle (control) and mammary gland biopsies were obtained at 45 days of age. GBH-exposed lambs exhibited larger mammary ducts and less area occupied by terminal duct lobular units than controls, accompanied by an increase in the area of adipocytes in the mammary stroma. Lambs subcutaneously exposed to GBH showed increased protein expression of estrogen receptor alpha; however, both GBH-exposed groups had decreased mRNA expression of this receptor. Control lambs showed nuclear progesterone receptor (PR) protein expression, whereas GBH-exposed animals showed cytoplasmic PR expression; both GBH-exposed groups exhibited decreased mRNA expression of PR. GBH-exposed lambs also had decreased epithelial cell proliferation. Regarding insulin-like growth factors, both groups showed similar IGF-1 mRNA and protein expression but decreased expression of its receptor, and increased IGFBP5 expression. In addition, phosphorylated AKT was only observed in the mammary gland of control lambs. Our results show that early postnatal exposure to GBH, regardless of the exposure route, affects the IGF-1 system and the AKT/protein kinase B pathway, interfering with steroid hormone receptor expression and cell proliferation. This consequently modifies the growth and development of the pre-pubertal mammary gland of Frisian lambs.


Subject(s)
Herbicides , Insulin-Like Growth Factor I , Animals , Female , Rats , Cell Proliferation , Herbicides/toxicity , Insulin-Like Growth Factor I/genetics , Progesterone , Proto-Oncogene Proteins c-akt , Rats, Wistar , Receptors, Progesterone , RNA, Messenger , Sheep , Mammary Glands, Animal/metabolism , Glyphosate
7.
J Dairy Res ; 89(4): 404-409, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36398762

ABSTRACT

This research paper addresses the hypothesis that stress, induced by ACTH administration and cortisol release increases somatic cell count (SCC) in mammary secretion, and improves the effectiveness of dry off in goats. We report indicators of milk synthesis and mammary gland involution during dry off. Thirty Saanen goats were subjected to abrupt dry off and treatments: (1) ACTH administration (ACTH) or (2) placebo (Control) on days 1, 3, 6, 9, 12, 15, 30, and 60 of dry off. The expression of target genes in mammary tissue that are related to milk synthesis and cell survival such as insulin-like growth factor 1 receptor (IGF1R), phosphatidylinositol-3-kinase (PIK3CA), protein kinase B (AKT1) and mechanistic target of rapamycin (MTOR), casein (CSN2), lactalbumin (LALBA) and lactoferrin (LF) were evaluated, and plasma cortisol concentration, SCC, leucocyte count, and microbiological analyses in milk and mammary secretions were assessed. ACTH significantly downregulated the expression of IGF1R and upregulated the expression of PIK3CA in mammary tissue, increased lactoferrin concentration and SCC, and changed immune cell levels in mammary secretions compared to Control. Furthermore, ACTH administration increased the percentage of dry goats compared to the Control (73 vs. 46%, respectively). We conclude that the effect of stress via ACTH administration and cortisol release accelerated mammary involution during the early dry-off period.


Subject(s)
Lactation , Milk , Female , Animals , Milk/metabolism , Lactation/physiology , Hydrocortisone , Lactoferrin/genetics , Mammary Glands, Animal/metabolism , Apoptosis , Goats/physiology , Adrenocorticotropic Hormone/pharmacology
8.
Dis Model Mech ; 15(3)2022 03 01.
Article in English | MEDLINE | ID: mdl-35044452

ABSTRACT

RET is a receptor tyrosine kinase with oncogenic potential in the mammary epithelium. Several receptors with oncogenic activity in the breast are known to participate in specific developmental stages. We found that RET is differentially expressed during mouse mammary gland development: RET is present in lactation and its expression dramatically decreases in involution, the period during which the lactating gland returns to a quiescent state after weaning. Based on epidemiological and pre-clinical findings, involution has been described as tumor promoting. Using the Ret/MTB doxycycline-inducible mouse transgenic system, we show that sustained expression of RET in the mammary epithelium during the post-lactation transition to involution is accompanied by alterations in tissue remodeling and an enhancement of cancer potential. Following constitutive Ret expression, we observed a significant increase in neoplastic lesions in the post-involuting versus the virgin mammary gland. Furthermore, we show that abnormal RET overexpression during lactation promotes factors that prime involution, including premature activation of Stat3 signaling and, using RNA sequencing, an acute-phase inflammatory signature. Our results demonstrate that RET overexpression negatively affects the normal post-lactation transition.


