Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.150
Filter
1.
Geobiology ; 22(5): e12619, 2024.
Article in English | MEDLINE | ID: mdl-39308345

ABSTRACT

Lake Salda, a terrestrial analog for the paleolake in Jezero Crater on Mars, hosts active, subfossil, and fossil hydromagnesite microbialites, making it an ideal location to study microbialite formation and subsequent processes. Our understanding of this record is still limited by an incomplete knowledge of the macro- and mesoscale morphotypes of microbialites, along with their spatial distribution and correlation with microbial and geochemical processes that influence microbialite formation. In this study, we investigated the spatial distribution, morphotypes, mineralogy, geochemistry, and microbial diversity of the microbialites and identified six distinct zones (Zone I to Zone VI) with major microbialite build-ups in Lake Salda. Newly identified microbialites were classified based on the macro- and mesostructures. Our work shows that the lake contains stromatolites, thrombolites, stromatolitic thrombolites, dendrolites, and microbially induced sedimentary structures. At macroscale, Lake Salda microbialites exhibit hemispheres, stacked domes, and laterally linked columnar structures while minicolumns, knobs, mesoclots, laminae, and botryoidal structures are common at mesoscale. The macro- and mesoscale distribution of different microbialite types spatially correlates with microbial community composition and water depth. Deep-growing microbialites with a low abundance of Cyanobacteria (∼1%-4%) and high abundance of Firmicutes (28%-93%) exhibit steeply convex lamination, producing finger-like minicolumnar mesostructures. In contrast, shallow-growing microbialites with a low abundance of Firmicutes (0%-5%) and high abundance of Cyanobacteria (11%-37%) have well-preserved gently convex millimeter-scale lamination, resulting in cauliflower mesostructures. Palygorskite ((Mg, Al)2Si4O10(OH)) is identified in the diatom-rich microbial layer of the deep-growing microbialites. Regardless of the microbialite types, hydromagnesite and aragonite are present in the extracellular polymeric substance (EPS)-rich zone of the shallow and deep-growing microbialites. Overall, environmental changes (e.g., water depth and, accommodation space) play a major role in the formation and spatial distribution of different microbialite morphologies at the macro- and mesoscale. Differences in the relative abundance of dominant microorganisms between mesostructured types suggest that mesomorphology may be influenced by changes in microbial diversity. Spatial variations in the microbialite morphotypes, along with the abundant presence of entombed biomass (e.g., mineralized filaments), may indicate areas that have a high potential for the preservation of biosignatures.


Subject(s)
Geologic Sediments , Lakes , Mars , Lakes/microbiology , Lakes/chemistry , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/classification , Bacteria/isolation & purification , Biodiversity
2.
PLoS One ; 19(8): e0308363, 2024.
Article in English | MEDLINE | ID: mdl-39102405

ABSTRACT

There is limited research about how groups solve collective action problems in uncertain environments, especially if groups are confronted with unknown unknowns. We aim to develop a more comprehensive view of the characteristics that allow both groups and individuals to navigate such issues more effectively. In this article, we present the results of a new online experiment where individuals make decisions of whether to contribute to the group or pursue self-interest in an environment with high uncertainty, including unknown unknowns. The behavioral game, Port of Mars is framed as a first-generation habitat on Mars where participants have to make decisions on how much to invest in the shared infrastructure to maintain system health and how much to invest in personal goals. Participants can chat during the game, and take surveys before and after the game in order to measure personality attributes and observations from the game. Initial results suggest that a higher average social value orientation and more communication are the key factors that explain why some groups are more successful than others in surviving Port of Mars. Neither other attributes of players nor the group's communication content explain the observed differences between groups.


Subject(s)
Mars , Humans , Male , Female , Adult , Young Adult , Decision Making , Games, Experimental , Communication , Uncertainty , Cooperative Behavior , Adolescent
3.
Aerosp Med Hum Perform ; 95(9): 720-721, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39169488

ABSTRACT

INTRODUCTION: Human colonization of Mars has captured the imagination of many. However, the challenges posed are immense. In microgravity, changes in human physiology, immune dysregulation, alterations of our microbiome, and enhanced virulence of various microbes are some of the barriers that stand in the way of a successful endeavor. Countermeasures can be brought to bear, but it remains unclear if success of such a mission in the foreseeable future is realistic or fanciful.Mermel L. Human evolution, microgravity, and challenges colonizing Mars. Aerosp Med Hum Perform. 2024; 95(9):720-721.


