Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Rev Med Suisse ; 20(872): 881-885, 2024 May 01.
Article in French | MEDLINE | ID: mdl-38693801

ABSTRACT

Marburg virus disease (MVD) is a dreadful but exceptional disease. Formerly mainly identified in Uganda, Angola and the Democratic Republic of Congo, it has recently appeared in the Republic of Guinea, Ghana, Equatorial Guinea and Tanzania, adding West Africa to the affected regions. Humans become infected through exposure to bats Roussettus aegyptiacus or during unprotected care of infected people. Five cases are linked to travellers, the last one dates to 2008 and involved a visit to caves colonized by bats. At present, there is no specific treatment or vaccine. Despite its rarity, adventurous travelers should be aware of the risks of exposure and avoid entering places inhabited by bats.


La maladie à virus Marburg est une maladie redoutable mais exceptionnelle. Autrefois identifiée en Ouganda, Angola et République démocratique du Congo, elle a récemment fait son apparition en République de Guinée, au Ghana, en Guinée équatoriale et en Tanzanie, ajoutant l'Afrique de l'Ouest aux régions touchées. Les humains s'infectent lors d'une exposition avec les chauves-souris roussettes d'Égypte ou lors de la prise en charge sans protection de personnes infectées. Cinq cas sont liés à des voyageurs, le dernier remonte à 2008 et était associé à la visite de grottes colonisées par des roussettes d'Égypte. Actuellement, il n'existe aucun traitement spécifique ni vaccin. Malgré sa rareté, les voyageurs aventureux doivent être informés des risques d'exposition et éviter de pénétrer dans des lieux habités par des chauves-souris.


Subject(s)
Marburgvirus , Travel , Female , Humans , Male , Marburg Virus Disease/epidemiology , Marburg Virus Disease/transmission , Marburg Virus Disease/virology , Marburgvirus/isolation & purification , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Chiroptera/virology
2.
Viruses ; 15(8)2023 08 11.
Article in English | MEDLINE | ID: mdl-37632063

ABSTRACT

The COVID-19 pandemic has not only strained healthcare systems in Africa but has also intensified the impact of emerging and re-emerging diseases. Specifically in Equatorial Guinea, mirroring the situation in other African countries, unique zoonotic outbreaks have occurred during this challenging period. One notable resurgence is Marburg virus disease (MVD), which has further burdened the already fragile healthcare system. The re-emergence of the Marburg virus amid the COVID-19 pandemic is believed to stem from a probable zoonotic spill-over, although the precise transmission routes remain uncertain. Given the gravity of the situation, addressing the existing challenges is paramount. Though the genome sequences from the current outbreak were not available for this study, we analyzed all the available whole genome sequences of this re-emerging pathogen to advocate for a shift towards active surveillance. This is essential to ensure the successful containment of any potential Marburg virus outbreak in Equatorial Guinea and the wider African context. This study, which presents an update on the phylodynamics and the genetic variability of MARV, further confirmed the existence of at least two distinct patterns of viral spread. One pattern demonstrates a slower but continuous and recurring virus circulation, while the other exhibits a faster yet limited and episodic spread. These results highlight the critical need to strengthen genomic surveillance in the region to effectively curb the pathogen's dissemination. Moreover, the study emphasizes the importance of prompt alert management, comprehensive case investigation and analysis, contact tracing, and active case searching. These steps are vital to support the healthcare system's response to this emerging health crisis. By implementing these strategies, we can better arm ourselves against the challenges posed by the resurgence of the Marburg virus and other infectious diseases.