Subject(s)
Mammary Glands, Human , Neoplasms , Animals , Female , Humans , Lactation/physiology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Glands, Human/metabolism , Mice , Neoplasms/pathology , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , STAT3 Transcription Factor/metabolism
9.
Biomed Pharmacother ; 144: 112355, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34794232

ABSTRACT

Antenatal corticosteroid therapy is used to reduce neonatal mortality in preterm infants but it is currently unknown whether this intervention affects lipid metabolism at the peripartum. This study aimed to evaluate if antenatal corticosteroid therapy in pregnant rats and women affects lipid metabolism during early lactation. We evaluated women at risk of preterm delivery that received corticosteroid therapy (CASE) and women that were not exposed to corticosteroid and were not at risk of preterm delivery (CONTROL). Samples were collected to measure serum and milk triacylglycerol (TAG) three days after delivery. Rats were treated with dexamethasone (DEX) between the 15th and the 20th days of pregnancy. Samples were collected at different days after delivery (L3, L8 and L14). TAG was measured in serum, liver and mammary gland (MG). TAG appearance rates were measured after tyloxapol injection and gavage with olive oil. We also evaluated the expression of key genes related to lipid metabolism in the liver and in the MG and hepatic phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC). CASE volunteers delivered earlier than CONTROL but presented unaltered milk and serum TAG concentrations. Early lactating DEX rats exhibited increased TAG in serum, MG and milk. No changes in CD36 and LPL were detected in the MG and liver. Early lactating DEX rats displayed increased TAG appearance rate and reduced hepatic AMPK/ACC phosphorylation. Our data revealed that antenatal corticosteroid therapy reduces hepatic AMPK/ACC phosphorylation during early lactation that reflects in increased TAG concentration in serum, MG and milk.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adrenal Cortex Hormones/therapeutic use , Lactation/drug effects , Lipid Metabolism/drug effects , Acetyl-CoA Carboxylase/metabolism , Adult , Animals , Dexamethasone/pharmacology , Female , Gene Expression , Humans , Liver/metabolism , Male , Mammary Glands, Animal/metabolism , Milk, Human/chemistry , Obstetric Labor, Premature/prevention & control , Phosphorylation , Pregnancy , Rats , Rats, Wistar , Triglycerides/blood , Triglycerides/metabolism , Young Adult
10.
Mol Cell Endocrinol ; 538: 111465, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34597725

ABSTRACT

Growth Hormone (GH) plays crucial roles in mammary gland development and growth, and its upregulation has been associated with breast cancer promotion and/or progression. To ascertain how high GH levels could promote mammary tissue oncogenic transformation, morphological characteristics and the expression of receptors involved in mammary growth, development and cancer, and of mitogenic mediators were analyzed in the mammary gland of virgin adult transgenic mice that overexpress GH. Whole mounting and histologic analysis evidenced that transgenic mice exhibit increased epithelial ductal elongation and enlarged ducts along with deficient branching and reduced number of alveolar structures compared to wild type mice. The number of differentiated alveolar structures was diminished in transgenic mice while the amount of terminal end buds (TEBs) did not differ between both groups of mice. GH, insulin-like growth factor 1 (IGF1) and GH receptor mRNA levels were augmented in GH-overexpressing mice breast tissue, as well as IGF1 receptor protein content. However, GH receptor protein levels were decreased in transgenic mice. Fundamental receptors for breast growth and development like progesterone receptor and epidermal growth factor receptor were also increased in mammary tissue from transgenic animals. In turn, the levels of the proliferation marker Ki67, cFOS and Cyclin D1 were increased in GH-overexpressing mice, while cJUN expression was decreased and cMYC did not vary. In conclusion, prolonged exposure to high GH levels induces morphological and molecular alterations in the mammary gland that affects its normal development. While these effects would not be tumorigenic per se, they might predispose to oncogenic transformation.


