Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.838
1.
BMC Vet Res ; 20(1): 169, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698383

BACKGROUND: Bovine mastitis is one of the most widespread diseases affecting cattle, leading to significant losses for the dairy industry. Currently, the so-called gold standard in mastitis diagnosis involves determining the somatic cell count (SCC). Apart from a number of advantages, this method has one serious flaw: It does not identify the etiological factor causing a particular infection, making it impossible to introduce targeted antimicrobial therapy. This can contribute to multidrug-resistance in bacterial species. The diagnostic market lacks a test that has the advantages of SCC and also recognizes the species of pathogen causing the inflammation. Therefore, the aim of our study was to develop a lateral flow immunoassay (LFIA) based on elongation factor Tu for identifying most prevalent Gram-positive cocci responsible for causing mastitis including Streptococcus uberis, Streptococcus agalactiae and Staphylococcus aureus. RESULTS: As a result, we showed that the assay for S. uberis detection demonstrated a specificity of 89.02%, a sensitivity of 43.59%, and an accuracy of 80.3%. In turn, the second variant - assay for Gram-positive cocci reached a specificity of 95.59%, a sensitivity of 43.28%, and an accuracy of 78.33%. CONCLUSIONS: Our study shows that EF-Tu is a promising target for LFIA and we have delivered evidence that further evaluation could improve test parameters and fill the gap in the mastitis diagnostics market.


Mastitis, Bovine , Streptococcus agalactiae , Streptococcus , Mastitis, Bovine/diagnosis , Mastitis, Bovine/microbiology , Animals , Cattle , Female , Streptococcus agalactiae/isolation & purification , Streptococcus/isolation & purification , Staphylococcus aureus/isolation & purification , Sensitivity and Specificity , Streptococcal Infections/veterinary , Streptococcal Infections/diagnosis , Streptococcal Infections/microbiology , Gram-Positive Cocci/isolation & purification , Immunoassay/veterinary , Immunoassay/methods , Staphylococcal Infections/veterinary , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Milk/microbiology , Milk/cytology
2.
Sci Rep ; 14(1): 10349, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710789

Mastitis is a multifactorial inflammatory disease. The increase in antibiotic resistance of bacteria that cause mastitis means that cattle breeders would prefer to reduce the use of antibiotics. Recently, therapies using mesenchymal stem cells (MSCs) from various sources have gained significant interest in the development of regenerative medicine in humans and animals, due to their extraordinary range of properties and functions. The aim of this study was to analyze the effectiveness of an allogeneic stem cells derived from bone marrow (BMSC) and adipose tissue (ADSC) in treating mastitis in dairy cattle. The research material consisted of milk and blood samples collected from 39 Polish Holstein-Friesian cows, 36 of which were classified as having mastitis, based on cytological evaluation of their milk. The experimental group was divided into subgroups according to the method of MSC administration: intravenous, intramammary, and intravenous + intramammary, and according to the allogeneic stem cells administered: BMSC and ADSC. The research material was collected at several time intervals: before the administration of stem cells, after 24 and 72 h, and after 7 days. Blood samples were collected to assess hematological parameters and the level of pro-inflammatory cytokines, while the milk samples were used for microbiological assessment and to determine the somatic cells count (SCC). The administration of allogeneic MSCs resulted in a reduction in the total number of bacterial cells, Staphylococcus aureus, bacteria from the Enterobacteriaceae group, and a systematic decrease in SCC in milk. The therapeutic effect was achieved via intravenous + intramammary or intramammary administration.


Mastitis, Bovine , Mesenchymal Stem Cell Transplantation , Milk , Animals , Cattle , Female , Mastitis, Bovine/therapy , Mastitis, Bovine/microbiology , Milk/cytology , Milk/microbiology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Adipose Tissue/cytology , Cytokines/metabolism , Cytokines/blood
3.
BMC Microbiol ; 24(1): 157, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710998

BACKGROUND: Clostridium perfringens, a common environmental bacterium, is responsible for a variety of serious illnesses including food poisoning, digestive disorders, and soft tissue infections. Mastitis in lactating cattle and sudden death losses in baby calves are major problems for producers raising calves on dairy farms. The pathogenicity of this bacterium is largely mediated by its production of various toxins. RESULTS: The study revealed that Among the examined lactating animals with a history of mastitis, diarrheal baby calves, and acute sudden death cases in calves, C. perfringens was isolated in 23.5% (93/395) of the total tested samples. Eighteen isolates were obtained from mastitic milk, 59 from rectal swabs, and 16 from the intestinal contents of dead calves. Most of the recovered C. perfringens isolates (95.6%) were identified as type A by molecular toxinotyping, except for four isolates from sudden death cases (type C). Notably, C. perfringens was recovered in 100% of sudden death cases compared with 32.9% of rectal swabs and 9% of milk samples. This study analyzed the phylogeny of C. perfringens using the plc region and identified the plc region in five Egyptian bovine isolates (milk and fecal origins). Importantly, this finding expands the known data on C. perfringens phospholipase C beyond reference strains in GenBank from various animal and environmental sources. CONCLUSION: Phylogenetic analyses of nucleotide sequence data differentiated between strains of different origins. The plc sequences of Egyptian C. perfringens strains acquired in the present study differed from those reported globally and constituted a distinct genetic ancestor.