Subject(s)
Marburg Virus Disease , Marburgvirus , Animals , Humans , Africa/epidemiology , Black People , COVID-19/epidemiology , Marburgvirus/genetics , Pandemics , Marburg Virus Disease/epidemiology , Marburg Virus Disease/genetics , Marburg Virus Disease/virology , Disease Outbreaks , Equatorial Guinea/epidemiology , Viral Zoonoses/epidemiology , Viral Zoonoses/genetics , Viral Zoonoses/virology , Phylogeny
4.
J Biol Chem ; 296: 100796, 2021.
Article in English | MEDLINE | ID: mdl-34019871

ABSTRACT

Marburg virus (MARV) is a lipid-enveloped virus harboring a negative-sense RNA genome, which has caused sporadic outbreaks of viral hemorrhagic fever in sub-Saharan Africa. MARV assembles and buds from the host cell plasma membrane where MARV matrix protein (mVP40) dimers associate with anionic lipids at the plasma membrane inner leaflet and undergo a dynamic and extensive self-oligomerization into the structural matrix layer. The MARV matrix layer confers the virion filamentous shape and stability but how host lipids modulate mVP40 oligomerization is mostly unknown. Using in vitro and cellular techniques, we present a mVP40 assembly model highlighting two distinct oligomerization interfaces: the (N-terminal domain [NTD] and C-terminal domain [CTD]) in mVP40. Cellular studies of NTD and CTD oligomerization interface mutants demonstrate the importance of each interface in matrix assembly. The assembly steps include protein trafficking to the plasma membrane, homo-multimerization that induced protein enrichment, plasma membrane fluidity changes, and elongations at the plasma membrane. An ascorbate peroxidase derivative (APEX)-transmission electron microscopy method was employed to closely assess the ultrastructural localization and formation of viral particles for wildtype mVP40 and NTD and CTD oligomerization interface mutants. Taken together, these studies present a mechanistic model of mVP40 oligomerization and assembly at the plasma membrane during virion assembly that requires interactions with phosphatidylserine for NTD-NTD interactions and phosphatidylinositol-4,5-bisphosphate for proper CTD-CTD interactions. These findings have broader implications in understanding budding of lipid-enveloped viruses from the host cell plasma membrane and potential strategies to target protein-protein or lipid-protein interactions to inhibit virus budding.


Subject(s)
Marburg Virus Disease/virology , Marburgvirus/physiology , Membrane Lipids/metabolism , Viral Matrix Proteins/metabolism , Virion/metabolism , Animals , COS Cells , Cell Membrane/chemistry , Cell Membrane/metabolism , Chlorocebus aethiops , HEK293 Cells , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Marburg Virus Disease/metabolism , Marburgvirus/chemistry , Membrane Lipids/chemistry , Models, Molecular , Protein Multimerization , Viral Matrix Proteins/chemistry , Virion/chemistry , Virus Assembly
5.
J Clin Lab Anal ; 35(6): e23786, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33939238

ABSTRACT

BACKGROUND: Marburg virus (MARV) and Ebola virus (EBOV) are acute infections with high case fatality rates. It is of great significance for epidemic monitoring and prevention and control of infectious diseases by the development of a rapid, specific, and sensitive quantitative PCR method to detect two pathogens simultaneously. METHODS: Primers and TaqMan probes were designed according to highly conserved sequences of these viruses. Sensitivity, specificity, linear range, limit of detection, and the effects of hemolysis and lipid on real-time qPCR were evaluated. RESULTS: The linearity of the curve allowed quantification of nucleic acid concentrations in range from 103 to 109  copies/ml per reaction (MARV and EBOV). The limit of detection of EBOV was 40 copies/ml, and MARV was 100 copies/ml. It has no cross-reaction with other pathogens such as hepatitis b virus (HBV), hepatitis c virus (HCV), human papillomavirus (HPV), Epstein-Barr virus (EBV), herpes simplex virus (HSV), cytomegalovirus (CMV), and human immunodeficiency virus (HIV). Repeatability analysis of the two viruses showed that their coefficient of variation (CV) was less than 5.0%. The above results indicated that fluorescence quantitative PCR could detect EBOV and MARV sensitively and specifically. CONCLUSIONS: The TaqMan probe-based multiplex fluorescence quantitative PCR assays could detect EBOV and MARV sensitively specifically and simultaneously.