Subject(s)
Carrier Proteins/genetics , Growth Hormone/genetics , Insulin-Like Growth Factor I/genetics , Mammary Glands, Animal/abnormalities , Animals , Animals, Genetically Modified , Biomarkers/metabolism , Female , Growth Hormone/metabolism , Mammary Glands, Animal/metabolism , Mice , Proto-Oncogene Proteins c-jun/metabolism , Proto-Oncogene Proteins c-myc/metabolism
11.
J Dairy Res ; 88(3): 286-292, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34372953

ABSTRACT

This study aimed to obtain a better understanding of the regulatory genes and molecules involved in the development of mastitis. For this purpose, the transcription factors (TF) and MicroRNAs (miRNA) related to differentially expressed genes previously found in extracorporeal udders infected with Streptococcus agalactiae were investigated. The Gene-TF network highlighted LOC515333, SAA3, CD14, NFKBIA, APOC2 and LOC100335608 and genes that encode the most representative transcription factors STAT3, PPARG, EGR1 and NFKB1 for infected udders. In addition, it was possible to highlight, through the analysis of the gene-miRNA network, genes that could be post-transcriptionally regulated by miRNAs, such as the relationship between the CCL5 gene and the miRNA bta-miR-363. Overall, our data demonstrated genes and regulatory elements (TF and miRNA) that can play an important role in mastitis resistance. The results provide new insights into the first functional pathways and the network of genes that orchestrate the innate immune responses to infection by Streptococcus agalactiae. Our results will increase the general knowledge about the gene networks, transcription factors and miRNAs involved in fighting intramammary infection and maintaining tissue during infection and thus enable a better understanding of the pathophysiology of mastitis.


Subject(s)
Computer Simulation , Gene Expression Regulation , Mastitis, Bovine/genetics , RNA-Seq/veterinary , Animals , Cattle , Female , Gene Expression Profiling/methods , Gene Expression Profiling/veterinary , Genetic Predisposition to Disease , Mammary Glands, Animal/metabolism , Mastitis, Bovine/immunology , Mastitis, Bovine/microbiology , MicroRNAs/genetics , Real-Time Polymerase Chain Reaction/veterinary , Streptococcal Infections/immunology , Streptococcal Infections/veterinary , Streptococcus agalactiae , Transcription Factors/genetics
12.
Cell Biol Int ; 45(11): 2264-2274, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34288236

ABSTRACT

The mammary gland (MG) and female prostate are plastic reproductive organs which are highly responsive to hormones. Thus, endocrine disruptors, such as bisphenol A (BPA) and exogenous estrogens, negatively affect glandular homeostasis. In addition to previously described alterations, changes in inflammatory markers expression also trigger the development of a microenvironment that contributes to tumor progression. The current work aimed to evaluate the inflammatory responses of the MG and prostate gland to BPA (50 µg/kg) and 17-ß estradiol (35 µg/kg) exposure during the perinatal window of susceptibility. The results showed that at 6 months of age there was an increase in the number of phospho-STAT3 (P-STAT3) positive cells in the female prostate from animals perinatally exposed to 50 µg/kg BPA daily. In addition, the number of macrophages increased in these animals in comparison with nonexposed animals, as shown by the F4/80 marker. Despite an increase in the incidence of lobuloalveolar and intraductal hyperplasia, the MG did not show any difference in the expression of the four inflammatory markers evaluated: tumor necrosis factor-α, COX-2, P-STAT3, and F4/80. Analysis of both glands from the same animal led to the conclusion that exposure to endocrine disruptors during the perinatal window of susceptibility leads to different inflammatory responses in different reproductive organs. As the prostate is more susceptible to these inflammatory mechanisms, it is reasonable to affirm that possible neoplastic alterations in this organ are related to changes in the inflammatory pattern of the stroma, a characteristic that is not evident in the MG.