Clostridium Infections , Clostridium perfringens , Enteritis , Genetic Variation , Mastitis, Bovine , Milk , Phylogeny , Animals , Clostridium perfringens/genetics , Clostridium perfringens/isolation & purification , Clostridium perfringens/classification , Clostridium perfringens/pathogenicity , Cattle , Egypt , Female , Clostridium Infections/microbiology , Clostridium Infections/veterinary , Milk/microbiology , Enteritis/microbiology , Enteritis/veterinary , Mastitis, Bovine/microbiology , Cattle Diseases/microbiology , Feces/microbiology , Type C Phospholipases/genetics , Dairying , Farms , Bacterial Toxins/genetics
4.
Bol. latinoam. Caribe plantas med. aromát ; 23(3): 401-409, mayo 2024. ilus, tab, graf
Article En | LILACS | ID: biblio-1538160

Bovine mastitis is a disease wi th far - reaching consequences for the dairy industry. Staphylococcus aureus is a pathogen that is especially resistant to antibiotics. The objective of this study was to evaluate the antimicrobial activity of the essential oils Lippia citriodora (Lam.), Thy mus vulgaris (L), and a mixture of the essential oils Lippia citriodora and Thymus vulgaris (50/50 v/v), against isolates of oxacillin - resistant Staphylococcus aureus (n=15) of positive cases of bovine mastitis. For the statistical analysis, the IBM SPSS s tatistical package was used. The mixture of essential oils ( Lippia citriodora and Thymus vulgaris (50/50 v/v)) obtained the most significant antimicrobial activity in relation to pure essential oils. It is therefore concluded that the mixture of these oils boosts their antimicrobial activity ( p <0.05). The minimum inhibitory and bactericidal concentration of this mixture for the total isolations was 12 µL/L and 25 µL/mL, respectively.


La mastitis bovina es una enfermedad de gran impacto para la industria lechera. El Staphylococcus aureus es uno de los principales patógenos, especialmente aquellos resistentes a los antibióticos. El objetivo de este estudio fue evaluar la actividad antimicrobiana de los aceites esenciales de Lippia citriodora (Lam.), Thymus vulgaris (L), y una mezcla de aceites esenciales de Lippia citriodora y Thymus vulgaris (50/50 v/v), frente a aislamientos clínicos de Staph ylococcus aureus oxacilino - resistentes (n=15) de mastitis bovina. Se utilizó p rograma estadístico IBM SPSS y se concluyó la diferencia significativa a un p <0.05. La mezcla de aceites esenciales ( Lippia citriodora y Thymus vulgaris (50/50 v/v)), obtuvo la m ayor actividad antimicrobiana en relación a los aceites esenciales puros, se concluye que la mezcla de estos aceites potencia su actividad antimicrobiana ( p <0.019). La concentración mínima inhibitoria y bactericida de esta mezcla fue del 12 µL/mL y 25 µL/m L, respectivamente, y puede ser una alternativa terapéutica.


Animals , Female , Cattle , Oils, Volatile/isolation & purification , Mastitis, Bovine/microbiology , Mastitis, Bovine/therapy , Staphylococcus aureus/isolation & purification , Drug Resistance, Microbial , Colombia
5.
BMC Vet Res ; 20(1): 193, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734661

BACKGROUND: Bovine mastitis is a widespread disease affecting dairy cattle worldwide and it generates substantial losses for dairy farmers. Mastitis may be caused by bacteria, fungi or algae. The most common species isolated from infected milk are, among others, Streptococcus spp., Escherichia coli, Staphylococcus aureus and non-aureus staphylococci and mammaliicocci. The aim of this paper is to determine the frequency of occurrence of bacterial species in milk samples from cows with mastitis from three regions of Poland: the north-east, the south-west and the south. To this end 203 milk samples taken from cows with a clinical form (CM) of mastitis (n = 100) and healthy animals (n = 103) were examined, which included culture on an appropriate medium followed by molecular detection of E. coli, S. aureus, Streptococcus agalactiae and Streptococcus uberis, as one of the most common species isolated from mastitis milk. RESULTS: The results obtained indicated that S. uberis was the most commonly cultivated CM species (38%, n = 38), followed by S. aureus (22%, n = 22), E. coli (21%, n = 21) and S. agalactiae (18%, n = 18). Similar frequencies in molecular methods were obtained for S. uberis (35.1%) and S. aureus (28.0%). The variation of sensitivity of both methods may be responsible for the differences in the E. coli (41.0%, p = 0.002) and S. agalactiae (5.0%, p = 0.004) detection rates. Significant differences in composition of species between three regions of Poland were noted for E. coli incidence (p < 0.001), in both the culture and molecular methods, but data obtained by the PCR method indicated that this species was the least common in north-eastern Poland, while the culture method showed that in north-eastern Poland E. coli was the most common species. Significant differences for the molecular method were also observed for S. uberis (p < 0.001) and S. aureus (p < 0.001). Both species were most common in southern and south-western Poland. CONCLUSIONS: The results obtained confirm the need to introduce rapid molecular tests for veterinary diagnostics, as well as providing important epidemiological data, to the best of our knowledge data on Polish cows in selected areas of Poland is lacking.


Mastitis, Bovine , Milk , Streptococcus , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/epidemiology , Poland/epidemiology , Female , Milk/microbiology , Streptococcus/isolation & purification , Streptococcus/genetics , Streptococcus/classification , Escherichia coli/isolation & purification , Escherichia coli/genetics , Escherichia coli/classification , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/genetics , Streptococcus agalactiae/isolation & purification , Streptococcus agalactiae/genetics , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics
6.
BMC Vet Res ; 20(1): 200, 2024 May 15.
Article En | MEDLINE | ID: mdl-38745199