Subject(s)
Ebolavirus/genetics , Hemorrhagic Fever, Ebola/diagnosis , Marburg Virus Disease/diagnosis , Marburgvirus/genetics , Multiplex Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Animals , Hemorrhagic Fever, Ebola/virology , Humans , Marburg Virus Disease/virology , ROC Curve
6.
Viruses ; 13(2)2021 02 12.
Article in English | MEDLINE | ID: mdl-33673144

ABSTRACT

Filoviruses Ebola (EBOV) and Marburg (MARV) are devastating high-priority pathogens capable of causing explosive outbreaks with high human mortality rates. The matrix proteins of EBOV and MARV, as well as eVP40 and mVP40, respectively, are the key viral proteins that drive virus assembly and egress and can bud independently from cells in the form of virus-like particles (VLPs). The matrix proteins utilize proline-rich Late (L) domain motifs (e.g., PPxY) to hijack specific host proteins that contain WW domains, such as the HECT family E3 ligases, to facilitate the last step of virus-cell separation. We identified E3 ubiquitin ligase Smad Ubiquitin Regulatory Factor 2 (SMURF2) as a novel interactor with VP40 that positively regulates VP40 VLP release. Our results show that eVP40 and mVP40 interact with the three WW domains of SMURF2 via their PPxY motifs. We provide evidence that the eVP40-SMURF2 interaction is functional as the expression of SMURF2 positively regulates VLP egress, while siRNA knockdown of endogenous SMURF2 decreases VLP budding compared to controls. In sum, our identification of novel interactor SMURF2 adds to the growing list of identified host proteins that can regulate PPxY-mediated egress of VP40 VLPs. A more comprehensive understanding of the modular interplay between filovirus VP40 and host proteins may lead to the development of new therapies to combat these deadly infections.


Subject(s)
Ebolavirus/physiology , Hemorrhagic Fever, Ebola/enzymology , Marburg Virus Disease/enzymology , Marburgvirus/physiology , Ubiquitin-Protein Ligases/metabolism , Viral Matrix Proteins/metabolism , Virus Release , Amino Acid Motifs , Animals , Ebolavirus/chemistry , Ebolavirus/genetics , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/virology , Humans , Marburg Virus Disease/genetics , Marburg Virus Disease/virology , Marburgvirus/chemistry , Marburgvirus/genetics , Protein Binding , Ubiquitin-Protein Ligases/genetics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Virion/genetics , Virion/physiology , Virus Assembly
7.
Curr Biol ; 31(2): 257-270.e5, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33157026

ABSTRACT

Marburg virus (MARV) is among the most virulent pathogens of primates, including humans. Contributors to severe MARV disease include immune response suppression and inflammatory gene dysregulation ("cytokine storm"), leading to systemic damage and often death. Conversely, MARV causes little to no clinical disease in its reservoir host, the Egyptian rousette bat (ERB). Previous genomic and in vitro data suggest that a tolerant ERB immune response may underlie MARV avirulence, but no significant examination of this response in vivo yet exists. Here, using colony-bred ERBs inoculated with a bat isolate of MARV, we use species-specific antibodies and an immune gene probe array (NanoString) to temporally characterize the transcriptional host response at sites of MARV replication relevant to primate pathogenesis and immunity, including CD14+ monocytes/macrophages, critical immune response mediators, primary MARV targets, and skin at the inoculation site, where highest viral loads and initial engagement of antiviral defenses are expected. Our analysis shows that ERBs upregulate canonical antiviral genes typical of mammalian systems, such as ISG15, IFIT1, and OAS3, yet demonstrate a remarkable lack of significant induction of proinflammatory genes classically implicated in primate filoviral pathogenesis, including CCL8, FAS, and IL6. Together, these findings offer the first in vivo functional evidence for disease tolerance as an immunological mechanism by which the bat reservoir asymptomatically hosts MARV. More broadly, these data highlight factors determining disparate outcomes between reservoir and spillover hosts and defensive strategies likely utilized by bat hosts of other emerging pathogens, knowledge that may guide development of effective antiviral therapies.