Subject(s)
Endocrine Disruptors/pharmacology , Endocrine Glands/drug effects , Mammary Glands, Animal/metabolism , Animals , Animals, Newborn/metabolism , Benzhydryl Compounds/pharmacology , Endocrine Disruptors/metabolism , Endocrine Glands/metabolism , Estradiol/pharmacology , Female , Genitalia, Female/drug effects , Genitalia, Female/metabolism , Gerbillinae , Humans , Inflammation/metabolism , Mammary Glands, Animal/drug effects , Phenols/pharmacology , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , Steroids/pharmacology
13.
Res Vet Sci ; 137: 30-39, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33932820

ABSTRACT

The aim of this study was to characterize the protein expression of matrix metalloproteinase-2 (MMP-2) and -- 9 and their inhibitors (TIMP-1 and -2) in mammary tissue of dairy cows with naturally occurring chronic S. aureus intramammary infections (IMI) during active involution. Moreover, the gelatinolytic activity of MMP-2 and -9 in mammary secretions was evaluated. Cows in late lactation that were either uninfected or with chronic naturally acquired S. aureus IMI were included in this study. Protein expression of MMP-2 and -9 in mammary tissues was significantly higher in S. aureus-infected than uninfected quarters at day 14 and 21 of involution. Protein expression of TIMP-1 and -2 was significantly higher in S. aureus-infected than uninfected quarters at day 7, 14 and 21 of involution. The MMP-2/TIMP-1, MMP-2/TIMP-2, MMP-9/TIMP-1 and MMP-9/TIMP-2 ratios were significantly higher in S. aureus-infected compared with uninfected quarters at day 14 of involution. The MMP-2 activity was significantly higher in mammary secretions from S. aureus-infected compared with uninfected quarters at day 1, 2, 7 and 14 of involution. The MMP-9 activity was significantly higher in mammary secretions from infected quarters compared with uninfected quarters at day 7, 14 and 21 of involution. The increased expression of MMP-2 and -9 in mammary tissue as well as the high levels of activity observed in mammary secretion from infected quarters compared with uninfected quarters during active involution, strongly suggests that these gelatinases could contribute to degradation of mammary tissue components during chronic S. aureus IMI. The MMPs/TIMPs imbalance could lead to greater proteolysis and potentially more damage to mammary tissue in S. aureus-infected quarters.


Subject(s)
Mastitis, Bovine/enzymology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Staphylococcus aureus , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism , Animals , Cattle , Female , Gene Expression Regulation, Enzymologic , Lactation , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/microbiology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Staphylococcal Infections/veterinary , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-2/genetics
14.
N Biotechnol ; 61: 11-21, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33157282

ABSTRACT

Complex recombinant glycoproteins produced as potential biopharmaceuticals in goat's milk have an aberrant pattern of N-glycosylation due to the lack of multi-antennary structures. Overexpression of glycosyltransferases may increase oligosaccharide branching of the desired glycoproteins. Here, human erythropoietin fused to human IgG Fc (EPO-Fc) was co-expressed with N-acetyl-glucosaminyltransferase-IVa (GnT-IVa) by adenoviral transduction in goat mammary gland to evaluate the in vivo modification of N-glycosylation pattern in this tissue. Adenoviral vectors, containing the EPO-Fc and GnT-IVa sequences were assembled for in vitro and in vivo expression in mammalian cell culture or in goat mammary gland. Protein detection was assessed by gel electrophoresis and western blot, and N-glycans were identified by HPLC and mass spectrometry. GnT-IVa overexpression and its colocalization with EPO-Fc in the Golgi apparatus of SiHa cells were demonstrated. N-glycan analysis of in vitro and in vivo expression of EPO-Fc modified by GnT-IVa (EPO-Fc/GnT-IVa) showed an increase in high molecular weight structures, which corresponded to tri- and tetra-antennary N-glycans in SiHa cells and mostly tri-antennary N-glycans in goat's milk from transformed mammary tissue. The results confirmed that successful modification of the goat mammary gland secretion pathway could be achieved by co-expressing glycoenzymes together with the glycoprotein of interest. This is the first report of modification of the N-glycosylation pattern in the goat mammary gland in vivo, and constitutes a step forward for improving the use of the mammary gland as a bioreactor for the production of complex recombinant proteins.