Subject(s)
Biological Evolution , Mars , Space Flight , Weightlessness , Humans , Aerospace Medicine , Microbiota/physiology , Extraterrestrial Environment
4.
Astrobiology ; 24(8): 824-838, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39159439

ABSTRACT

The study of extremophilic microorganisms has sparked interest in understanding extraterrestrial microbial life. Such organisms are fundamental for investigating life forms on Saturn's icy moons, such as Enceladus, which is characterized by potentially habitable saline and alkaline niches. Our study focused on the salt-alkaline soil of the Al Wahbah crater in Saudi Arabia, where we identified microorganisms that could be used as biological models to understand potential life on Enceladus. The search involved isolating 48 bacterial strains, sequencing the genomes of two thermo-haloalkaliphilic strains, and characterizing them for astrobiological application. A deeper understanding of the genetic composition and functional capabilities of the two novel strains of Halalkalibacterium halodurans provided valuable insights into their survival strategies and the presence of coding genes and pathways related to adaptations to environmental stressors. We also used mass spectrometry with a molecular network approach, highlighting various classes of molecules, such as phospholipids and nonproteinogenic amino acids, as potential biosignatures. These are essential features for understanding life's adaptability under extreme conditions and could be used as targets for biosignatures in upcoming missions exploring Enceladus' orbit. Furthermore, our study reinforces the need to look at new extreme environments on Earth that might contribute to the astrobiology field.


Subject(s)
Exobiology , Extraterrestrial Environment , Saudi Arabia , Exobiology/methods , Genome, Bacterial/genetics , Mars , Bacteria/genetics , Bacteria/isolation & purification , Phylogeny
6.
Lancet Respir Med ; 12(9): e54, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39214643
8.
Lancet Respir Med ; 12(9): e52, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39214641
9.
Astrobiology ; 24(7): 684-697, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979614

ABSTRACT

The key building blocks for life on Mars could be preserved within potentially habitable paleo-depositional settings with their detection possible by utilizing mid-infrared spectroscopy; however, a definite identification and confirmation of organic or even biological origin will require the samples to be returned to Earth. In the present study, Fourier-transform infrared (FTIR) spectroscopic techniques were used to characterize both mineralogical and organic materials within Mars dust simulant JSC Mars-1 and ancient Antarctic cyanobacterial microbial mats from 1901 to 1904 Discovery Expedition. When FTIR spectroscopy is applied to cyanobacterial microbial mat communities, the resulting spectra will reflect the average biochemical composition of the mats rather than taxa-specific spectral patterns of the individual organisms and can thus be considered as a total chemical analysis of the mat colony. This study also highlights the potential difficulties in the detection of these communities on Mars and which spectral biosignatures will be most detectable within geological substrates. Through the creation and analysis of a suite of dried microbial mat material and Martian dust simulant mixtures, the spectral signatures and wavenumber positions of CHx aliphatic hydrocarbons and the C-O and O-H bands of polysaccharides remained detectable and may be detectable within sample mixtures obtained through Mars Sample Return activities.


Subject(s)
Cyanobacteria , Dust , Exobiology , Extraterrestrial Environment , Mars , Dust/analysis , Spectroscopy, Fourier Transform Infrared/methods , Exobiology/methods , Cyanobacteria/isolation & purification , Museums
10.
Astrobiology ; 24(7): 669-683, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979620