Subject(s)
Chiroptera/immunology , Disease Reservoirs/virology , Immune Tolerance/immunology , Marburg Virus Disease/immunology , Marburgvirus/immunology , Animals , Asymptomatic Infections , Chiroptera/blood , Chiroptera/genetics , Chiroptera/virology , Female , Gene Expression Regulation/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immune Tolerance/genetics , Male , Marburg Virus Disease/virology , Monocytes/immunology
8.
Proc Natl Acad Sci U S A ; 117(49): 31142-31148, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33229516

ABSTRACT

Marburg virus (MARV) disease is lethal, with fatality rates up to 90%. Neutralizing antibodies (Abs) are promising drug candidates to prevent or treat the disease. Current efforts are focused in part on vaccine development to induce such MARV-neutralizing Abs. We analyzed the antibody repertoire from healthy unexposed and previously MARV-infected individuals to assess if naïve repertoires contain suitable precursor antibodies that could become neutralizing with a limited set of somatic mutations. We computationally searched the human Ab variable gene repertoire for predicted structural homologs of the neutralizing Ab MR78 that is specific to the receptor binding site (RBS) of MARV glycoprotein (GP). Eight Ab heavy-chain complementarity determining region 3 (HCDR3) loops from MARV-naïve individuals and one from a previously MARV-infected individual were selected for testing as HCDR3 loop chimeras on the MR78 Ab framework. Three of these chimerized antibodies bound to MARV GP. We then tested a full-length native Ab heavy chain encoding the same 17-residue-long HCDR3 loop that bound to the MARV GP the best among the chimeric Abs tested. Despite only 57% amino acid sequence identity, the Ab from a MARV-naïve donor recognized MARV GP and possessed neutralizing activity against the virus. Crystallization of both chimeric and full-length native heavy chain-containing Abs provided structural insights into the mechanism of binding for these types of Abs. Our work suggests that the MARV GP RBS is a promising candidate for epitope-focused vaccine design to induce neutralizing Abs against MARV.


Subject(s)
Antibodies, Viral/genetics , Complementarity Determining Regions/genetics , Marburg Virus Disease/immunology , Marburgvirus/immunology , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Complementarity Determining Regions/immunology , Epitopes/genetics , Epitopes/immunology , Glycoproteins/genetics , Glycoproteins/immunology , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Marburg Virus Disease/drug therapy , Marburg Virus Disease/genetics , Marburg Virus Disease/virology , Marburgvirus/pathogenicity , Mutation/genetics , Mutation/immunology , Viral Envelope Proteins , Viral Vaccines/genetics , Viral Vaccines/immunology
9.
Int J Infect Dis ; 99: 233-242, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32758690

ABSTRACT

OBJECTIVES: This article summarizes the countermeasures for Marburg virus disease, focusing on pathogenesis, clinical features and diagnostics. There is an emphasis on therapies and vaccines that have demonstrated, through their evaluation in nonhuman primates (NHPs) and/or in humans, potential for use in an emergency situation. METHODS: A standardized literature review was conducted on vaccines and treatments for Marburg virus disease, with a focus on human and nonhuman primate data published in the last five years. More detail on the methods that were used is summarized in a companion methods paper. RESULTS: The study identified six treatments and four vaccine platforms that have demonstrated, through their efficacy in NHPs, potential benefit for treating or preventing infection in humans. CONCLUSION: Succinct summaries of Marburg countermeasures are provided to give the busy clinician a head start in reviewing the literature if faced with a patient with Marburg virus disease. Links to other authoritative sources of information are also provided.