Subject(s)
Glycoproteins/metabolism , Mammary Glands, Animal/metabolism , Animals , Cells, Cultured , Erythropoietin , Female , Glycosylation , Goats , Humans , N-Acetylglucosaminyltransferases , Transduction, Genetic
15.
Article in English | MEDLINE | ID: mdl-32849267

ABSTRACT

Lactation is a complex physiological process, depending on orchestrated central and peripheral events, including substantial brain plasticity. Among these events is a novel expression of pro-melanin-concentrating hormone (Pmch) mRNA in the rodent hypothalamus, such as the ventral part of the medial preoptic area (vmMPOA). This expression reaches its highest levels around postpartum day 19 (PPD19), when dams transition from lactation to the weaning period. The appearance of this lactation-related Pmch expression occurs simultaneously with the presence of one of the Pmch products, melanin-concentrating hormone (MCH), in the serum. Given the relevance of the MPOA to maternal physiology and the contemporaneity between Pmch expression in this structure and the weaning period, we hypothesized that MCH has a role in the termination of lactation, acting as a mediator between central and peripheral changes. To test this, we investigated the presence of the MCH receptor 1 (MCHR1) and its gene expression in the mammary gland of female rats in different stages of the reproductive cycle. To that end, in situ hybridization, RT-PCR, RT-qPCR, nucleotide sequencing, immunohistochemistry, and Western blotting were employed. Although Mchr1 expression was detected in the epidermis and dermis of both diestrus and lactating rats, parenchymal expression was exclusively found in the functional mammary gland of lactating rats. The expression of Mchr1 mRNA oscillated through the lactation period and reached its maximum in PPD19 dams. Presence of MCHR1 was confirmed with immunohistochemistry with preferential location of MCHR1 immunoreactive cells in the alveolar secretory cells. As was the case for gene expression, the MCHR1 protein levels were significantly higher in PPD19 than in other groups. Our data demonstrate the presence of an anatomical basis for the participation of MCH peptidergic system on the control of lactation through the mammary gland, suggesting that MCH could modulate a prolactation action in early postpartum days and the opposite role at the end of the lactation.


Subject(s)
Lactation , Mammary Glands, Animal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Pituitary Hormone/genetics , Receptors, Pituitary Hormone/metabolism , Animals , Female , Immunohistochemistry , Male , Mammary Glands, Animal/growth & development , Rats , Rats, Long-Evans
16.
Cell Biol Int ; 44(12): 2512-2523, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32856745

ABSTRACT

The postlactational involution of the mammary gland is a complex process. It involves the collapse of the alveoli and the remodeling of the extracellular matrix, which in turn implies a complex set of interrelations between the epithelial, stromal, and extracellular matrix elements. The telocytes, a new type of CD34-positive stromal cell that differs from fibroblasts in morphological terms and gene expression, were detected in the stroma of several tissues, including the mammary gland; however, their function remains elusive. The present study employed three-dimensional reconstructions and immunohistochemical, ultrastructural, and immunofluorescence techniques in histological sections of the mammary gland of the Mongolian gerbil during lactation and postlactational involution to evaluate the presence of telocytes and to investigate a possible function for these cells. By means of immunofluorescence assays for CD34 and c-kit, major markers of telocytes, and also through morphological and ultrastructural evidences, telocytes were observed to surround the mammary ducts and collapsing alveoli. It was also found that these cells are associated with matrix metalloproteinase 9, which indicates that telocytes can play a role in extracellular matrix digestion, as well as vascular endothelial growth factor, a factor that promotes angiogenesis. Together, these data indicate that telocytes are a distinct cell type in the mammary gland and, for the first time, show that these cells possibly play a role in tissue remodeling and angiogenesis during the postlactional involution of the mammary gland.


Subject(s)
Lactation/metabolism , Mammary Glands, Animal/physiology , Telocytes/metabolism , Animals , Antigens, CD34/metabolism , Extracellular Matrix/metabolism , Female , Gene Expression/genetics , Gerbillinae/metabolism , Mammary Glands, Animal/metabolism , Neovascularization, Pathologic/metabolism , Stromal Cells/metabolism , Telocytes/physiology , Vascular Endothelial Growth Factor A/metabolism
17.
Nutrients ; 12(8)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32731460