BACKGROUND: In dairy cattle, mastitis causes high financial losses and impairs animal well-being. Genetic selection is used to breed cows with reduced mastitis susceptibility. Techniques such as milk cell flow cytometry may improve early mastitis diagnosis. In a highly standardized in vivo infection model, 36 half-sib cows were selected for divergent paternal Bos taurus chromosome 18 haplotypes (Q vs. q) and challenged with Escherichia coli for 24 h or Staphylococcus aureus for 96 h, after which the samples were analyzed at 12 h intervals. Vaginal temperature (VT) was recorded every three minutes. The objective of this study was to compare the differential milk cell count (DMCC), milk parameters (fat %, protein %, lactose %, pH) and VT between favorable (Q) and unfavorable (q) haplotype cows using Bayesian models to evaluate their potential as improved early indicators of differential susceptibility to mastitis. RESULTS: After S. aureus challenge, compared to the Q half-sibship cows, the milk of the q cows exhibited higher PMN levels according to the DMCC (24 h, p < 0.001), a higher SCC (24 h, p < 0.01 and 36 h, p < 0.05), large cells (24 h, p < 0.05) and more dead (36 h, p < 0.001) and live cells (24 h, p < 0.01). The protein % was greater in Q milk than in q milk at 0 h (p = 0.025). In the S. aureus group, Q cows had a greater protein % (60 h, p = 0.048) and fat % (84 h, p = 0.022) than q cows. Initially, the greater VT of S. aureus-challenged q cows (0 and 12-24 h, p < 0.05) reversed to a lower VT in q cows than in Q cows (48-60 h, p < 0.05). Additionally, the following findings emphasized the validity of the model: in the S. aureus group all DMCC subpopulations (24 h-96 h, p < 0.001) and in the E. coli group nearly all DMCC subpopulations (12 h-24 h, p < 0.001) were higher in challenged quarters than in unchallenged quarters. The lactose % was lower in the milk samples of E. coli-challenged quarters than in those of S. aureus-challenged quarters (24 h, p < 0.001). Between 12 and 18 h, the VT was greater in cows challenged with E. coli than in those challenged with S. aureus (3-h interval approach, p < 0.001). CONCLUSION: This in vivo infection model confirmed specific differences between Q and q cows with respect to the DMCC, milk component analysis results and VT results after S. aureus inoculation but not after E. coli challenge. However, compared with conventional milk cell analysis monitoring, e.g., the global SCC, the DMCC analysis did not provide refined phenotyping of the pathogen response.


Escherichia coli Infections , Escherichia coli , Haplotypes , Mastitis, Bovine , Milk , Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Milk/microbiology , Milk/cytology , Female , Mastitis, Bovine/microbiology , Staphylococcus aureus/physiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Cell Count/veterinary , Body Temperature , Vagina/microbiology
7.
PLoS One ; 19(5): e0301200, 2024.
Article En | MEDLINE | ID: mdl-38753608

Bovine mastitis is a widespread and costly disease that affects dairy farming globally, characterized by mammary gland inflammation. Bovine intramammary gland infection has been associated with more than 135 different pathogens of which Staphylococcus aureus is the main etiology of sub-clinical mastitis (SCM). The current study was designed to investigate the prevalence, antibiotic resistance pattern, and the presence of antibiotic resistance genes (mecA, tetK, aacA-aphD and blaZ) in S. aureus isolated from the raw milk of cows with subclinical mastitis. A total of 543 milk samples were collected from lactating cows such as Holstein Friesian (n = 79), Sahiwal (n = 175), Cholistani (n = 107), and Red Sindhi (n = 182) from different dairy farms in Pakistan. From the milk samples microscopic slides were prepared and the somatic cell count was assessed to find SCM. To isolate and identify S. aureus, milk was streaked on mannitol salt agar (MSA) plates. Further confirmation was done based on biochemical assays, including gram staining (+ coccus), catalase test (+), and coagulase test (+). All the biochemically confirmed S. aureus isolates were molecularly identified using the thermonuclease (nuc) gene. The antibiotic resistance pattern of all the S. aureus isolates was evaluated through the disc diffusion method. Out of 543 milk samples, 310 (57.09%) were positive for SCM. Among the SCM-positive samples, S. aureus was detected in 30.32% (94/310) samples. Out of 94 isolates, 47 (50%) were determined to be multidrug resistant (MDR). Among these MDR isolates, 11 exhibited resistance to Cefoxitin, and hence were classified as methicillin-resistant Staphylococcus aureus (MRSA). The S. aureus isolates showed the highest resistance to Lincomycin (84.04%) followed by Ampicillin (45.74%), while the least resistance was shown to Sulfamethoxazole/Trimethoprim (3.19%) and Gentamycin (6.38%). Polymerase chain reaction (PCR) analysis revealed that 55.31% of the isolates carried blaZ gene, 46.80% carried tetK gene, 17.02% harbored the mecA gene, whereas, aacA-aphD gene was found in 13.82% samples. Our findings revealed a significant level of contamination of milk with S. aureus and half (50%) of the isolates were MDR. The isolated S. aureus harbored various antibiotic resistance genes responsible for the absorbed phenotypic resistance. The alarmingly high prevalence of MDR S. aureus isolates and MRSA strains in these cases possess a serious risk to public health, emphasizes the urgent need to address this issue to protect both human and animal health in Pakistan.


Anti-Bacterial Agents , Mastitis, Bovine , Milk , Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/epidemiology , Milk/microbiology , Female , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Pakistan/epidemiology , Bacterial Proteins/genetics
8.
Ecotoxicol Environ Saf ; 278: 116456, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38744067

Long non-coding RNAs (LncRNAs) are dysregulated in a variety of human diseases and are highly involved in the development and progression of tumors. Studies on lncRNAs associated with cow mastitis have been lagging behind compared to humans or model animals, therefore, the aim of this study was to explore the mechanism of LncRNAs (CMR) involved in autoprotection against S. aureus mastitis in Bovine Mammary Epithelial Cells (BMECs). First, qRT-PCR was used to examine the relative expression of CMR in a S. aureus mastitis model of BMECs. Then, cell proliferation and apoptosis were detected by EdU and apoptosis assay. Finally, the targeting relationship between miRNAs and mRNA/LncRNAs was determined by dual luciferase reporter gene, qRT-PCR and western blotting techniques. The results showed that CMR was upregulated in the S. aureus mastitis model of BMECs and promoted the expression of inflammatory factors, and SiRNA-mediated CMR inhibited the proliferation of mammary epithelial cells and induced apoptosis. Mechanistically, CMR acts as a competitive endogenous RNA (ceRNA) sponge miR-877, leading to upregulation of FOXM1, a target of miR-877. Importantly, either miR-877 overexpression or FOXM1 inhibition abrogated CMR knockdown-induced apoptosis promoting cell proliferation and reducing inflammatory factor expression levels. In summary, CMR is involved in the regulation of autoprotection against S. aureus mastitis through the miR-877/FOXM1 axis in BMECs and induces immune responses in mammary tissues and cells of dairy cows, providing an important reference for subsequent prevention and control of cow mastitis and the development of targeted drugs.