Subject(s)
Marburg Virus Disease/therapy , Animals , Humans , Marburg Virus Disease/immunology , Marburg Virus Disease/prevention & control , Marburg Virus Disease/virology , Marburgvirus/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology
10.
J Med Chem ; 63(13): 7211-7225, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32490678

ABSTRACT

The recent Ebola epidemics in West Africa underscore the great need for effective and practical therapies for future Ebola virus outbreaks. We have discovered a new series of remarkably potent small molecule inhibitors of Ebola virus entry. These 4-(aminomethyl)benzamide-based inhibitors are also effective against Marburg virus. Synthetic routes to these compounds allowed for the preparation of a wide variety of structures, including a conformationally restrained subset of indolines (compounds 41-50). Compounds 20, 23, 32, 33, and 35 are superior inhibitors of Ebola (Mayinga) and Marburg (Angola) infectious viruses. Representative compounds (20, 32, and 35) have shown good metabolic stability in plasma and liver microsomes (rat and human), and 32 did not inhibit CYP3A4 nor CYP2C9. These 4-(aminomethyl)benzamides are suitable for further optimization as inhibitors of filovirus entry, with the potential to be developed as therapeutic agents for the treatment and control of Ebola virus infections.


Subject(s)
Antiviral Agents/pharmacology , Benzamides/pharmacology , Hemorrhagic Fever, Ebola/virology , Marburg Virus Disease/virology , Virus Internalization/drug effects , A549 Cells , Animals , Antiviral Agents/chemistry , Benzamides/chemistry , Chlorocebus aethiops , Cytochrome P-450 CYP3A Inhibitors/chemistry , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Drug Evaluation, Preclinical , Humans , Microsomes, Liver/drug effects , Molecular Docking Simulation , Structure-Activity Relationship , Toremifene/chemistry , Toremifene/metabolism , Toremifene/pharmacology , Vero Cells , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism
11.
J Infect Dis ; 222(11): 1894-1901, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32479636

ABSTRACT

Marburg virus (MARV) is a filovirus with documented human case-fatality rates of up to 90%. Here, we evaluated the therapeutic efficacy of remdesivir (GS-5734) in nonhuman primates experimentally infected with MARV. Beginning 4 or 5 days post inoculation, cynomolgus macaques were treated once daily for 12 days with vehicle, 5 mg/kg remdesivir, or a 10-mg/kg loading dose followed by 5 mg/kg remdesivir. All vehicle-control animals died, whereas 83% of animals receiving a 10-mg/kg loading dose of remdesivir survived, as did 50% of animals receiving a 5-mg/kg remdesivir regimen. Remdesivir-treated animals exhibited improved clinical scores, lower plasma viral RNA, and improved markers of kidney function, liver function, and coagulopathy versus vehicle-control animals. The small molecule remdesivir showed therapeutic efficacy in this Marburg virus disease model with treatment initiation 5 days post inoculation, supporting further assessment of remdesivir for the treatment of Marburg virus disease in humans.


Subject(s)
Antimetabolites/therapeutic use , Antiviral Agents/therapeutic use , Marburg Virus Disease/drug therapy , Marburgvirus/drug effects , Monkey Diseases/drug therapy , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Disease Models, Animal , Female , Kaplan-Meier Estimate , Macaca fascicularis , Male , Marburg Virus Disease/mortality , Marburg Virus Disease/pathology , Marburg Virus Disease/virology , Monkey Diseases/mortality , Monkey Diseases/pathology , Monkey Diseases/virology , RNA, Viral
12.
mBio ; 11(3)2020 06 16.
Article in English | MEDLINE | ID: mdl-32546624

ABSTRACT

Outbreaks of filoviruses, such as those caused by the Ebola (EBOV) and Marburg (MARV) virus, are difficult to detect and control. The initial clinical symptoms of these diseases are nonspecific and can mimic other endemic pathogens. This makes confident diagnosis based on clinical symptoms alone impossible. Molecular diagnostics for these diseases that rely on the detection of viral RNA in the blood are only effective after significant disease progression. As an approach to identify these infections earlier in the disease course, we tested the effectiveness of viral RNA detection combined with an assessment of sentinel host mRNAs that are upregulated following filovirus infection. RNAseq analysis of EBOV-infected nonhuman primates identified host RNAs that are upregulated at early stages of infection. NanoString probes that recognized these host-response RNAs were combined with probes that recognized viral RNA and were used to classify viral infection both prior to viremia and postviremia. This approach was highly successful at identifying samples from nonhuman primate subjects and correctly distinguished the causative agent in a previremic stage in 10 EBOV and 5 MARV samples. This work suggests that unified host response/viral fingerprint assays can enable diagnosis of disease earlier than testing for viral nucleic acid alone, which could decrease transmission events and increase therapeutic effectiveness.IMPORTANCE Current molecular tests that identify infection with high-consequence viruses such as Ebola virus and Marburg virus are based on the detection of virus material in the blood. These viruses do not undergo significant early replication in the blood and, instead, replicate in organs such as the liver and spleen. Thus, virus begins to accumulate in the blood only after significant replication has already occurred in those organs, making viremia an indicator of infection only after initial stages have become established. Here, we show that a multianalyte assay can correctly identify the infectious agent in nonhuman primates (NHPs) prior to viremia through tracking host infection response transcripts. This illustrates that a single-tube, sample-to-answer format assay could be used to advance the time at which the type of infection can be determined and thereby improve outcomes.