ABSTRACT

Maternal high fat diet (HFD) and obesity during pregnancy increase female offspring's mammary cancer risk in animal studies. We aimed to observe whether the consumption of grape juice during pregnancy can reverse this risk. During pregnancy and lactation, female Wistar rats were fed either a control or HFD and also received grape juice or tap water. At the age of 50 days, female offspring were euthanized, and mammary glands were collected to assess changes in biomarkers of increased mammary cancer risk. Maternal HFD increased the number of terminal end buds in offspring's mammary glands and promoted cell proliferation (ki67). Maternal grape consumption blocked these effects. Apoptosis marker caspase 7, but not caspase 3, was reduced in the HFD offspring. HFD offspring also exhibited a reduction in the indicators of cell cycle regulation (p27, p21) and an ability to maintain DNA integrity (reduced p53). Maternal grape juice did not have any effect on these endpoints in the HFD offspring but reduced caspase 7 and p53 levels in the control offspring, perhaps reflecting reduced cellular stress. Maternal HFD increased oxidative stress marker GPx1 mRNA expression, and grape juice increased the levels of GPx2 in both the control and HFD offspring. HFD increased XBP1/Xbp1s, Atf4 and Atf6 mRNA expression and reduced ATF6 and CHOP protein levels. Maternal grape juice reversed the increase in XBP1/Xbp1s, Atf4 and Atf6 in the HFD offspring. PPAR was downregulated in the HFD group, and grape juice reversed this effect. Grape juice also reduced the levels of HER2 and IRS, both in the control and HFD offspring. In conclusion, maternal grape juice supplementation reversed some of the biomarkers that are indicative of increased breast cancer risk in the HFD offspring.


Subject(s)
Fruit and Vegetable Juices/adverse effects , Mammary Glands, Animal/metabolism , Maternal Nutritional Physiological Phenomena , Unfolded Protein Response/physiology , Vitis , Animals , Diet, High-Fat/adverse effects , Eating , Female , Oxidative Stress , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats , Rats, Wistar
18.
PLoS One ; 15(7): e0235619, 2020.
Article in English | MEDLINE | ID: mdl-32634174

ABSTRACT

This study aimed to estimate energy requirements of pregnant Holstein × Gyr cows. Different planes of nutrition were established by two feeding regimens: ad libitum or maintenance. Sixty-two nonlactating cows with average body weight of 480 ± 10.1 kg and an age of 5 ± 0.5 years were used. Cows were divided into three groups: pregnant (n = 44), non-pregnant (n = 12), and baseline reference (n = 6). The 56 pregnant and non-pregnant cows were randomly allocated into a feeding regimen: ad libitum or maintenance. To evaluate the effects of days of pregnancy, pregnant and non-pregnant animals were slaughtered at 140, 200, 240, and 270 days of pregnancy. Energy requirements for maintenance differed between pregnant and non-pregnant cows, thus two equations were developed. Net energy and metabolizable energy requirements for maintenance of non-pregnant cows were 82 kcal/kg empty body weight0.75/day and 132 kcal/kg empty body weight0.75/day, respectively. The efficiency of use of metabolizable energy for maintenance of non-pregnant cows was 62.4%. Net energy and metabolizable energy for maintenance of pregnant cows were 86 kcal/kg empty body weight0.75/day and 137 kcal/kg empty body weight0.75/day, respectively. Efficiency of use of metabolizable energy for maintenance of pregnant cows was 62.5%. The efficiency of use of metabolizable energy for gain was 41.9%. The efficiency of use of metabolizable energy for pregnancy was 14.1%. Furthermore, net energy requirement for pregnancy was different from zero from day 70 of pregnancy onwards. In conclusion, net energy and metabolizable energy requirements for maintenance of non-pregnant cows are different from pregnant cows. Furthermore, we believe that the proposed non-linear equations to estimate net energy requirements for pregnancy are more adequate than current NRC equation, and should be recommended for Holstein × Gyr cows.


Subject(s)
Energy Intake , Nutritional Requirements , Animals , Body Weight , Cattle , Energy Metabolism , Female , Mammary Glands, Animal/metabolism , Pregnancy , Uterus/metabolism
19.
Gen Comp Endocrinol ; 296: 113518, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32474048