ABSTRACT

Mars has been exposed to ionizing radiation for several billion years, and as part of the search for life on the Red Planet, it is crucial to understand the impact of radiation on biosignature preservation. Several NASA and ESA missions are looking for evidence of ancient life in samples collected at depths shallow enough that they have been impacted by galactic cosmic rays (GCRs). In this study, we exposed a diverse set of Mars analog samples to 0.9 Megagray (MGy) of gamma radiation to mimic 15 million years of exposure on the Martian surface. We measured no significant impact of GCRs on the total organic carbon (TOC) and bulk stable C isotopes in samples with initial TOC concentration > 0.1 wt. %; however, diagnostic molecular biosignatures presented a wide range of degradation that didn't correlate to factors like mineralogy, TOC, water content, and surface area. Exposure dating suggests that the surface of Gale crater has been irradiated at more than five times our dose, yet using this relatively low dose and "best-case scenario" geologically recalcitrant biomarkers, large and variable losses were nevertheless evident. Our results empasize the importance of selecting sampling sites at depth or recently exposed at the Martian surface.


Subject(s)
Biomarkers , Clay , Cosmic Radiation , Extraterrestrial Environment , Mars , Clay/chemistry , Biomarkers/analysis , Extraterrestrial Environment/chemistry , Carbonates/chemistry , Carbonates/analysis , Exobiology/methods , Aluminum Silicates/chemistry , Carbon Isotopes/analysis
11.
Astrobiology ; 24(7): 734-753, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38985714

ABSTRACT

Jotun springs in Svalbard, Norway, is a rare warm environment in the Arctic that actively forms travertine. In this study, we assessed the microbial ecology of Jotun's active (aquatic) spring and dry spring transects. We evaluated the microbial preservation potential and mode, as well as the astrobiological relevance of the travertines to marginal carbonates mapped at Jezero Crater on Mars (the Mars 2020 landing site). Our results revealed that microbial communities exhibited spatial dynamics controlled by temperature, fluid availability, and geochemistry. Amorphous carbonates and silica precipitated within biofilm and on the surface of filamentous microorganisms. The water discharged at the source is warm, with near neutral pH, and undersaturated in silica. Hence, silicification possibly occurred through cooling, dehydration, and partially by a microbial presence or activities that promote silica precipitation. CO2 degassing and possible microbial contributions induced calcite precipitation and travertine formation. Jotun revealed that warm systems that are not very productive in carbonate formation may still produce significant carbonate buildups and provide settings favorable for fossilization through silicification and calcification. Our findings suggest that the potential for amorphous silica precipitation may be essential for Jezero Crater's marginal carbonates because it significantly increases the preservation potential of putative martian organisms.


Subject(s)
Exobiology , Hot Springs , Arctic Regions , Hot Springs/microbiology , Hot Springs/chemistry , Mars , Silicon Dioxide/chemistry , Svalbard , Carbonates/chemistry , Carbonates/analysis , Microbiota , Temperature , Biofilms
12.
Astrobiology ; 24(7): 721-733, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38985734

ABSTRACT

Understanding the nature and preservation of microbial traces in extreme environments is crucial for reconstructing Earth's early biosphere and for the search for life on other planets or moons. At Rio Tinto, southwestern Spain, ferric oxide and sulfate deposits similar to those discovered at Meridiani Planum, Mars, entomb a diversity of fossilized organisms, despite chemical conditions commonly thought to be challenging for life and fossil preservation. Investigating this unique fossil microbiota can elucidate ancient extremophile communities and the preservation of biosignatures in acidic environments on Earth and, potentially, Mars. In this study, we use an innovative multiscale approach that combines the state-of-the-art synchrotron X-ray nanoimaging methods of ptychographic X-ray computed laminography and nano-X-ray fluorescence to reveal Rio Tinto's microfossils at subcellular resolution. The unprecedented nanoscale views of several different specimens within their geological and geochemical contexts reveal novel intricacies of preserved microbial communities. Different morphotypes, ecological interactions, and possible taxonomic affinities were inferred based on qualitative and quantitative 3D ultrastructural information, whereas diagenetic processes and metabolic affinities were inferred from complementary chemical information. Our integrated nano-to-microscale analytical approach revealed previously invisible microbial and mineral interactions, which complemented and filled a gap of spatial resolution in conventional methods. Ultimately, this study contributes to the challenge of deciphering the faint chemical and morphological biosignatures that can indicate life's presence on the early Earth and on distant worlds.


Subject(s)
Fossils , Spain , Microbiota , Exobiology/methods , Ferric Compounds/chemistry , Bacteria/ultrastructure , Mars , Synchrotrons
13.
Life Sci Space Res (Amst) ; 42: 27-36, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39067987

ABSTRACT

In recent years, extensive research has been dedicated to Mars exploration and the potential for sustainable interplanetary human colonization. One of the significant challenges in ensuring the survival of life on Mars lies in the production of food as the Martian environment is highly inhospitable to agriculture, rendering it impractical to transport food from Earth. To improve the well-being and quality of life for future space travelers on Mars, it is crucial to develop innovative horticultural techniques and food processing technologies. The unique challenges posed by the Martian environment, such as the lack of oxygen, nutrient-deficient soil, thin atmosphere, low gravity, and cold, dry climate, necessitate the development of advanced farming strategies. This study explores existing knowledge and various technological innovations that can help overcome the constraints associated with food production and water extraction on Mars. The key lies in utilizing resources available on Mars through in-situ resource utilization. Water can be extracted from beneath the ice and from the Martian soil. Furthermore, hydroponics in controlled environment chambers, equipped with nutrient delivery systems and waste recovery mechanisms, have been investigated as a means of cultivating crops on Mars. The inefficiency of livestock production, which requires substantial amounts of water and land, highlights the need for alternative protein sources such as microbial protein, insects, and in-vitro meat. Moreover, the fields of synthetic biology and 3-D food printing hold immense potential in revolutionizing food production and making significant contributions to the sustainability of human life on Mars.


Subject(s)
Extraterrestrial Environment , Mars , Space Flight , Humans , Animals , Food Supply , Water
14.
Life Sci Space Res (Amst) ; 42: 84-90, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39067996

ABSTRACT

In this study, we conducted polymerase chain reaction (PCR) experiments using Escherichia coli (E. coli) and a Mars sand simulant (Mars Global Simulant MGS-1, Exolith Lab) to detect and analyze potential extraterrestrial life. The targeted DNA sequence is common among the bacterial kingdom on Earth. PCR experiments conducted after alkaline heat extraction, wherein samples with varying amounts of Mars sand simulant were compared, revealed that the simulant interfered with DNA detection. We then conducted PCR experiments following treatment with a sand DNA extraction kit on samples with various E. coli densities. DNA bands for a minimum E. coli density of 900 cells/(g sand) were confirmed, while no DNA bands were visible in the 90 cells/(g sand) sample with and without the Mars sand simulant. The total DNA mass contained in 900 cells was calculated to be 15.3 pg (i.e., 1.53 pg in 0.1 g sand sample we evaluated). We tested and compared the influence of the eluate of Mars sand simulant and DNA adsorption onto Mars sand simulant based on optical absorbance measurements. Our findings suggest that the mechanism by which the Mars sand simulant prevents PCR is through the adsorption of DNA onto the Mars sand simulant.


Subject(s)
DNA, Bacterial , Escherichia coli , Exobiology , Extraterrestrial Environment , Mars , Polymerase Chain Reaction , Sand , Escherichia coli/genetics , Escherichia coli/isolation & purification , Polymerase Chain Reaction/methods , Exobiology/methods , DNA, Bacterial/analysis , DNA, Bacterial/genetics
15.
Life Sci Space Res (Amst) ; 42: 108-116, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39067982

ABSTRACT

Long-term spatial missions will require sustainable methods for biomass production using locally available resources. This study investigates the feasibility of cultivating Chlorella vulgaris, a high value microalgal specie, using a leachate of Martian regolith and synthetic human urine as nutrient sources. The microalga was grown in a standard medium (BBM) mixed with 0, 20, 40, 60, or 100 % Martian medium (MM). MM did not significantly affect final biomass concentrations. Total carbohydrate and protein contents decreased with increasing MM fractions between 0 % and 60 %, but biomass in the 100% MM showed the highest levels of carbohydrates and proteins (25.2 ± 0.9 % and 37.1 ± 1.4 % of the dry weight, respectively, against 19.0 ± 1.7 % and 32.0 ± 2.7 % in the absence of MM). In all MM-containing media, the fraction of the biomass represented by total lipids was lower (by 3.2 to 4.5%) when compared to BBM. Conversely, total carotenoids increased, with the highest value (97.3 ± 1.5 mg/100 g) measured with 20% MM. In a three-dimensional principal component analysis of triacylglycerols, samples clustered according to growth media; a strong impact of growth media on triacylglycerol profiles was observed. Overall, our findings suggest that microalgal biomass produced using regolith and urine can be used as a valuable component of astronauts' diet during missions to Mars.


Subject(s)
Chlorella vulgaris , Mars , Chlorella vulgaris/chemistry , Chlorella vulgaris/growth & development , Urine/chemistry , Culture Media , Biomass , Proteins/analysis , Lipids/analysis , Carbohydrates/analysis , Carotenoids/analysis , Minerals/analysis , Triglycerides/analysis , Space Research
16.
Sci Rep ; 14(1): 14885, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937525

ABSTRACT

Past and present habitability of Mars have been intensely studied in the context of the search for signals of life. Despite the harsh conditions observed today on the planet, some ancient Mars environments could have harbored specific characteristics able to mitigate several challenges for the development of microbial life. In such environments, Fe2+ minerals like siderite (already identified on Mars), and vivianite (proposed, but not confirmed) could sustain a chemolithoautotrophic community. In this study, we investigate the ability of the acidophilic iron-oxidizing chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans to use these minerals as its sole energy source. A. ferrooxidans was grown in media containing siderite or vivianite under different conditions and compared to abiotic controls. Our experiments demonstrated that this microorganism was able to grow, obtaining its energy from the oxidation of Fe2+ that came from the solubilization of these minerals under low pH. Additionally, in sealed flasks without CO2, A. ferrooxidans was able to fix carbon directly from the carbonate ion released from siderite for biomass production, indicating that it could be able to colonize subsurface environments with little or no contact with an atmosphere. These previously unexplored abilities broaden our knowledge on the variety of minerals able to sustain life. In the context of astrobiology, this expands the list of geomicrobiological processes that should be taken into account when considering the habitability of environments beyond Earth, and opens for investigation the possible biological traces left on these substrates as biosignatures.


Subject(s)
Acidithiobacillus , Mars , Acidithiobacillus/metabolism , Acidithiobacillus/growth & development , Oxidation-Reduction , Iron/metabolism , Hydrogen-Ion Concentration , Ferrous Compounds/metabolism , Minerals/metabolism , Exobiology , Extraterrestrial Environment , Carbonates , Ferric Compounds
17.
Funct Plant Biol ; 512024 Jun.
Article in English | MEDLINE | ID: mdl-38902906

ABSTRACT

This study reveals a new acclimation mechanism of the eukaryotic unicellular green alga Chlorella vulgaris in terms of the effect of varying atmospheric pressures on the structure and function of its photosynthetic apparatus using fluorescence induction measurements (JIP-test). The results indicate that low (400mbar) and extreme low (2 atmosphere (simulating the Mars atmosphere), reveals that the impact of extremely low atmospheric pressure on PQ mobility within the photosynthetic membrane, coupled with the low density of an almost 100% CO2 Mars-like atmosphere, results to a similar photosynthetic efficiency to that on Earth. These findings pave the way for the identification of novel functional acclimation mechanisms of microalgae to extreme environments that are vastly distinct from those found on Earth.