Subject(s)
Genome, Viral , Hemorrhagic Fever, Ebola/diagnosis , Host-Pathogen Interactions/genetics , Marburg Virus Disease/diagnosis , RNA, Viral/isolation & purification , Transcriptome , Animals , Ebolavirus/genetics , Hemorrhagic Fever, Ebola/virology , Humans , Macaca , Marburg Virus Disease/virology , Marburgvirus/genetics , Microarray Analysis , Viral Proteins/blood , Viral Proteins/genetics , Viremia
13.
Viruses ; 12(4)2020 04 24.
Article in English | MEDLINE | ID: mdl-32344654

ABSTRACT

Marburg virus (MARV) is a lipid-enveloped negative sense single stranded RNA virus, which can cause a deadly hemorrhagic fever. MARV encodes seven proteins, including VP40 (mVP40), a matrix protein that interacts with the cytoplasmic leaflet of the host cell plasma membrane. VP40 traffics to the plasma membrane inner leaflet, where it assembles to facilitate the budding of viral particles. VP40 is a multifunctional protein that interacts with several host proteins and lipids to complete the viral replication cycle, but many of these host interactions remain unknown or are poorly characterized. In this study, we investigated the role of a hydrophobic loop region in the carboxy-terminal domain (CTD) of mVP40 that shares sequence similarity with the CTD of Ebola virus VP40 (eVP40). These conserved hydrophobic residues in eVP40 have been previously shown to be critical to plasma membrane localization and membrane insertion. An array of cellular experiments and confirmatory in vitro work strongly suggests proper orientation and hydrophobic residues (Phe281, Leu283, and Phe286) in the mVP40 CTD are critical to plasma membrane localization. In line with the different functions proposed for eVP40 and mVP40 CTD hydrophobic residues, molecular dynamics simulations demonstrate large flexibility of residues in the EBOV CTD whereas conserved mVP40 hydrophobic residues are more restricted in their flexibility. This study sheds further light on important amino acids and structural features in mVP40 required for its plasma membrane localization as well as differences in the functional role of CTD amino acids in eVP40 and mVP40.


Subject(s)
Cell Membrane/metabolism , Marburg Virus Disease/virology , Marburgvirus/physiology , Mutation , Protein Interaction Domains and Motifs , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism , Amino Acids/chemistry , Animals , COS Cells , Cell Membrane/chemistry , Chlorocebus aethiops , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Lipids , Models, Molecular , Molecular Imaging , Protein Conformation , Protein Transport
14.
Sci Rep ; 10(1): 3071, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080323

ABSTRACT

Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60-75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20-30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80-89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g., PD-1, LAG3) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival.


Subject(s)
Marburg Virus Disease/immunology , Marburg Virus Disease/virology , Marburgvirus/immunology , Post-Exposure Prophylaxis , Viral Vaccines/immunology , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Cytokines/blood , Cytotoxicity, Immunologic , Dose-Response Relationship, Immunologic , Down-Regulation/genetics , Female , Inflammation/blood , Inflammation/immunology , Interferons/genetics , Interferons/metabolism , Killer Cells, Natural/immunology , Macaca mulatta/immunology , Macaca mulatta/virology , Male , Marburg Virus Disease/blood , Marburg Virus Disease/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombination, Genetic/genetics , T-Lymphocytes, Helper-Inducer/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Transcriptome/genetics , Up-Regulation/genetics , Vesiculovirus/genetics , Viral Load/immunology
15.
Nat Commun ; 11(1): 510, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980636

ABSTRACT

Marburg virus (MARV) causes sporadic outbreaks of severe Marburg virus disease (MVD). Most MVD outbreaks originated in East Africa and field studies in East Africa, South Africa, Zambia, and Gabon identified the Egyptian rousette bat (ERB; Rousettus aegyptiacus) as a natural reservoir. However, the largest recorded MVD outbreak with the highest case-fatality ratio happened in 2005 in Angola, where direct spillover from bats was not  shown. Here, collaborative studies by the Centers for Disease Control and Prevention, Njala University, University of California, Davis USAID-PREDICT, and the University of Makeni identify MARV circulating in ERBs in Sierra Leone. PCR, antibody and virus isolation data from 1755 bats of 42 species shows active MARV infection in approximately 2.5% of ERBs. Phylogenetic analysis identifies MARVs that are similar to the Angola strain. These results provide evidence of MARV circulation in West Africa and demonstrate the value of pathogen surveillance to identify previously undetected threats.


Subject(s)
Chiroptera/virology , Marburgvirus/isolation & purification , Africa, Western , Animals , Caves , Genome, Viral , Geography , Likelihood Functions , Marburg Virus Disease/virology , Marburgvirus/classification , Marburgvirus/genetics , Phylogeny , Sequence Analysis, DNA , Viral Proteins/metabolism
16.
Emerg Microbes Infect ; 9(1): 124-128, 2020.
Article in English | MEDLINE | ID: mdl-31913767

ABSTRACT

A serological survey of 2,430 archived serum samples collected between 1997 and 2012 was conducted to retrospectively determine the prevalence of Marburg virus in five African countries. Serum samples were screened for neutralizing antibodies in a pseudotype micro-neutralization assay and confirmed by enzyme-linked immunosorbent assay (ELISA). Surprisingly, a seroprevalence for Marburg virus of 7.5 and 6.3% was found in Cameroon and Ghana, respectively, suggesting the circulation of filoviruses or related viruses outside of known endemic areas that remain undetected by current surveillance efforts. However, due to the lack of validated assays and appropriate positive controls, these results must be considered preliminary.


Subject(s)
Antibodies, Viral/blood , Filoviridae/immunology , Marburg Virus Disease/blood , Marburg Virus Disease/epidemiology , Marburgvirus/immunology , Animals , Cameroon/epidemiology , Enzyme-Linked Immunosorbent Assay , Filoviridae/genetics , Filoviridae Infections/blood , Filoviridae Infections/epidemiology , Filoviridae Infections/virology , Ghana/epidemiology , Humans , Marburg Virus Disease/virology , Marburgvirus/genetics , Retrospective Studies , Seroepidemiologic Studies
17.
Methods Mol Biol ; 2081: 177-190, 2020.
Article in English | MEDLINE | ID: mdl-31721125

ABSTRACT

Pseudoviruses are useful tools because of their safety and versatility compared to wild type viruses. Optical imaging of reporter gene labeled pseudoviruses in small animal models can allow for real-time analysis of the infection process without sacrificing the host, which has proven invaluable in the longitudinal study of disease events and testing the antiviral efficiencies of vaccine candidates, monoclonal antibodies and small molecule compounds. Here, we describe the generation of Marburg pseudovirus (pMARV) and establishment of imaging mouse model by using a deep-cooled CCD camera imager. We also describe the widespread organ distribution of pMARV during infection by ex vivo imaging of necropsied tissues. This system can significantly facilitate Marburg virus studies and enable the evaluation of treatments against MARV in BSL-2 containments.