Mastitis, Bovine , MicroRNAs , RNA, Long Noncoding , Staphylococcus aureus , Animals , Cattle , RNA, Long Noncoding/genetics , MicroRNAs/genetics , Female , Mastitis, Bovine/genetics , Mastitis, Bovine/microbiology , Apoptosis , Forkhead Box Protein M1/genetics , Cell Proliferation , Epithelial Cells/drug effects , Staphylococcal Infections/genetics
9.
Benef Microbes ; 15(3): 275-291, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744435

Bovine mastitis (BM) is a major disease in dairy industry. The current approaches - mainly antibiotic treatments - are not entirely effective and may contribute to antimicrobial resistance dissemination, rising the need for alternative treatment. The present study aims to evaluate the impact of post-milking application of Lacticaseibacillus paracasei CIRM BIA 1542 (Lp1542) on the teat skin (TS) of 20 Holstein cows in mid lactation, in order to reinforce the barrier effect of the microbiota naturally present on the teat. Treatment (Lp1542, iodine or no treatment) was applied post-milking twice a day on the 4 teats of healthy animals for 15 days. Blood and milk samples, and TS swabs were collected at day (D)1, D8, D15 and D26 before morning milking and at D15 before evening milking (D15E) to evaluate Lp1542 impact at the microbial, immune and physiological levels. Lp1542 treatment resulted in a higher lactic acid bacteria and total microbial populations on TS and in foremilk (FM) at D15(E) compared with iodine treatment. Metabarcoding analysis revealed changes in the composition of TS and FM microbiota, beyond a higher Lacticaseibacillus abundance. This included a higher abundance of Actinobacteriota, including Bifidobacterium, and a lower abundance of Pseudomonadota on TS of Lp1542 compared with iodine-treated quarters. In addition, Lp1542 treatment did not trigger any major inflammatory response in the mammary gland, except interleukin 8 production and expression which tended to be slightly higher in Lp1542-treated cows compared with the others. Finally, Lp1542 treatment had no impact on the mammary epithelium functionality (milk yield and composition) and integrity (epithelial cell exfoliation into milk and milk Na+/K+ ratio). Altogether, these results indicate that a topical treatment with Lp1542 is safe with regard to mammary gland physiology and immune system, while impacting its microbiota, inviting us to further explore its effectiveness for mastitis prevention.


Lacticaseibacillus paracasei , Mammary Glands, Animal , Mastitis, Bovine , Microbiota , Milk , Animals , Cattle/microbiology , Female , Mammary Glands, Animal/microbiology , Mastitis, Bovine/microbiology , Mastitis, Bovine/prevention & control , Microbiota/drug effects , Milk/microbiology , Lacticaseibacillus paracasei/physiology , Lactation , Probiotics/administration & dosage , Dairying
10.
BMC Vet Res ; 20(1): 220, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783285

BACKGROUND: Mammary Pathogenic Escherichia coli (MPEC) is an important pathogen that can escape the attack of the host immune system through biofilm formation and proliferate in the mammary gland continuously, resulting in mastitis in cows and causing enormous economic losses. As an effector of AI-2 quorum sensing, LsrR extensively affects the expression levels of hundreds of genes related to multiple biological processes in model E. coli strain. However, the regulatory role of LsrR in MPEC and whether it is involved in pathogenesis has been seldom reported. RESULTS: In this study, the function of LsrR in strain MPEC5, obtained from a milk sample in dairy cows with mastitis, was investigated by performing high-throughput sequencing (RNA-seq) assays. The results revealed that LsrR down-regulated the transcript levels of fimAICDFGH (encoding Type 1 pili), which have been reported to be associated with biofilm formation process. Biofilm assays confirmed that deletion of lsrR resulted in a significant increase in biofilm formation in vitro. In addition, electrophoretic mobility shift assay (EMSA) provided evidence that LsrR protein could directly bind to the promoter regions of fimAICDFGH in a dose-dependent manner. CONCLUSIONS: These results indicate that LsrR protein inhibits the biofilm formation ability of MPEC5 by directly binding to the fimAICDFGH promoter region. This study presents a novel clue for further exploration of the prevention and treatment of MPEC.


Biofilms , Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli , Gene Expression Regulation, Bacterial , Mastitis, Bovine , Biofilms/growth & development , Animals , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Escherichia coli/genetics , Cattle , Female , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Mastitis, Bovine/microbiology , Mammary Glands, Animal/microbiology , Repressor Proteins
11.
PLoS One ; 19(5): e0303947, 2024.
Article En | MEDLINE | ID: mdl-38820257

Retrospective evaluation of udder recovery following treatment of the inflamed quarter with acoustic pulse technology (APT) of cows with subclinical mastitis was done on 4 Israeli commercial dairy farms. Here, we evaluated the APT treatment as a tool to manage subclinical mastitis and its economic consequences in commercial farms. Recovery of the infected glands following APT treatment was compared to the customary no-treatment (NT) for cows with subclinical mastitis. Over 2 years, 467 cows with subclinical mastitis were identified. Subclinical mastitis was defined by elevated somatic cell count (SCC; >1 × 106 cells/mL) in the monthly test-day milk sample; 222 cows were treated with APT and 245 cows were not treated and served as control. Differences between treatment groups in culling, milk quality, milk yield and bacterial elimination were analyzed. After treatment, cure from bacteria was calculated only for cows with pre-isolated bacteria. The percentage of sampled cows determined as cured (no bacterial finding) in the NT group was 32.7% (35/107) (30.9% Gram negative; 32.4% Gram positive) and in the APT-treated group, 83.9% (42/55) (89.4% Gram negative; 80.6% Gram positive). Culling rate due to mastitis was significantly lower (>90%) in the APT-treated vs. NT group. Recovery was 66.0% in the APT group compared to 11.5% in the NT group at 90 d post-treatment. Average milk volume per cow in the APT-treated group was 16.1% higher compared to NT cows. Based on the study, savings incurred by using APT to treat only subclinical cows per 100-cow herd can total $15,106/y, or $309 per treated subclinically infected cow.


Dairying , Mammary Glands, Animal , Mastitis, Bovine , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/therapy , Mastitis, Bovine/economics , Female , Retrospective Studies , Dairying/economics , Mammary Glands, Animal/microbiology , Mammary Glands, Animal/pathology , Milk , Farms , Israel
12.
Acta Vet Scand ; 66(1): 20, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769566

Bacteriophage-encoded endolysins, peptidoglycan hydrolases breaking down the Gram-positive bacterial cell wall, represent a groundbreaking class of novel antimicrobials to revolutionize the veterinary medicine field. Wild-type endolysins exhibit a modular structure, consisting of enzymatically active and cell wall-binding domains, that enable genetic engineering strategies for the creation of chimeric fusion proteins or so-called 'engineered endolysins'. This biotechnological approach has yielded variants with modified lytic spectrums, introducing new possibilities in antimicrobial development. However, the discovery of highly similar endolysins by different groups has occasionally resulted in the assignment of different names that complicate a straightforward comparison. The aim of this review was to perform a homology-based comparison of the wild-type and engineered endolysins that have been characterized in the context of bovine mastitis-causing streptococci and staphylococci, grouping homologous endolysins with ≥ 95.0% protein sequence similarity. Literature is explored by homologous groups for the wild-type endolysins, followed by a chronological examination of engineered endolysins according to their year of publication. This review concludes that the wild-type endolysins encountered persistent challenges in raw milk and in vivo settings, causing a notable shift in the field towards the engineering of endolysins. Lead candidates that display robust lytic activity are nowadays selected from screening assays that are performed under these challenging conditions, often utilizing advanced high-throughput protein engineering methods. Overall, these recent advancements suggest that endolysins will integrate into the antibiotic arsenal over the next decade, thereby innovating antimicrobial treatment against bovine mastitis-causing streptococci and staphylococci.


Bacteriophages , Endopeptidases , Mastitis, Bovine , Staphylococcus , Animals , Mastitis, Bovine/microbiology , Mastitis, Bovine/drug therapy , Cattle , Endopeptidases/pharmacology , Endopeptidases/metabolism , Endopeptidases/chemistry , Endopeptidases/genetics , Staphylococcus/drug effects , Staphylococcal Infections/veterinary , Staphylococcal Infections/drug therapy , Streptococcus/drug effects , Female , Streptococcal Infections/veterinary , Streptococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology
13.
Microb Pathog ; 191: 106675, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705216

Bovine mastitis, caused by Streptococcus agalactiae (Group B Streptococcus; GBS), poses significant economic challenges to the global dairy industry. Mouse models serves as valuable tools for assessing GBS-induced infections as an alternative to large animals. This study aimed to investigate the LD50 dose, organ bacterial load, and quantification of peritoneal leukocyte populations for GBS serotypes Ia and II isolates from China and Pakistan. Additionally, we measured indicators such as lactoferrin, albumin, and myeloperoxidase (MPO) activity. Pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-2) and anti-inflammatory cytokines (IL-10 and TGF-ß) in serum and tissue samples were evaluated using ELISA and qPCR, respectively. BALB/c mice (4 mice per group) received individual intraperitoneal injections of 100 µl containing specific bacterial inoculum concentrations (ranging from 105 to 109 CFU per mouse) of Chinese and Pakistani GBS isolates (serotypes Ia and II). Control groups received 100 µL of sterile PBS. Results revealed that the LD50 bacterial dose causing 50 % mortality in mice was 107 CFU. The highest bacterial load in all experimental groups was quantified in the peritoneum, followed by blood, mammary gland, liver, spleen, lungs, and brain. The most significant bacterial dissemination was observed in mice inoculated with Pakistani serotype Ia at 24 h, with a subsequent notable decline in bacterial counts at day 3. Notably, infection with Pakistani serotype Ia showed a trend of increased total leukocyte counts, significantly higher than Pakistani serotype II, Chinese Serotype Ia, and Chinese serotype II. A substantial influx of neutrophils and lymphocytes was observed in response to all tested serotypes, with Pakistani serotype Ia inducing a significantly higher influx compared to other groups (Pakistani serotype II, Chinese serotype Ia, and Chinese serotype II). Furthermore, TNF-α, IL-1ß, IL-2, and IL-6 expressions were significantly increased in mice one day after infection with the Pakistani serotype Ia. Compared to mice infected with the Pakistani serotype II, Chinese Serotype Ia, and Chinese serotype II, those infected with the Pakistani serotype Ia isolate exhibited the highest production of IL-10 and TGF-ß, along with significantly increased concentrations of lactoferrin, albumin, and MPO. These findings suggest that the persistence and severity of infection caused by the Pakistani serotype Ia may be linked to its ability to spread to deeper tissues. This study enhances our understanding of the clinical characteristics of bovine mastitis caused by S. agalactiae in China and Pakistan.


Cytokines , Disease Models, Animal , Mice, Inbred BALB C , Serogroup , Streptococcal Infections , Streptococcus agalactiae , Animals , Streptococcus agalactiae/pathogenicity , Streptococcus agalactiae/classification , Streptococcus agalactiae/immunology , Streptococcus agalactiae/genetics , Mice , Streptococcal Infections/microbiology , Streptococcal Infections/immunology , China , Cytokines/metabolism , Cytokines/blood , Female , Pakistan , Bacterial Load , Cattle , Lethal Dose 50 , Mastitis, Bovine/microbiology
14.
Trop Med Int Health ; 29(6): 526-535, 2024 Jun.
Article En | MEDLINE | ID: mdl-38715472

OBJECTIVE: This study aimed to investigate the status of antimicrobial-resistant strains of Staphylococcus aureus in Pakistan, their association in terms of co-occurrence with the biofilm-forming genes, resistance profiling and associated discrepancies in diagnostic methods. METHODOLOGY: A total of 384 milk samples from bovine was collected by using convenient sampling technique and were initially screened for subclinical mastitis, further preceded by isolation and confirmation of S. aureus. The S. aureus isolates were subjected to evaluation of antimicrobial resistance by phenotypic identification using Kirby-Bauer disc diffusion method, while the genotypic estimation was done by polymerase chain reaction to declare isolates as methicillin, beta-lactam, vancomycin, tetracycline, and aminoglycoside resistant S. aureus (MRSA, BRSA, VRSA, TRSA, and ARSA), respectively. RESULTS: The current study revealed an overall prevalence of subclinical mastitis and S. aureus to be 59.11% and 46.69%, respectively. On a phenotypic basis, the prevalence of MRSA, BRSA, VRSA, TRSA, and ARSA was found to be 44.33%, 58.49%, 20.75%, 35.84%, and 30.18%, respectively. The results of PCR analysis showed that 46.80% of the tested isolates were declared as MRSA, 37.09% as BRSA, and 36.36% as VRSA, while the occurrence of TRSA and ARSA was observed in 26.31% and 18.75%, respectively. The current study also reported the existence of biofilm-producing genes (icaA and icaD) in 49.06% and 40.57% isolates, respectively. Lastly, this study also reported a high incidence of discrepancies for both genotypic and phenotypic identification methods of resistance evaluation, with the highest discrepancy ratio for the accA-aphD gene, followed by tetK, vanB, blaZ, and mecA genes. CONCLUSION: The study concluded that different antibiotic resistance strains of S. aureus are prevalent in study districts with high potential to transmit between human populations. The study also determined that there are multiple resistance determinants and mechanisms that are responsible for the silencing and expression of antibiotic resistance genes.


Anti-Bacterial Agents , Mastitis, Bovine , Milk , Staphylococcal Infections , Staphylococcus aureus , Cattle , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Animals , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Female , Mastitis, Bovine/microbiology , Milk/microbiology , Biofilms , Pakistan/epidemiology , Microbial Sensitivity Tests , Methicillin-Resistant Staphylococcus aureus/genetics , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Genotype
15.
Arch Microbiol ; 206(6): 249, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713385

Escherichia coli (E. coli) can induce severe clinical bovine mastitis, which is to blame for large losses experienced by dairy farms. Macrophage polarization into various states is in response to pathogen infections. Lycopene, a naturally occurring hydrocarbon carotenoid, relieved inflammation by controlling M1/M2 status of macrophages. Thus, we wanted to explore the effect of lycopene on polarization states of macrophages in E. coli-induced mastitis. Macrophages were cultivated with lycopene for 24, before E. coli inoculation for 6 h. Lycopene (0.5 µmol/L) significantly enhanced cell viabilities and significantly reduced lactic dehydrogenase (LDH) levels in macrophages, whereas 2 and 3 µmol/L lycopene significantly enhanced LDH activities. Lycopene treatment significantly reduced the increase in LDH release, iNOS, CD86, TNF-α, IL-1ß and phosphatase and tensin homolog (PTEN) expressions in E. coli group. 0.5 µmol/L lycopene significantly increased E. coli-induced downregulation of CD206, arginase I (ARG1), indoleamine 2,3-dioxygenase (IDO), chitinase 3-like 3 (YM1), PI3K, AKT, p-AKT, mammalian target of rapamycin (mTOR), p-mTOR, jumonji domain-containing protein-3 (JMJD3) and interferon regulatory factor 4 (IRF4) levels. Moreover, Ginkgolic acid C17:1 (a specific PTEN inhibitor), 740YPDGFR (a specific PI3K activator), SC79 (a specific AKT activator) or CHPG sodium salt (a specific NF-κB activator) significantly decreased CD206, AGR1, IDO and YM1 expressions in lycopene and E. coli-treated macrophages. Therefore, lycopene increased M2 macrophages via inhibiting NOTCH1-PI3K-mTOR-NF-κB-JMJD3-IRF4 pathway in response to E. coli infection in macrophages. These results contribute to revealing the pathogenesis of E. coli-caused bovine mastitis, providing the new angle of the prevention and management of mastitis.


Escherichia coli Infections , Escherichia coli , Lycopene , Macrophages , Signal Transduction , Animals , Cattle , Female , Mice , Cell Line , Escherichia coli Infections/microbiology , Escherichia coli Infections/immunology , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Lycopene/pharmacology , Macrophages/drug effects , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Mastitis, Bovine/microbiology , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
16.
Article De | MEDLINE | ID: mdl-38701797

OBJECTIVE: Four parameters of a decision tree for Selective Dry Cow Treatment (SDCT), examined in a previous study, were analyzed regarding their efficacy in detecting cows for dry cow treatment (DCT, use of intramammary antimicrobials). This study set out to review wether all parameters (somatic cell count [SCC≥ 200 000 SC/ml 3 months' milk yield recordings prior dry off (DO)], clinical mastitis history during lactation [≥1 CM], culturing [14d prior DO, detection of major pathogens] and California-Mastitis-Test [CMT, > rate 1/+ at DO]) are necessary for accurate decision making, whether there are possible alternatives to replace culturing, and whether a simplified model could replace the decision tree. MATERIAL AND METHODS: Records of 18 Bavarian dairy farms from June 2015 to August 2017 were processed. Data analysis was carried out by means of descriptive statistics, as well as employing a binary cost sensitive classification tree and logit-models. For statistical analyses the outcomes of the full 4-parameter decision tree were taken as ground truth. RESULTS: 848 drying off procedures in 739 dairy cows (CDO) were included. SCC and CMT selected 88.1%, in combination with CM 95.6% of the cows that received DCT (n=494). Without culturing, 22 (4.4%) with major pathogens (8x Staphylococcus [S.] aureus) infected CDO would have been misclassified as not needing DCT. The average of geometric mean SCC (within 100 d prior DO) for CDO with negative results in culturing was<100 000 SC/ml milk, 100 000-150 000 SC/ml for CDO infected with minor pathogens, and ≥ 150 000 SC/ml for CDO infected with major pathogens (excluding S.aureus). Using SCC during lactation (at least 1x > 200 000 SC/ml) and positive CMT to select CDO for DCT, contrary to the decision tree, 37 CDO (4.4%) would have been treated "incorrectly without" and 43 CDO (5.1%) "unnecessarily with" DCT. Modifications were identified, such as SCC<131 000 SC/ml within 100 d prior to DO for detecting CDO with no growth or minor pathogens in culturing. The best model for grading CDO for or against DCT (CDO without CM and SCC<200 000 SC/ml [last 3 months prior DO]) had metrics of AUC=0.74, Accuracy=0.778, balanced Accuracy=0.63, Sensitivity=0.92 and Specificity=0.33. CONCLUSIONS: Combining the decision tree's parameters SCC, CMT and CM renders suitable selection criteria under the conditions of this study. When omitting culturing, lower thresholds for SCC should be considered for each farm individually to select CDO for DCT. Nonetheless, the most accurate model could not replace the full decision tree.


Dairying , Decision Trees , Mastitis, Bovine , Animals , Cattle , Female , Mastitis, Bovine/microbiology , Mastitis, Bovine/diagnosis , Dairying/methods , Germany , Milk/cytology , Milk/microbiology , Lactation/physiology
17.
Anim Sci J ; 95(1): e13959, 2024.
Article En | MEDLINE | ID: mdl-38769761

This study investigates the relationships between subclinical mastitis and milk quality with selected microRNAs in cow milk. California Mastitis Test (CMT)-positive (n = 20) and negative (n = 20) samples were compared (Experiment I). Additionally, samples with CMT-positive but microbiological-negative, as well as positive for only Staphylococcus subspecies (Staph spp.) and only Streptococcus subspecies (Strep spp.) were examined (Experiment II). Four groups were formed in Experiment II: Group I (CMT and microbiological-negative) (n = 20), Group II (CMT-positive but microbiological-negative) (n = 10), Group III (Staph spp.) (n = 5), Group IV (Strep spp.) (n = 5). While electrical conductivity, somatic cell count (SCC), malondialdehyde (MDA) increased, miR-27a-3p and miR-223 upregulated and miR-125b downregulated in the CMT-positive group in Experiment I. SCC and MDA were higher in CMT-positive groups. miR-27a-3p and miR-223 upregulated in Groups III and IV. While miR-155 is upregulated, miR-125b downregulated in Group IV. Milk fat is positively correlated with miR-148a and miR-223. As miR-27a-3p positively correlated with SCC and MDA, miR-125b negatively correlated with electrical conductivity and SCC. miR-148a and MDA were positively correlated. miR-155 was correlated with fat-free dry matter, protein, lactose, and freezing point. miR-223 was positively correlated with SCC and miR-148a. Results particularly highlight miR-27a-3p and miR-223 as potential biomarkers in subclinical mastitis, especially those caused by Staph spp. and Strep spp., while miR-148a, miR-155, and miR-223 stand out in determining milk quality.


Mastitis, Bovine , MicroRNAs , Milk , Animals , Milk/microbiology , MicroRNAs/metabolism , MicroRNAs/genetics , Cattle , Female , Mastitis, Bovine/microbiology , Mastitis, Bovine/diagnosis , Mastitis, Bovine/genetics , Mastitis, Bovine/metabolism , Staphylococcus/isolation & purification , Cell Count/veterinary , Streptococcus/isolation & purification , Food Quality , Malondialdehyde/metabolism , Malondialdehyde/analysis , Electric Conductivity , Asymptomatic Infections
18.
PLoS One ; 19(4): e0299929, 2024.
Article En | MEDLINE | ID: mdl-38573969

A cross-sectional study was conducted to estimate the prevalence of intramammary infection (IMI) associated bacteria and to identify risk factors for pathogen group-specific IMI in water buffalo in Bangladesh. A California Mastitis Test (CMT) and bacteriological cultures were performed on 1,374 quarter milk samples collected from 763 water buffalo from 244 buffalo farms in nine districts in Bangladesh. Quarter, buffalo, and farm-related data were obtained through questionnaires and visual observations. A total of 618 quarter samples were found to be culture positive. Non-aureus staphylococci were the predominant IMI-associated bacterial species, and Staphylococcus (S.) chromogenes, S. hyicus, and S. epidermidis were the most common bacteria found. The proportion of non-aureus staphylococci or Mammaliicoccus sciuri (NASM), S. aureus, and other bacterial species identified in the buffalo quarter samples varied between buffalo farms. Therefore, different management practices, buffalo breeding factors, and nutrition were considered and further analyzed when estimating the IMI odds ratio (OR). The odds of IMI by any pathogen (OR: 1.8) or by NASM (OR: 2.2) was high in buffalo herds with poor milking hygiene. Poor cleanliness of the hind quarters had a high odds of IMI caused by any pathogen (OR: 2.0) or NASM (OR: 1.9). Twice daily milking (OR: 3.1) and farms with buffalo purchased from another herd (OR: 2.0) were associated with IMI by any pathogen. Asymmetrical udders were associated with IMI-caused by any bacteria (OR: 1.7). A poor body condition score showed higher odds of IMI by any pathogen (OR: 1.4) or by NASM (OR: 1.7). This study shows that the prevalence of IMI in water buffalo was high and varied between farms. In accordance with the literature, our data highlight that IMI can be partly controlled through better farm management, primarily by improving hygiene, milking management, breeding, and nutrition.


Mastitis, Bovine , Staphylococcal Infections , Staphylococcus , Animals , Female , Cattle , Staphylococcus aureus , Staphylococcal Infections/microbiology , Buffaloes , Cross-Sectional Studies , Mastitis, Bovine/microbiology , Milk/microbiology , Staphylococcus epidermidis , Risk Factors , Mammary Glands, Animal/microbiology
19.
Prev Vet Med ; 227: 106205, 2024 Jun.
Article En | MEDLINE | ID: mdl-38678816

Mastitis is the most common disease of dairy cattle and can be manifested in clinical and subclinical forms. The overuse of antimicrobials in the treatment and prevention of mastitis favours antimicrobial resistance and milk can be a potential route of dissemination. This study aimed to evaluate the biological quality of bulk tank milk (BTM) and the microbiological quality and signs of mastitis of freshly milked raw milk. In addition, to evaluate antimicrobial resistance in Enterobacteriaceae and Staphylococcus spp. isolated from freshly milked raw milk. None of the farms were within the official Brazilian biological quality limits for BTM. Freshly milked raw milk with signs of clinical (CMM), subclinical (SCMM) and no signs (MFM) of mastitis were detected in 6.67%, 27.62% and 65.71% samples, respectively. Most samples of freshly milked raw milk showed acceptable microbiological quality, when evaluating the indicators total coliforms (78.10%), Escherichia coli (88.57%) and Staphylococcus aureus (100%). Klebsiella oxytoca and S. aureus were the most prevalent microorganisms in SCMM and MFM samples. Antimicrobial resistance and multidrug resistance (MDR) were observed in 65.12% and 13.95% of Enterobacteriaceae and 84.31% and 5.88% of Staphylococcus spp., respectively, isolated from both SCMM and MFM samples. Enterobacteriaceae resistant to third-generation cephalosporin (3GCR) (6.98%) and carbapenems (CRE) (6.98%) and methicillin-resistant S. aureus (MRSA) (4.88%) were observed. Antimicrobial-resistant bacteria can spread resistance genes to previously susceptible bacteria. This is a problem that affects animal, human and environmental health and should be evaluated within the one-health concept.


Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterobacteriaceae , Mastitis, Bovine , Milk , Staphylococcus , Animals , Cattle , Milk/microbiology , Mastitis, Bovine/microbiology , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Female , Staphylococcus/drug effects , Brazil , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Asymptomatic Infections , Microbial Sensitivity Tests/veterinary
20.
Res Vet Sci ; 172: 105240, 2024 Jun.
Article En | MEDLINE | ID: mdl-38608347

Antimicrobial usage (AMU) could be reduced by differentiating the causative bacteria in cases of clinical mastitis (CM) as either Gram-positive or Gram-negative bacteria or identifying whether the case is culture-negative (no growth, NG) mastitis. Immunoassays for biomarker analysis and a Tandem Mass Tag (TMT) proteomic investigation were employed to identify differences between samples of milk from cows with CM caused by different bacteria. A total of 94 milk samples were collected from cows diagnosed with CM across seven farms in Scotland, categorized by severity as mild (score 1), moderate (score 2), or severe (score 3). Bovine haptoglobin (Hp), milk amyloid A (MAA), C-reactive protein (CRP), lactoferrin (LF), α-lactalbumin (LA) and cathelicidin (CATHL) were significantly higher in milk from cows with CM, regardless of culture results, than in milk from healthy cows (all P-values <0.001). Milk cathelicidin (CATHL) was evaluated using a novel ELISA technique that utilises an antibody to a peptide sequence of SSEANLYRLLELD (aa49-61) common to CATHL 1-7 isoforms. A classification tree was fitted on the six biomarkers to predict Gram-positive bacteria within mastitis severity scores 1 or 2, revealing that compared to the rest of the samples, Gram-positive samples were associated with CRP < 9.5 µg/ml and LF ≥ 325 µg/ml and MAA < 16 µg/ml. Sensitivity of the tree model was 64%, the specificity was 91%, and the overall misclassification rate was 18%. The area under the ROC curve for this tree model was 0.836 (95% bootstrap confidence interval: 0.742; 0.917). TMT proteomic analysis revealed little difference between the groups in protein abundance when the three groups (Gram-positive, Gram-negative and no growth) were compared, however when each group was compared against the entirety of the remaining samples, 28 differentially abundant protein were identified including ß-lactoglobulin and ribonuclease. Whilst further research is required to draw together and refine a suitable biomarker panel and diagnostic algorithm for differentiating Gram- positive/negative and NG CM, these results have highlighted a potential panel and diagnostic decision tree. Host-derived milk biomarkers offer significant potential to refine and reduce AMU and circumvent the many challenges associated with microbiological culture, both within the lab and on the farm, while providing the added benefit of reducing turnaround time from 14 to 16 h of microbiological culture to just 15 min with a lateral flow device (LFD).


Biomarkers , Mastitis, Bovine , Milk , Animals , Cattle , Female , Milk/chemistry , Milk/microbiology , Mastitis, Bovine/microbiology , Mastitis, Bovine/diagnosis , Biomarkers/metabolism , Proteome , Milk Proteins/analysis , Gram-Negative Bacteria/isolation & purification , Gram-Positive Bacteria/isolation & purification , Cathelicidins
...