ABSTRACT

In addition to key mammotrophic hormones such as the pituitary prolactin (PRL) and the ovarian steroids progesterone and estradiol, there are local factors that modulate the tissue dynamics of the mammary glands during pregnancy and lactation. By immunohistochemistry and RT-PCR, we found local transcription and translation of gonadotropin-releasing hormone (GNRH), GNRH receptor (GNRHR), PRL and PRL receptor (PRLR) in mammary glands of adult vizcachas during pregnancy and lactation. Both GNRH and GNRHR showed a lag between protein expression and gene transcription throughout the gestational period: while the highest transcription levels of these genes were recorded at early-pregnancy, the epithelial immunoexpressions of both showed their maximum during lactation. RIA results corroborated the presence of GNRH in mammary glands at all the analyzed stages and confirmed the maximum amount of this peptide in the lactating group. Significant amounts of GNRH were detected in milk samples as well. Conversely, PRL and PRLR shared similar protein and gene expression profiles, all exhibiting maximum values during lactation. GNRH peptide content in mammary glands of females with sulpiride-induced hyperprolactinemia (HP) was significantly lower than that of control females (CT). Although PRL mRNA levels remained unchanged, there was a marked increase in theα-lactalbumin (LALBA) transcription in mammary glands of HP- vs CT-females. These results suggest that after targeting mammary glands, PRL stimulates the expression of milk protein genes, but also, tempers the local expression of GNRH. Mammary gland-explantssupplemented with a GNRH analogue (GN-explants) had no differences in terms of PRLR orLALBA transcription levels compared to CT-explants, so the mammary PRLR signaling would not appear to be modulated by GNRH. Yet, mRNA expression levels of both GNRH and the GNRHR-downstream factor, EGR1, were significantly higher in GN-explants compared to that of CT which would point to a GNRH-positive feedback mechanism. In summary, the local coupled expression of GNRH, GNRHR and EGR1 in the mammary gland throughout pregnancy of vizcachas, the PRL-dependent mammary GNRH secretion as well as the GNRH positive feedback on its own transcription suggest an autocrine-paracrine regulatory mechanism and propose an active role for GNRH in mammary gland tissue remodeling.


Subject(s)
Gene Expression Regulation , Gonadotropin-Releasing Hormone/genetics , Homeostasis , Mammary Glands, Animal/metabolism , Receptors, LHRH/genetics , Rodentia/genetics , Animals , Early Growth Response Protein 1/metabolism , Epithelium/metabolism , Female , Gene Expression Regulation/drug effects , Gonadotropin-Releasing Hormone/analogs & derivatives , Gonadotropin-Releasing Hormone/metabolism , Lactation/physiology , Ligands , Organ Specificity , Pregnancy , Prolactin/genetics , Prolactin/metabolism , RNA, Messenger/metabolism , Receptors, LHRH/metabolism , Receptors, Prolactin/genetics , Receptors, Prolactin/metabolism , Reproduction , Signal Transduction/drug effects
20.
Int Immunopharmacol ; 84: 106514, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32311671

ABSTRACT

The non-neuronal cholinergic system refers to the presence of acetylcholine, choline acetyltransferase, acetylcholinesterase and cholinergic receptors, nicotinic and muscarinic (mAChRs) expressed in non-neuronal cells. The presence of mAChRs has been detected in different type of tumor cells and they are linked with tumorigenesis. We had previously documented the expression of mAChRs in murine and human mammary adenocarcinomas and the absence of these receptors in normal mammary cells of the same origins. We also demonstrated that mAChRs are involved in breast cancer progression, pointing to a main role for mAChRs as oncogenic proteins. Since the long term treatment of breast cancer cells with the muscarinic agonist carbachol promoted cell death, here we investigated the ability of low doses of this agonist combined with paclitaxel (PX), a taxane usually administered to treat breast cancer, to inhibit the progression of human MCF-7 tumor cells. We demonstrated that PX plus carbachol reduced cell viability and tumor growth in vitro probably due to a down-regulation in cancer stem cells population and in the expression of ATP "binding cassette" G2 drug extrusion pump; also a reduction in malignant-induced angiogenesis was produced by the in vivo administration of the mentioned combination in a metronomic schedule to MCF-7 tumor-bearing NUDE mice. Our results confirm that mAChRs could be considered as therapeutic targets for metronomic therapy in breast cancer as well as the usefulness of a muscarinic agonist as repositioning drug in the treatment of this type of tumors.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Carbachol/administration & dosage , Cholinergic Agonists/administration & dosage , Mammary Neoplasms, Experimental/drug therapy , Neovascularization, Pathologic/drug therapy , Paclitaxel/administration & dosage , Receptors, Muscarinic/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Administration, Metronomic , Animals , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Interactions , Female , Humans , Mammary Glands, Animal/blood supply , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice, Nude , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL