Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.770
1.
Environ Health Perspect ; 132(6): 67003, 2024 Jun.
Article En | MEDLINE | ID: mdl-38833407

BACKGROUND: Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. It is unknown whether epigenetic changes in surrogate tissues such as the blood are reflective of similar changes in target tissues such as cortex or liver. OBJECTIVE: We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. METHODS: Female mice were exposed to human relevant doses of either Pb (32 ppm) via drinking water or DEHP (5mg/kg-day) via chow for 2 weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and ChIP-enrich were used for genomic annotations and gene set enrichment tests of DMRs, respectively. RESULTS: The cortex contained the majority of DMRs associated with Pb (66%) and DEHP (57%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n=13 and 8 DMRs with Pb and DEHP exposure, respectively) and exposure types (n=55 and 39 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures, with some signatures replicated between target and surrogate tissues. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, and we again observed a replication of DMR signatures between blood and target tissues. Specifically, we observed hypermethylation of the Grb10 ICR in both blood and liver of Pb-exposed male animals. CONCLUSIONS: These data provide preliminary evidence that imprinted genes may be viable candidates in the search for epigenetic biomarkers of toxicant exposure in target tissues. Additional research is needed on allele- and developmental stage-specific effects, as well as whether other imprinted genes provide additional examples of this relationship. https://doi.org/10.1289/EHP14074.


DNA Methylation , Genomic Imprinting , Lead , Liver , Animals , DNA Methylation/drug effects , Mice , Female , Liver/drug effects , Male , Lead/toxicity , Lead/blood , Genomic Imprinting/drug effects , Diethylhexyl Phthalate/toxicity , Brain/drug effects , Environmental Pollutants/toxicity , Maternal Exposure , Phthalic Acids/toxicity , Pregnancy , Prenatal Exposure Delayed Effects , Epigenesis, Genetic/drug effects
2.
J Environ Sci (China) ; 145: 75-87, 2024 Nov.
Article En | MEDLINE | ID: mdl-38844325

Prednisone is a synthetic glucocorticoid that is commonly used in both human and veterinary medication. Now, it is also recognized as an emerging environmental contaminant. Pregnant women may be exposed to prednisone actively or passively through multiple pathways and cause developmental toxicity to the fetus. However, the impact of prenatal prednisone exposure (PPE) on fetal kidney development remains unclear. In this study, pregnant mice were administered prednisone intragastrically during full-term pregnancy with different doses (0.25, 0.5, or 1 mg/(kg·day)), or at the dose of 1 mg/(kg·day) in different gestational days (GD) (GD0-9, GD10-18, or GD0-18). The pregnant mice were euthanized on GD18. HE staining revealed fetal kidney dysplasia, with an enlarged glomerular Bowman's capsule space and a reduced capillary network in the PPE groups. The expression of the podocyte and the mesangial cell marker genes was significantly reduced in the PPE groups. However, overall gene expression in renal tubules and collecting ducts were markedly increased. All of the above effects were more pronounced in high-dose, full-term pregnancy, and female fetuses. Studies on the mechanism of the female fetal kidney have revealed that PPE reduced the expression of Six2, increased the expression of Hnf1ß, Hnf4α, and Wnt9b, and inhibited the expression of glial cell line-derived neurotrophic factor (GDNF) and Notch signaling pathways. In conclusion, this study demonstrated that there is a sex difference in the developmental toxicity of PPE to the fetal kidney, and the time effect is manifested as full-term pregnancy > early pregnancy > mid-late pregnancy.


Kidney , Prednisone , Female , Animals , Pregnancy , Mice , Kidney/drug effects , Kidney/embryology , Prednisone/toxicity , Fetal Development/drug effects , Male , Prenatal Exposure Delayed Effects/chemically induced , Maternal Exposure/adverse effects
3.
Front Public Health ; 12: 1356830, 2024.
Article En | MEDLINE | ID: mdl-38841656

Introduction: Exposure to indoor air pollution such as biomass fuel and particulate matter is a significant cause of adverse pregnancy outcomes. However, there is limited information about the association between indoor air pollution exposure and adverse pregnancy outcomes in low and middle-income countries. Therefore, this meta-analysis aimed to determine the association between indoor air pollution exposure and adverse pregnancy outcomes in low and middle-income countries. Methods: International electronic databases such as PubMed, Science Direct, Global Health, African Journals Online, HINARI, Semantic Scholar, and Google and Google Scholar were used to search for relevant articles. The study was conducted according to the updated Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A random effect model at a 95% confidence interval was used to determine the association between indoor air pollution exposure and adverse pregnancy outcomes using STATA version 14. Funnel plot and Higgs I2 statistics were used to determine the publication bias and heterogeneity of the included studies, respectively. Results: A total of 30 articles with 2,120,228 study participants were included in this meta-analysis. The pooled association between indoor air pollution exposure and at least one adverse pregnancy outcome was 15.5% (95%CI: 12.6-18.5), with significant heterogeneity (I2 = 100%; p < 0.001). Exposure to indoor air pollution increased the risk of small for gestational age by 23.7% (95%CI: 8.2-39.3) followed by low birth weight (17.7%; 95%CI: 12.9-22.5). Exposure to biomass fuel (OR = 1.16; 95%CI: 1.12-1.2), particulate matter (OR = 1.28; 95%CI: 1.25-1.31), and kerosene (OR = 1.38; 95%CI: 1.09-1.66) were factors associated with developing at least one adverse pregnancy outcomes. Conclusions: We found that more than one in seven pregnant women exposed to indoor air pollution had at least one adverse pregnancy outcome. Specifically, exposure to particulate matter, biomass fuel, and kerosene were determinant factors for developing at least one adverse pregnancy outcome. Therefore, urgent comprehensive health intervention should be implemented in the area to reduce adverse pregnancy outcomes.


Air Pollution, Indoor , Developing Countries , Pregnancy Outcome , Humans , Air Pollution, Indoor/adverse effects , Pregnancy , Female , Pregnancy Outcome/epidemiology , Particulate Matter/adverse effects , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data
4.
J Matern Fetal Neonatal Med ; 37(1): 2356038, 2024 Dec.
Article En | MEDLINE | ID: mdl-38830822

OBJECTIVE: Evaluation of neonatal morbidity after maternal central neurotropic drug exposure. METHODS: Retrospective single-center level-III neonatology cohort analysis of neonates after CND from 2018 to 2021. Control group of neonates born to mothers without CND cared for at the maternity ward. RESULTS: Significantly more frequent therapy need of neonates with CND [OR 23 (95% CI: 7.8-62); RR 14 (95% CI: 5.4-37); p < 0.01]. Neonates after CND had lower Apgar-scores LM 1 [CND 8.1; CG 8.6; p < 0.05]; LM 5 [CND 9; CG 9.7; p < 0.01]; LM 10 [CND 9.6; CG 9.9; p < 0.05]. The first symptom occurred in 95.35% within 24 h (mean: 3.3 h). CND group showed significantly more often preterm delivery [OR 3.5; RR 3.2; p < 0.05], and especially cumulative multiple symptoms [OR 9.4; RR 6.6; p < 0.01] but no correlation to multiple maternal medication use (p = 0.3). CONCLUSIONS: Neonates exposed to CND are at increased risk for postnatal therapy, often due to multiple symptoms. Neonates should be continuously monitored for at least 24 h.


Infant, Newborn, Diseases , Humans , Female , Infant, Newborn , Retrospective Studies , Pregnancy , Adult , Male , Infant, Newborn, Diseases/epidemiology , Infant, Newborn, Diseases/chemically induced , Central Nervous System Agents/adverse effects , Central Nervous System Agents/therapeutic use , Prenatal Exposure Delayed Effects/epidemiology , Prenatal Exposure Delayed Effects/chemically induced , Case-Control Studies , Maternal Exposure/adverse effects , Pregnancy Complications/drug therapy , Pregnancy Complications/epidemiology
5.
Environ Health ; 23(1): 51, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831396

BACKGROUND: Spina bifida, a developmental malformation of the spinal cord, is associated with high rates of mortality and disability. Although folic acid-based preventive strategies have been successful in reducing rates of spina bifida, some areas continue to be at higher risk because of chemical exposures. Bangladesh has high arsenic exposures through contaminated drinking water and high rates of spina bifida. This study examines the relationships between mother's arsenic exposure, folic acid, and spina bifida risk in Bangladesh. METHODS: We conducted a hospital-based case-control study at the National Institute of Neurosciences & Hospital (NINS&H) in Dhaka, Bangladesh, between December 2016 and December 2022. Cases were infants under age one year with spina bifida and further classified by a neurosurgeon and imaging. Controls were drawn from children seen at NINS&H and nearby Dhaka Shishu Hospital. Mothers reported folic acid use during pregnancy, and we assessed folate status with serum assays. Arsenic exposure was estimated in drinking water using graphite furnace atomic absorption spectrophotometry (GF-AAS) and in toenails using inductively coupled plasma mass spectrometry (ICP-MS). We used logistic regression to examine the associations between arsenic and spina bifida. We used stratified models to examine the associations between folic acid and spina bifida at different levels of arsenic exposure. RESULTS: We evaluated data from 294 cases of spina bifida and 163 controls. We did not find a main effect of mother's arsenic exposure on spina bifida risk. However, in stratified analyses, folic acid use was associated with lower odds of spina bifida (adjusted odds ratio [OR]: 0.50, 95% confidence interval [CI]: 0.25-1.00, p = 0.05) among women with toenail arsenic concentrations below the median value of 0.46 µg/g, and no association was seen among mothers with toenail arsenic concentrations higher than 0.46 µg/g (adjusted OR: 1.09, 95% CI: 0.52-2.29, p = 0.82). CONCLUSIONS: Mother's arsenic exposure modified the protective association of folic acid with spina bifida. Increased surveillance and additional preventive strategies, such as folic acid fortification and reduction of arsenic, are needed in areas of high arsenic exposure.


Arsenic , Folic Acid , Spinal Dysraphism , Humans , Folic Acid/therapeutic use , Bangladesh/epidemiology , Spinal Dysraphism/prevention & control , Spinal Dysraphism/epidemiology , Spinal Dysraphism/chemically induced , Case-Control Studies , Female , Arsenic/analysis , Infant , Male , Adult , Infant, Newborn , Pregnancy , Water Pollutants, Chemical/analysis , Maternal Exposure , Young Adult , Drinking Water/chemistry , Drinking Water/analysis
6.
BMJ Open ; 14(5): e079782, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719310

PURPOSE: Pregnancy and the postpartum period are increasingly recognised as sensitive windows for cardiometabolic disease risk. Growing evidence suggests environmental exposures, including endocrine-disrupting chemicals (EDCs), are associated with an increased risk of pregnancy complications that are associated with long-term cardiometabolic risk. However, the impact of perinatal EDC exposure on subsequent cardiometabolic risk post-pregnancy is less understood. The Environmental Reproductive and Glucose Outcomes (ERGO) Study was established to investigate the associations of environmental exposures during the perinatal period with post-pregnancy parental cardiometabolic health. PARTICIPANTS: Pregnant individuals aged ≥18 years without pre-existing diabetes were recruited at <15 weeks of gestation from Boston, Massachusetts area hospitals. Participants completed ≤4 prenatal study visits (median: 12, 19, 26, 36 weeks of gestation) and 1 postpartum visit (median: 9 weeks), during which we collected biospecimens, health histories, demographic and behavioural data, and vitals and anthropometric measurements. Participants completed a postpartum fasting 2-hour 75 g oral glucose tolerance test. Clinical data were abstracted from electronic medical records. Ongoing (as of 2024) extended post-pregnancy follow-up visits occur annually following similar data collection protocols. FINDINGS TO DATE: We enrolled 653 unique pregnancies and retained 633 through delivery. Participants had a mean age of 33 years, 10% (n=61) developed gestational diabetes and 8% (n=50) developed pre-eclampsia. Participant pregnancy and postpartum urinary phthalate metabolite concentrations and postpartum glycaemic biomarkers were quantified. To date, studies within ERGO found higher exposure to phthalates and phthalate mixtures, and separately, higher exposure to radioactive ambient particulate matter, were associated with adverse gestational glycaemic outcomes. Additionally, certain personal care products used in pregnancy, notably hair oils, were associated with higher urinary phthalate metabolite concentrations, earlier gestational age at delivery and lower birth weight. FUTURE PLANS: Future work will leverage the longitudinal data collected on pregnancy and cardiometabolic outcomes, environmental exposures, questionnaires, banked biospecimens and paediatric data within the ERGO Study.


Environmental Exposure , Humans , Female , Pregnancy , Adult , Prospective Studies , Boston/epidemiology , Environmental Exposure/adverse effects , Endocrine Disruptors/adverse effects , Endocrine Disruptors/urine , Young Adult , Glucose Tolerance Test , Blood Glucose/analysis , Blood Glucose/metabolism , Postpartum Period , Maternal Exposure/adverse effects , Cardiometabolic Risk Factors
7.
Lancet Planet Health ; 8(5): e297-e308, 2024 May.
Article En | MEDLINE | ID: mdl-38723642

BACKGROUND: Pregnancy air pollution exposure (PAPE) has been linked to a wide range of adverse birth and childhood outcomes, but there is a paucity of data on its influence on the placental epigenome, which can regulate the programming of physiological functions and affect child development. This study aimed to investigate the association between prenatal air pollutant exposure concentrations and changes in placental DNA methylation patterns, and to explore the potential windows of susceptibility and sex-specific alterations. METHODS: This multi-site study used three prospective population-based mother-child cohorts: EDEN, PELAGIE, and SEPAGES, originating from four French geographical regions (Nancy, Poitiers, Brittany, and Grenoble). Pregnant women were included between 2003 and 2006 for EDEN and PELAGIE, and between 2014 and 2017 for SEPAGES. The main eligibility criteria were: being older than 18 years, having a singleton pregnancy, and living and planning to deliver in one of the maternity clinics in one of the study areas. A total of 1539 mother-child pairs were analysed, measuring placental DNA methylation using Illumina BeadChips. We used validated spatiotemporally resolved models to estimate PM2·5, PM10, and NO2 exposure over each trimester of pregnancy at the maternal residential address. We conducted a pooled adjusted epigenome-wide association study to identify differentially methylated 5'-C-phosphate-G-3' (CpG) sites and regions (assessed using the Infinium HumanMethylationEPIC BeadChip array, n=871), including sex-specific and sex-linked alterations, and independently validated our results (assessed using the Infinium HumanMethylation450 BeadChip array, n=668). FINDINGS: We identified four CpGs and 28 regions associated with PAPE in the total population, 469 CpGs and 87 regions in male infants, and 150 CpGs and 66 regions in female infants. We validated 35% of the CpGs available. More than 30% of the identified CpGs were related to one (or more) birth outcome and most significant alterations were enriched for neural development, immunity, and metabolism related genes. The 28 regions identified for both sexes overlapped with imprinted genes (four genes), and were associated with neurodevelopment (nine genes), immune system (seven genes), and metabolism (five genes). Most associations were observed for the third trimester for female infants (134 of 150 CpGs), and throughout pregnancy (281 of 469 CpGs) and the first trimester (237 of 469 CpGs) for male infants. INTERPRETATION: These findings highlight the molecular pathways through which PAPE might affect child health in a widespread and sex-specific manner, identifying the genes involved in the major physiological functions of a developing child. Further studies are needed to elucidate whether these epigenetic changes persist and affect health later in life. FUNDING: French Agency for National Research, Fondation pour la Recherche Médicale, Fondation de France, and the Plan Cancer.


Air Pollutants , Air Pollution , DNA Methylation , Maternal Exposure , Placenta , Humans , Female , Pregnancy , Placenta/drug effects , Placenta/metabolism , Prospective Studies , Maternal Exposure/adverse effects , Adult , Air Pollution/adverse effects , Male , Air Pollutants/adverse effects , Air Pollutants/analysis , France , Prenatal Exposure Delayed Effects/genetics , Pregnancy Outcome , Infant, Newborn , Young Adult
8.
Environ Health Perspect ; 132(5): 57002, 2024 May.
Article En | MEDLINE | ID: mdl-38728218

BACKGROUND: Endocrine-disrupting chemicals may play a role in adiposity development during childhood. Until now literature in this scope suffers from methodologic limitations in exposure assessment using one or few urine samples and missing assessment during the infancy period. OBJECTIVES: We investigated the associations between early-life exposure to quickly metabolized chemicals and post-natal growth, relying on repeated within-subject urine collections over pregnancy and infancy. METHODS: We studied the associations of four phenols, four parabens, seven phthalates, and one nonphthalate plasticizer from weekly pooled urine samples collected from the mother during second and third trimesters (median 18 and 34 gestational weeks, respectively) and infant at 2 and 12 months of age, and child growth until 36 months. We relied on repeated measures of height, weight and head circumference from study visits and the child health booklet to predict growth outcomes at 3 and 36 months using the Jenss-Bayley nonlinear mixed model. We assessed associations with individual chemicals using adjusted linear regression and mixtures of chemicals using a Bayesian kernel machine regression model. RESULTS: The unipollutant analysis revealed few associations. Bisphenol S (BPS) at second trimester was positively associated with all infant growth parameters at 3 and 36 months, with similar patterns between exposure at third trimester and all infant growth parameters at 3 months. Mono-n-butyl phthalate (MnBP) at 12 months was positively associated with body mass index (BMI), weight, and head circumference at 36 months. Mixture analysis revealed positive associations between exposure at 12 months and BMI and weight at 36 months, with MnBP showing the highest effect size within the mixture. CONCLUSIONS: This study suggests that exposure in early infancy may be associated with increased weight and BMI in early childhood, which are risk factors of obesity in later life. Furthermore, this study highlighted the impact of BPS, a compound replacing bisphenol A, which has never been studied in this context. https://doi.org/10.1289/EHP13644.


Endocrine Disruptors , Parabens , Phenols , Phthalic Acids , Prenatal Exposure Delayed Effects , Humans , Phthalic Acids/urine , Phenols/urine , Phenols/toxicity , Female , Infant , Pregnancy , Endocrine Disruptors/urine , Endocrine Disruptors/toxicity , Environmental Pollutants/urine , Male , Maternal Exposure/statistics & numerical data , Maternal Exposure/adverse effects , Longitudinal Studies , Child, Preschool , Anthropometry
9.
J Toxicol Sci ; 49(5): 209-218, 2024.
Article En | MEDLINE | ID: mdl-38692908

The immune system is sensitive to many chemicals. Among dioxin compounds, 2,3,7,8-tetrachlorodizenzo-p-dioxin (TCDD) is the most toxic environmental pollutant. The effects of perinatal maternal exposure to dioxins may persist into childhood. However, there have been no reports to date on the effects of exposure to dioxins during infancy, when the immune organs are developing. Therefore, we investigated the effects of TCDD and antigen exposure during lactation on immune function, especially antibody production capacity, in adult mice. Beginning the day after delivery, lactating mothers were orally administered TCDD or a mixture of TCDD and ovalbumin (OVA) daily for 4 weeks, until the pups were weaned. At 6 weeks of age, progeny mice were orally administered OVA daily for 10 weeks, while non-progeny mice were orally administered OVA or a mixture of TCDD and OVA daily for 10 weeks. Production of serum OVA-specific IgG was examined weekly. The amount of TCDD transferred from the mother to the progeny via breast milk was determined by measuring TCDD in the gastric contents of the progeny. A trend toward increasing IgA titer was observed in TCDD-treated mice, and production of IgE was observed only in progeny whose mothers were treated with TCDD and OVA. The results suggest that exposure to TCDD and OVA in breast milk can affect immune function in newborns.


Lactation , Ovalbumin , Polychlorinated Dibenzodioxins , Animals , Female , Ovalbumin/immunology , Ovalbumin/administration & dosage , Polychlorinated Dibenzodioxins/toxicity , Maternal Exposure/adverse effects , Antibody Formation/drug effects , Environmental Pollutants/toxicity , Immunoglobulin G/blood , Immunoglobulin A/blood , Immunoglobulin E/blood , Immunoglobulin E/immunology , Antigens/immunology , Mice , Pregnancy , Milk/immunology , Male , Milk, Human/immunology , Administration, Oral
10.
BMC Public Health ; 24(1): 1411, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802825

BACKGROUND: Preterm birth (PTB) is an important predictor of perinatal morbidity and mortality. Previous researches have reported a correlation between air pollution and an increased risk of preterm birth. However, the specific relationship between short-term and long-term exposure to carbon monoxide (CO) and preterm birth remains less explored. METHODS: A population-based study was conducted among 515,498 pregnant women in Chongqing, China, to assess short-term and long-term effects of CO on preterm and very preterm births. Generalized additive models (GAM) were applied to evaluate short-term effects, and exposure-response correlation curves were plotted after adjusting for confounding factors. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated using COX proportional hazard models to estimate the long-term effect. RESULTS: The daily incidence of preterm and very preterm birth was 5.99% and 0.41%, respectively. A positive association between a 100 µg/m³ increase in CO and PTB was observed at lag 0-3 days and 12-21 days, with a maximum relative risk (RR) of 1.021(95%CI: 1.001-1.043). The exposure-response curves (lag 0 day) revealed a rapid increase in PTB due to CO. Regarding long-term exposure, positive associations were found between a 100 µg/m3 CO increase for each trimester(Model 2 for trimester 1: HR = 1.054, 95%CI: 1.048-1.060; Model 2 for trimester 2: HR = 1.066, 95%CI: 1.060-1.073; Model 2 for trimester 3: HR = 1.007, 95%CI: 1.001-1.013; Model 2 for entire pregnancy: HR = 1.080, 95%CI: 1.073-1.088) and higher HRs of very preterm birth. Multiplicative interactions between air pollution and CO on the risk of preterm and very preterm birth were detected (P- interaction<0.05). CONCLUSIONS: Our findings suggest that short-term exposure to low levels of CO may have protective effects against preterm birth, while long-term exposure to low concentrations of CO may reduce the risk of both preterm and very preterm birth. Moreover, our study indicated that very preterm birth is more susceptible to the influence of long-term exposure to CO during pregnancy, with acute CO exposure exhibiting a greater impact on preterm birth. It is imperative for pregnant women to minimize exposure to ambient air pollutants.


Air Pollutants , Carbon Monoxide , Premature Birth , Humans , Female , Pregnancy , Premature Birth/epidemiology , China/epidemiology , Carbon Monoxide/analysis , Adult , Air Pollutants/analysis , Air Pollutants/adverse effects , Air Pollution/adverse effects , Air Pollution/analysis , Infant, Newborn , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data , Time Factors , Young Adult , Risk Factors
11.
Ecotoxicol Environ Saf ; 279: 116494, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38820878

Di-(2-ethylhexyl)-phthalate (DEHP), as distinctive endocrine disrupting chemicals, has become a global environmental pollutant harmful to human and animal health. However, the impacts on offspring and mothers with maternal DEHP exposure are largely unknown and the mechanism remains elusive. We established DEHP-exposed maternal mice to investigate the impacts on mother and offspring and illustrate the mechanism from multiple perspectives. Pregnant mice were administered with different doses of DEHP, respectively. Metagenomic sequencing used fecal and transcriptome sequencing using placentas and livers from offspring have been performed, respectively. The results of the histopathology perspective demonstrated that DEHP exposure could disrupt the function of islets impact placentas and fetus development for maternal mice, and cause the disorder of glucose and lipid metabolism for immature offspring mice, resulting in hyperglycemia. The results of the metagenome of gut microbial communities indicated that the dysbiosis of gut microbiota in mother and offspring mice and the dominant phyla transformed through vertical transmission. Transcriptome analysis found DEHP exposure induced mutations of Ahcy and Gstp3, which can damage liver cells and affect the metabolism of the host. DEHP exposure harms pregnant mice and offspring by affecting gene expression and altering metabolism. Our results suggested that exposure of pregnant mice to DEHP during pregnancy and lactation increased the risk of metabolic disorders by altering key genes in liver and gut microbiota, and these results provided new insights into the potential long-term harms of DEHP.


Diethylhexyl Phthalate , Energy Metabolism , Hyperglycemia , Maternal Exposure , Female , Animals , Pregnancy , Diethylhexyl Phthalate/toxicity , Mice , Hyperglycemia/chemically induced , Energy Metabolism/drug effects , Maternal Exposure/adverse effects , Endocrine Disruptors/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Gastrointestinal Microbiome/drug effects , Environmental Pollutants/toxicity , Placenta/drug effects , Liver/drug effects
12.
Environ Int ; 187: 108720, 2024 May.
Article En | MEDLINE | ID: mdl-38718676

BACKGROUND: Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) influences neurodevelopment. Thyroid homeostasis disruption is thought to be a possible underlying mechanism. However, current epidemiological evidence remains inconclusive. OBJECTIVES: This study aimed to explore the effects of prenatal PFAS exposure on the intelligence quotient (IQ) of school-aged children and assess the potential mediating role of fetal thyroid function. METHODS: The study included 327 7-year-old children from the Sheyang Mini Birth Cohort Study (SMBCS). Cord serum samples were analyzed for 12 PFAS concentrations and 5 thyroid hormone (TH) levels. IQ was assessed using the Wechsler Intelligence Scale for Children-Chinese Revised (WISC-CR). Generalized linear models (GLM) and Bayesian Kernel Machine Regression (BKMR) were used to evaluate the individual and combined effects of prenatal PFAS exposure on IQ. Additionally, the impact on fetal thyroid function was examined using a GLM, and a mediation analysis was conducted to explore the potential mediating roles of this function. RESULTS: The molar sum concentration of perfluorinated carboxylic acids (ΣPFCA) in cord serum was significantly negatively associated with the performance IQ (PIQ) of 7-year-old children (ß = -6.21, 95 % confidence interval [CI]: -12.21, -0.21), with more pronounced associations observed among girls (ß = -9.57, 95 % CI: -18.33, -0.81) than in boys. Negative, albeit non-significant, cumulative effects were noted when considering PFAS mixture exposure. Prenatal exposure to perfluorooctanoic acid, perfluorononanoic acid, and perfluorooctanesulfonic acid was positively associated with the total thyroxine/triiodothyronine ratio. However, no evidence supported the mediating role of thyroid function in the link between PFAS exposure and IQ. CONCLUSIONS: Increased prenatal exposure to PFASs negatively affected the IQ of school-aged children, whereas fetal thyroid function did not serve as a mediator in this relationship.


Environmental Pollutants , Fluorocarbons , Intelligence , Prenatal Exposure Delayed Effects , Thyroid Gland , Humans , Female , Prenatal Exposure Delayed Effects/chemically induced , Child , Pregnancy , Fluorocarbons/toxicity , Fluorocarbons/blood , Male , Intelligence/drug effects , Thyroid Gland/drug effects , Environmental Pollutants/blood , Environmental Pollutants/toxicity , Birth Cohort , Cohort Studies , Thyroid Hormones/blood , Intelligence Tests , China , Maternal Exposure/adverse effects , Fetal Blood/chemistry , Alkanesulfonic Acids/blood , Alkanesulfonic Acids/toxicity
13.
Environ Int ; 187: 108726, 2024 May.
Article En | MEDLINE | ID: mdl-38733764

BACKGROUND: Exposure to endocrine-disrupting chemicals such as bisphenols and phthalates during pregnancy may disrupt fetal developmental programming and influence early-life growth. We hypothesized that prenatal bisphenol and phthalate exposure was associated with alterations in adiposity through 4 years. This associations might change over time. METHODS: Among 1091 mother-child pairs in a New York City birth cohort study, we measured maternal urinary concentrations of bisphenols and phthalates at three time points in pregnancy and child weight, height, and triceps and subscapular skinfold thickness at ages 1, 2, 3, and 4 years. We used linear mixed models to assess associations of prenatal individual and grouped bisphenols and phthalates with overall and time-point-specific adiposity outcomes from birth to 4 years. RESULTS: We observed associations of higher maternal urinary second trimester total bisphenol and bisphenol A concentrations in pregnancy and overall child weight between birth and 4 years only (Beta 0.10 (95 % confidence interval 0.04, 0.16) and 0.07 (0.02, 0.12) standard deviation score (SDS) change in weight per natural log increase in exposure), We reported an interaction of the exposures with time, and analysis showed associations of higher pregnancy-averaged mono-(2-carboxymethyl) phthalate with higher child weight at 3 years (0.14 (0.06, 0.22)), and of higher high-molecular-weight phthalate, di-2-ethylhexyl phthalate, mono-(2-ethyl-5-carboxypentyl) phthalate, mono-(2-carboxymethyl) phthalate, and mono-(2-ethylhexyl) phthalate with higher child weight at 4 years (0.16 (0.04, 0.28), 0.15 (0.03, 0.27), 0.19 (0.07, 0.31), 0.16 (0.07, 0.24), 0.11 (0.03, 0.19)). Higher pregnancy-averaged high-molecular-weight phthalate, di-2-ethylhexyl phthalate, mono-(2-ethyl-5-carboxypentyl) phthalate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, and mono-2(ethyl-5-oxohexyl) phthalate concentrations were associated with higher child BMI at 4 years (0.20 (0.05, 0.35), 0.20 (0.05, 0.35), 0.22 (0.06, 0.37), 0.20 (0.05, 0.34), 0.20 (0.05, 0.34)). For skinfold thicknesses, we observed no associations. DISCUSSION: This study contributes to the evidence suggesting associations of prenatal exposure to bisphenols and high-molecular-weight phthalates on childhood weight and BMI.


Benzhydryl Compounds , Maternal Exposure , Phenols , Phthalic Acids , Prenatal Exposure Delayed Effects , Humans , Female , Phthalic Acids/urine , Phenols/urine , New York City , Pregnancy , Benzhydryl Compounds/urine , Child, Preschool , Maternal Exposure/statistics & numerical data , Cohort Studies , Infant , Adult , Environmental Pollutants/urine , Male , Infant, Newborn , Endocrine Disruptors/urine , Child Development/drug effects
14.
Environ Int ; 187: 108727, 2024 May.
Article En | MEDLINE | ID: mdl-38735074

BACKGROUND: There is inconclusive evidence for an association between per- and polyfluoroalkyl substances (PFAS) and fetal growth. OBJECTIVES: We conducted a nation-wide register-based cohort study to assess the associations of the estimated maternal exposure to the sum (PFAS4) of perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorohexane sulfonic acid (PFHxS) with birthweight as well as risk of small- (SGA) and large-for-gestational-age (LGA). MATERIALS AND METHODS: We included all births in Sweden during 2012-2018 of mothers residing ≥ four years prior to partus in localities served by municipal drinking water where PFAS were measured in raw and drinking water. Using a one-compartment toxicokinetic model we estimated cumulative maternal blood levels of PFAS4 during pregnancy by linking residential history, municipal PFAS water concentration and year-specific background serum PFAS concentrations in Sweden. Individual birth outcomes and covariates were obtained via register linkage. Mean values and 95 % confidence intervals (CI) of ß coefficients and odds ratios (OR) were estimated by linear and logistic regressions, respectively. Quantile g-computation regression was conducted to assess the impact of PFAS4 mixture. RESULTS: Among the 248,804 singleton newborns included, no overall association was observed for PFAS4 and birthweight or SGA. However, an association was seen for LGA, multivariable-adjusted OR 1.08 (95% CI: 1.01-1.16) when comparing the highest PFAS4 quartile to the lowest. These associations remained for mixture effect approach where all PFAS, except for PFOA, contributed with a positive weight. DISCUSSIONS: We observed an association of the sum of PFAS4 - especially PFOS - with increased risk of LGA, but not with SGA or birthweight. The limitations linked to the exposure assessment still require caution in the interpretation.


Alkanesulfonic Acids , Birth Weight , Caprylates , Drinking Water , Fetal Development , Fluorocarbons , Maternal Exposure , Water Pollutants, Chemical , Fluorocarbons/blood , Fluorocarbons/analysis , Humans , Drinking Water/chemistry , Female , Sweden , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/blood , Pregnancy , Adult , Alkanesulfonic Acids/blood , Maternal Exposure/statistics & numerical data , Fetal Development/drug effects , Birth Weight/drug effects , Caprylates/blood , Infant, Newborn , Cohort Studies , Sulfonic Acids/blood , Registries , Male , Infant, Small for Gestational Age , Young Adult
15.
Ecotoxicol Environ Saf ; 278: 116393, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38714083

Micro(nano)plastic, as a new type of environmental pollutant, have become a potential threat to the life and health of various stages of biology. However, it is not yet clear whether they will affect brain development in the fetal stage. Therefore, this study aims to explore the potential effects of nanoplastics on the development of fetal rat brains. To assess the allocation of NPs (25 nm and 50 nm) in various regions of the fetal brain, pregnant rats were exposed to concentrations (50, 10, 2.5, and 0.5 mg/kg) of PS-NPs. Our results provided evidence of the transplacental transfer of PS-NPs to the fetal brain, with a prominent presence observed in several cerebral regions, notably the cerebellum, hippocampus, striatum, and prefrontal cortex. This distribution bias might be linked to the developmental sequence of each brain region. Additionally, we explored the influence of prenatal exposure on the myelin development of the cerebellum, given its the highest PS-NP accumulation in offspring. Compared with control rats, PS-NPs exposure caused a significant reduction in myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) expression, a decrease in myelin thickness, an increase in cell apoptosis, and a decline in the oligodendrocyte population. These effects gave rise to motor deficits. In conclusion, our results identified the specific distribution of NPs in the fetal brain following prenatal exposure and revealed that prenatal exposure to PS-NPs can suppress myelin formation in the cerebellum of the fetus.


Brain , Myelin Sheath , Polystyrenes , Animals , Female , Pregnancy , Brain/drug effects , Brain/embryology , Brain/metabolism , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Rats , Polystyrenes/toxicity , Environmental Pollutants/toxicity , Myelin Basic Protein/metabolism , Maternal Exposure , Nanoparticles/toxicity , Apoptosis/drug effects , Microplastics/toxicity , Rats, Sprague-Dawley , Maternal-Fetal Exchange , Fetus/drug effects
16.
Ecotoxicol Environ Saf ; 278: 116402, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38728940

Perfluorobutanesulfonic acid (PFBS), a short-chain alternative to perfluorooctanesulfonic acid (PFOS), is widely used in various products and is increasingly present in environmental media and human bodies. Recent epidemiological findings have raised concerns about its potential adverse health effects, although the specific toxic mechanism remains unclear. This study aimed to investigate the metabolic toxicity of gestational PFBS exposure in maternal rats. Pregnant Sprague Dawley (SD) rats were randomly assigned to three groups and administered either 3% starch gel (control), 5, or 50 mg/kg bw·d PFBS. Oral glucose tolerance tests (OGTT) and lipid profiles were measured, and integrated omics analysis (transcriptomics and non-targeted metabolomics) was employed to identify changes in genes and metabolites and their relationships with metabolic phenotypes. The results revealed that rats exposed to 50 mg/kg bw·d PFBS exhibited a significant decrease in 1-h glucose levels and the area under the curve (AUC) of OGTT compared with the starch group. Transcriptomics analysis indicated significant alterations in gene expression related to cytochrome P450 exogenous metabolism, glutathione metabolism, bile acid secretion, tumor pathways, and retinol metabolism. Differentially expressed metabolites (DEMs) were enriched in pathways such as pyruvate metabolism, the glucagon signaling pathway, central carbon metabolism in cancer, and the citric acid cycle. Co-enrichment analysis and pairwise correlation analysis among genes, metabolites, and outcomes identified several differentially expressed genes (DEGs), including Gstm1, Kit, Adcy1, Gck, Ppp1r3c, Ppp1r3d, and DEMs such as fumaric acid, L-lactic acid, 4-hydroxynonenal, and acetylvalerenolic acid. These DEGs and DEMs may play a role in the modulation of glucolipid metabolic pathways. In conclusion, our results suggest that gestational exposure to PFBS may induce molecular perturbations in glucose homeostasis. These findings provide insights into the potential mechanisms contributing to the heightened risk of abnormal glucose tolerance associated with PFBS exposure.


Fluorocarbons , Homeostasis , Rats, Sprague-Dawley , Animals , Female , Pregnancy , Fluorocarbons/toxicity , Rats , Homeostasis/drug effects , Glucose/metabolism , Sulfonic Acids/toxicity , Glucose Tolerance Test , Metabolomics , Environmental Pollutants/toxicity , Blood Glucose , Maternal Exposure/adverse effects , Multiomics
17.
Ecotoxicol Environ Saf ; 278: 116427, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38733803

BACKGROUND: Neighborhood walkability may influence maternal-fetal exposure to environmental hazards and maternal-fetal health (e.g., fetal growth restriction, reproductive toxicity). However, few studies have explored the association between neighborhood walkability and hormones in pregnant women. METHODS: We included 533 pregnant women from the Hangzhou Birth Cohort Study II (HBCS-II) with testosterone (TTE) and estradiol (E2) measured for analysis. Neighborhood walkability was evaluated by calculating a walkability index based on geo-coded addresses. Placental metals were measured using inductively coupled plasma mass spectrometry (ICP-MS). TTE and E2 levels in umbilical cord blood were measured using chemiluminescence microparticle immunoassay (CMIA). Linear regression model was used to estimate the relationship between the walkability index, placental metals, and sex steroid hormones. Effect modification was also assessed to estimate the effect of placental metals on the associations of neighborhood walkability with TTE and E2. RESULTS: Neighborhood walkability was significantly linked to increased E2 levels (P trend=0.023). Compared with participants at the first quintile (Q1) of walkability index, those at the third quintiles (Q3) had lower chromium (Cr) levels (ß = -0.212, 95% CI = -0.421 to -0.003). Arsenic (As), cobalt (Co), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), antimony (Sb), selenium (Se), tin (Sn), and vanadium (V) were linked to decreased TTE levels, and cadmium (Cd) was linked to increased TTE levels. No metal was significantly associated with E2 levels in trend analysis. In the analysis of effect modification, the associations of neighborhood walkability with TTE and E2 were significantly modified by Mn (P = 0.005) and Cu (P = 0.049) respectively. CONCLUSION: Neighborhood walkability could be a favorable factor for E2 production during pregnancy, which may be inhibited by maternal exposure to heavy metals.


Residence Characteristics , Walking , Humans , Female , Pregnancy , Adult , China , Cohort Studies , Estradiol/blood , Estradiol/analysis , Testosterone/blood , Fetal Blood/chemistry , Maternal Exposure/statistics & numerical data , Environmental Pollutants/analysis , Environmental Pollutants/blood , Metals/analysis , Metals/blood , Gonadal Steroid Hormones/blood , Gonadal Steroid Hormones/analysis , Placenta/chemistry , Placenta/drug effects , Metals, Heavy/analysis , Young Adult
18.
Rev Saude Publica ; 58: 19, 2024.
Article En | MEDLINE | ID: mdl-38747867

OBJECTIVE: To identify the prevalence of contamination by pesticides and their metabolites in the milk of lactating mothers in Latin America. METHODS: In this systematic review, the PubMed, LILACS, Embase, and Scopus databases were searched up to January 2022 to identify observational studies. The Mendeley software was used to manage these references. The risk of bias assessment was evaluated according to the checklist for prevalence studies and writing design, by the Prisma guidelines. RESULTS: This study retrieved 1835 references and analyzed 49 studies. 69.38% of the analyzed studies found a 100% prevalence of breast milk contamination by pesticides among their sample. Main pesticides include dichlorodiphenyltrichloroethane (DDT) and its isomers (75.51%), followed by the metabolite dichlorodiphenyldichloroethylene (DDE) (69.38%) and hexachlorocyclohexane (HCH) (46.93%). This study categorized most (65.30%) studies as having a low risk of bias. CONCLUSIONS: This review shows a high prevalence of pesticide contamination in the breast milk of Latin American women. Further investigations should be carried out to assess contamination levels in breast milk and the possible effects of these substances on maternal and child health.


Lactation , Milk, Human , Pesticides , Humans , Milk, Human/chemistry , Female , Latin America , Pesticides/analysis , Pesticide Residues/analysis , Prevalence , DDT/analysis , Maternal Exposure/adverse effects
19.
Environ Sci Technol ; 58(21): 9082-9090, 2024 May 28.
Article En | MEDLINE | ID: mdl-38743497

This prospective birth cohort study evaluated the association of exposure to PM2.5 (diameter ≤2.5 µm), PM1-2.5 (1-2.5 µm), and PM1 (≤1 µm) with maternal thyroid autoimmunity and function during early pregnancy. A total of 15,664 pregnant women were included at 6 to 13+6 gestation weeks in China from 2018 to 2020. Single-pollutant models using generalized linear models (GLMs) showed that each 10 µg/m3 increase in PM2.5 and PM1-2.5 was related with 6% (odds ratio [OR] = 1.06, 95% confidence interval [CI]: 1.01, 1.12) and 15% (OR = 1.15, 95% CI: 1.08, 1.22) increases in the risk of thyroid autoimmunity, respectively. The odds of thyroid autoimmunity significantly increased with each interquartile range increase in PM2.5 and PM1-2.5 exposure (P for trend <0.001). PM1 exposure was not significantly associated with thyroid autoimmunity. GLM with natural cubic splines demonstrated that increases in PM2.5 and PM1-2.5 exposure were associated with lower maternal FT4 levels, while a negative association between PM1 and FT4 levels was found when exposure exceeded 32.13 µg/m3. Only PM2.5 exposure was positively associated with thyrotropin (TSH) levels. Our findings suggest that high PM exposure is associated with maternal thyroid disruption during the early pregnancy.


Autoimmunity , Particulate Matter , Thyroid Gland , Humans , Female , Pregnancy , Adult , China , Prospective Studies , Air Pollutants , Maternal Exposure
20.
Turk J Med Sci ; 54(1): 291-300, 2024.
Article En | MEDLINE | ID: mdl-38812630

Background/aim: Congenital anomalies of the kidney and urinary tract(CAKUT) are the leading causes of childhood chronic kidney disease (CKD). The etiology of most of the cases is thought to be multifactorial. In this study, risk factors for CAKUT and the effect of mobile phone-related electromagnetic field (EMF) exposure during pregnancy were investigated. Materials and methods: Fifty-seven cases and 57 healthy controls under 2 years of age were included and their mothers were subjected to a questionnaire. Groups were compared for parents' demographics, pregestational (chronic disease, body mass index, use of the folic acid supplements) and antenatal variables (gestational disease, weight gain during pregnancy,) and exposures during pregnancy. To assess mobile phone-related radiation exposure, all participants were asked about their daily call time, the proximity of the phone when not in use, and the models of their mobile phones. The specific absorption rate (SAR) of the mobile phones and the effective SAR value (SAR × call time) as an indicator of EMF exposure were recorded. Results: Excess weight gain according to BMI during pregnancy was related to an increased risk of CAKUT (p=0.012). Folic acid use before pregnancy was protective for CAKUT (p = 0.028). The call time of mothers of the CAKUT group was significantly longer than the control (p = 0.001). An association was observed between higher effective SAR values and increased risk of CAKUT (p = 0.03). However the proximity of the mobile phone to the mother's body when not in use was not found as a risk factor. Conclusion: The etiology of CAKUT is multifactorial. Our results suggest that prolonged phone call and higher EMF exposure during pregnancy increases the risk of CAKUT in the offspring.


Cell Phone , Electromagnetic Fields , Humans , Female , Pregnancy , Risk Factors , Electromagnetic Fields/adverse effects , Adult , Case-Control Studies , Urogenital Abnormalities/epidemiology , Urogenital Abnormalities/etiology , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/epidemiology , Vesico-Ureteral Reflux
...