Subject(s)
Luminescent Measurements , Marburg Virus Disease/diagnostic imaging , Marburg Virus Disease/virology , Marburgvirus , Optical Imaging/methods , Animals , Disease Models, Animal , Gene Expression , Genes, Reporter , Genetic Engineering , Genetic Vectors/genetics , Image Processing, Computer-Assisted , Marburgvirus/genetics , Rodentia , Software
18.
Antiviral Res ; 171: 104592, 2019 11.
Article in English | MEDLINE | ID: mdl-31473342

ABSTRACT

Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV.


Subject(s)
Antiviral Agents/pharmacology , Ebolavirus/drug effects , Marburgvirus/drug effects , Peptides/pharmacology , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Cell Line , Cholesterol/chemistry , Disease Models, Animal , Hemorrhagic Fever, Ebola/virology , Marburg Virus Disease/virology , Mice , Microbial Sensitivity Tests , Models, Molecular , Peptides/chemistry , Protein Conformation , Structure-Activity Relationship
19.
Emerg Infect Dis ; 25(8): 1577-1580, 2019 08.
Article in English | MEDLINE | ID: mdl-31146800

ABSTRACT

We detected Marburg virus genome in Egyptian fruit bats (Rousettus aegyptiacus) captured in Zambia in September 2018. The virus was closely related phylogenetically to the viruses that previously caused Marburg outbreaks in the Democratic Republic of the Congo. This finding demonstrates that Zambia is at risk for Marburg virus disease.


Subject(s)
Chiroptera/virology , Marburg Virus Disease/virology , Marburgvirus , Animals , Genes, Viral , Humans , Marburg Virus Disease/diagnosis , Marburg Virus Disease/epidemiology , Marburgvirus/classification , Marburgvirus/genetics , Marburgvirus/isolation & purification , Phylogeny , Prevalence , Public Health Surveillance , RNA, Viral , Zambia/epidemiology
20.
J Clin Virol ; 114: 26-31, 2019 05.
Article in English | MEDLINE | ID: mdl-30904708

ABSTRACT

BACKGROUND: During the five decades since their discovery, filoviruses of four species have caused human hemorrhagic fever outbreaks: Marburg (MARV) marburgvirus, and Zaire (EBOV), Sudan (SUDV) and Bundybugyo (BDBV) ebolaviruses. The largest, devastating EBOV epidemic in West Africa in 2014-16, has been followed by outbreaks of MARV in Uganda, 2017, and EBOV in Democratic Republic of Congo, 2018, emphasizing the need to develop preparedness to diagnose all filoviruses. OBJECTIVES: The aim of this study was to optimize a new filovirus RT-qPCR to detect all filoviruses, define its limits of detection (LOD) and perform a field evaluation with outbreak samples. STUDY DESIGN: A pan-filovirus RT-qPCR targeting the L gene was developed and evaluated within the EbolaMoDRAD (Ebola virus: modern approaches for developing bedside rapid diagnostics) project. Specificity and sensitivity were determined and the effect of inactivation and PCR reagents (liquid and lyophilized format) were tested. RESULTS: The LODs for the lyophilized pan-filovirus L-RT-qPCR assay were 9.4 copies per PCR reaction for EBOV, 9.9 for MARV, 1151 for SUDV, 65 for BDBV and 289 for Taï Forest virus. The test was set at the Pasteur Institute, Dakar, Senegal, and 83 Ebola patient samples, with viral load ranging from 5 to 5 million copies of EBOV per reaction, were screened. The results for the patient samples were in 100% concordance with the reference EBOV-specific assay. DISCUSSION: Overall, the assay showed good sensitivity and specificity, covered all filoviruses known to be human pathogens, performed well both in lyophilized and liquid-phase formats and with EBOV outbreak clinical samples.


Subject(s)
Filoviridae Infections/diagnosis , Real-Time Polymerase Chain Reaction/methods , Viral Proteins/genetics , Animals , Ebolavirus , Filoviridae , Filoviridae Infections/virology , Freeze Drying , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/virology , Humans , Limit of Detection , Marburg Virus Disease/diagnosis , Marburg Virus Disease/virology , Marburgvirus , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...