Subject(s)
Acclimatization , Atmospheric Pressure , Chlorella vulgaris , Mars , Microalgae , Photosynthesis , Microalgae/physiology , Chlorella vulgaris/physiology , Exobiology , Atmosphere/chemistry , Extraterrestrial Environment
18.
Nat Commun ; 15(1): 4923, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862484

ABSTRACT

Missions into Deep Space are planned this decade. Yet the health consequences of exposure to microgravity and galactic cosmic radiation (GCR) over years-long missions on indispensable visceral organs such as the kidney are largely unexplored. We performed biomolecular (epigenomic, transcriptomic, proteomic, epiproteomic, metabolomic, metagenomic), clinical chemistry (electrolytes, endocrinology, biochemistry) and morphometry (histology, 3D imaging, miRNA-ISH, tissue weights) analyses using samples and datasets available from 11 spaceflight-exposed mouse and 5 human, 1 simulated microgravity rat and 4 simulated GCR-exposed mouse missions. We found that spaceflight induces: 1) renal transporter dephosphorylation which may indicate astronauts' increased risk of nephrolithiasis is in part a primary renal phenomenon rather than solely a secondary consequence of bone loss; 2) remodelling of the nephron that results in expansion of distal convoluted tubule size but loss of overall tubule density; 3) renal damage and dysfunction when exposed to a Mars roundtrip dose-equivalent of simulated GCR.


Subject(s)
Cosmic Radiation , Space Flight , Animals , Humans , Mice , Cosmic Radiation/adverse effects , Rats , Male , Kidney/pathology , Kidney/radiation effects , Kidney/metabolism , Kidney Diseases/pathology , Kidney Diseases/etiology , Weightlessness/adverse effects , Astronauts , Mice, Inbred C57BL , Proteomics , Female , Mars , Weightlessness Simulation/adverse effects
19.
Astrobiology ; 24(6): 590-603, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38805190

ABSTRACT

Geological evidence and atmospheric and climate models suggest habitable conditions occurred on early Mars, including in a lake in Gale crater. Instruments aboard the Curiosity rover measured organic compounds of unknown provenance in sedimentary mudstones at Gale crater. Additionally, Curiosity measured nitrates in Gale crater sediments, which suggests that nitrate-dependent Fe2+ oxidation (NDFO) may have been a viable metabolism for putative martian life. Here, we perform the first quantitative assessment of an NDFO community that could have existed in an ancient Gale crater lake and quantify the long-term preservation of biological necromass in lakebed mudstones. We find that an NDFO community would have the capacity to produce cell concentrations of up to 106 cells mL-1, which is comparable to microbes in Earth's oceans. However, only a concentration of <104 cells mL-1, due to organisms that inefficiently consume less than 10% of precipitating nitrate, would be consistent with the abundance of organics found at Gale. We also find that meteoritic sources of organics would likely be insufficient as a sole source for the Gale crater organics, which would require a separate source, such as abiotic hydrothermal or atmospheric production or possibly biological production from a slowly turning over chemotrophic community.


Subject(s)
Extraterrestrial Environment , Iron , Mars , Nitrates , Oxidation-Reduction , Nitrates/analysis , Iron/chemistry , Iron/analysis , Extraterrestrial Environment/chemistry , Geologic Sediments/chemistry , Geologic Sediments/analysis , Exobiology/methods , Organic Chemicals/analysis , Lakes/chemistry
20.
Nat Commun ; 15(1): 3863, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769315

ABSTRACT

Mars is a particularly attractive candidate among known astronomical objects to potentially host life. Results from space exploration missions have provided insights into Martian geochemistry that indicate oxychlorine species, particularly perchlorate, are ubiquitous features of the Martian geochemical landscape. Perchlorate presents potential obstacles for known forms of life due to its toxicity. However, it can also provide potential benefits, such as producing brines by deliquescence, like those thought to exist on present-day Mars. Here we show perchlorate brines support folding and catalysis of functional RNAs, while inactivating representative protein enzymes. Additionally, we show perchlorate and other oxychlorine species enable ribozyme functions, including homeostasis-like regulatory behavior and ribozyme-catalyzed chlorination of organic molecules. We suggest nucleic acids are uniquely well-suited to hypersaline Martian environments. Furthermore, Martian near- or subsurface oxychlorine brines, and brines found in potential lifeforms, could provide a unique niche for biomolecular evolution.


Subject(s)
Evolution, Molecular , Extraterrestrial Environment , Mars , Perchlorates , RNA, Catalytic , RNA, Catalytic/metabolism , RNA, Catalytic/genetics , Perchlorates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL