Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.297
Filter
1.
Cells ; 13(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38995012

ABSTRACT

Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are aggressive sarcomas that can arise both sporadically and in patients with the genetic syndrome Neurofibromatosis type 1 (NF1). Prognosis is dismal, as large dimensions, risk of relapse, and anatomical localization make surgery poorly effective, and no therapy is known. Hence, the identification of MPNST molecular features that could be hit in an efficient and selective way is mandatory to envision treatment options. Here, we find that MPNSTs express high levels of the glycolytic enzyme Hexokinase 2 (HK2), which is known to shield cancer cells from noxious stimuli when it localizes at MAMs (mitochondria-associated membranes), contact sites between mitochondria and endoplasmic reticulum. A HK2-targeting peptide that dislodges HK2 from MAMs rapidly induces a massive death of MPNST cells. After identifying different matrix metalloproteases (MMPs) expressed in the MPNST microenvironment, we have designed HK2-targeting peptide variants that harbor cleavage sites for these MMPs, making such peptides activatable in the proximity of cancer cells. We find that the peptide carrying the MMP2/9 cleavage site is the most effective, both in inhibiting the in vitro tumorigenicity of MPNST cells and in hampering their growth in mice. Our data indicate that detaching HK2 from MAMs could pave the way for a novel anti-MPNST therapeutic strategy, which could be flexibly adapted to the protease expression features of the tumor microenvironment.


Subject(s)
Hexokinase , Peptides , Hexokinase/metabolism , Hexokinase/genetics , Humans , Animals , Cell Line, Tumor , Peptides/metabolism , Peptides/pharmacology , Peptides/chemistry , Mice , Nerve Sheath Neoplasms/pathology , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Matrix Metalloproteinase 2/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Tumor Microenvironment
2.
BMC Cardiovasc Disord ; 24(1): 354, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992615

ABSTRACT

BACKGROUND: Hyperlipidemia damages vascular wall and serves as a foundation for diseases such as atherosclerosis, hypertension and stiffness. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is implicated in vascular dysfunction associated with hyperlipidemia-induced vascular injury. Sodium tanshinone IIA sulfonate (STS), a well-established cardiovascular protective drug with recognized anti-inflammatory, antioxidant, and vasodilatory properties, is yet to be thoroughly investigated for its impact on vascular relaxant imbalance induced by hyperlipidemia. METHODS: In this study, we treated ApoE-knockout (ApoE-/-) mouse with STS and assessed the activation of the NLRP3 inflammasome, expression of MMP2/9, integrity of elastic fibers, and vascular constriction and relaxation. RESULTS: Our findings reveal that STS intervention effectively preserves elastic fibers, significantly restores aortic relaxation function in ApoE-/- mice, and reduces their excessive constriction. Furthermore, STS inhibits the phosphorylation of spleen tyrosine kinase (SYK), suppresses NLRP3 inflammasome activation, and reduces MMP2/9 expression. CONCLUSIONS: These results demonstrate that STS protects vascular relaxation against hyperlipidemia-induced damage through modulation of the SYK-NLRP3 inflammasome-MMP2/9 pathway. This research provides novel insights into the mechanisms underlying vascular relaxation impairment in a hyperlipidemic environment and uncovers a unique mechanism by which STS preserves vascular relaxation, offering valuable foundational research evidence for its clinical application in promoting vascular health.


Subject(s)
Disease Models, Animal , Inflammasomes , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Mice, Inbred C57BL , Mice, Knockout, ApoE , NLR Family, Pyrin Domain-Containing 3 Protein , Phenanthrenes , Signal Transduction , Syk Kinase , Vasodilation , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Syk Kinase/metabolism , Matrix Metalloproteinase 2/metabolism , Phenanthrenes/pharmacology , Male , Matrix Metalloproteinase 9/metabolism , Vasodilation/drug effects , Hyperlipidemias/drug therapy , Hyperlipidemias/physiopathology , Vasodilator Agents/pharmacology , Phosphorylation , Mice , Aorta/drug effects , Aorta/physiopathology , Aorta/metabolism , Aorta/enzymology , Apolipoproteins E
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1209-1216, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977352

ABSTRACT

OBJECTIVE: To investigate the expression of Nanog and its regulatory relationship with MMP-2/MMP-9 proteins in esophageal squamous cell carcinoma (ESCC). METHODS: We detected Nanog and MMP-2/MMP-9 protein expressions in 127 ESCC tissues and 82 adjacent normal tissues using immunohistochemistry and explored their correlations with the clinicopathological parameters and prognosis of the patients. GEO database was utilized to analyze the pathways enriched with the stemness-related molecules including Nanog, and TIMER online tool was used to analyze the correlations among TßR1, MMP-2, and MMP-9 in esophageal cancer. RESULTS: Nanog and MMP-2/MMP-9 proteins were significantly upregulated in ESCC tissues and positively intercorrelated. Their expression levels were closely correlated with infiltration depth and lymph node metastasis of ESCC but not with age, gender, or tumor differentiation. The patients with high expressions of Nanog and MMP-2/MMP-9 had significantly shorter survival time. Bioinformatics analysis showed enrichment of stemness-associated molecules in the TGF-ß signaling pathway, and the expressions of MMP-2/MMP-9 and TßR1 were positively correlated. In cultured ESCC cells, Nanog knockdown significantly decreased the expression of TßR1, p-Smad2/3, MMP-2, and MMP-9 and strongly inhibited cell migration. CONCLUSION: The high expressions of Nanog, MMP-2, and MMP-9, which are positively correlated, are closely related with invasion depth, lymph node metastasis, and prognosis of ESCC. Nanog regulates the expressions of MMP-2/MMP-9 proteins through the TGF-ß signaling pathway, and its high expression promotes migration of ESCC cells.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Lymphatic Metastasis , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Nanog Homeobox Protein , Neoplasm Invasiveness , Signal Transduction , Transforming Growth Factor beta , Humans , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Transforming Growth Factor beta/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 2/metabolism , Prognosis , Male , Female
4.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2991-3001, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041159

ABSTRACT

Neuropathic pain(NP) is difficult to be treated since it has similar phenotypes but different pathogenesis in different pathological stages. Targeted intervention of the core regulatory elements at different pathological stages of NP has become a new direction of drug research and development in recent years and provides the possibility for the treatment of NP. The Mongolian medicine Naru-3(NR-3) is effective in the treatment of sciatica and trigeminal neuralgia, the mechanisms of which remain unknown. On the basis of the previous study of the priming stage, this study established the mouse model of spinal nerve ligation(SNL) and measured the changes of pain thresholds by behavioral tests. The network analysis, Western blot, immunofluorescence assay, ELISA, and agonist/antagonist were employed to decipher the mechanism of NR-3 in the treatment of NP in the maintenance stage. The results showed that NR-3 increased the mechanical and thermal pain thresholds of SNL mice, while it had no significant effect on the basal pain threshold of normal mice. NR-3 may relieve the pain in the maintenance stage of NP by blocking the matrix metalloproteinase 2(MMP2)/interleukin-1ß(IL-1ß) pathway in the astrocytes of the dorsal root ganglion(DRG) and spinal cord. The findings have enriched the biological connotation of NR-3 in the treatment of the maintenance stage of NP and provide reference for the rational use of this medicine in clinical practice.


Subject(s)
Astrocytes , Medicine, Mongolian Traditional , Neuralgia , Animals , Neuralgia/drug therapy , Neuralgia/metabolism , Mice , Astrocytes/drug effects , Astrocytes/metabolism , Male , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Neuroinflammatory Diseases/drug therapy , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Disease Models, Animal
5.
Photodermatol Photoimmunol Photomed ; 40(4): e12990, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031566

ABSTRACT

BACKGROUND: Wound healing is a multistep process involving coordinated responses of a variety of cell types, cytokines, growth factors, and extracellular matrix (ECM) components leading to the physiological restoration of tissue integrity. Photobiomodulation therapy (PBMT) has been highlighted as an approach to improve the healing process, nonetheless at the molecular level, the effects of PBMT are not entirely understood. AIM: To systematically review publications that investigated gene expression after PBMT during in vivo skin repair. METHODS: An electronic search was undertaken in Medline Ovid (Wolters Kluwer), PubMed (National Library of Medicine), Web of Science (Thomson Reuters), Scopus (Elsevier), Embase, and LILACS databases. The search strategy was conducted from the terms: low-level light therapy, gene expression, and wound healing and their synonyms. The databases were consulted in December 2023 and no publication year limit was used. RESULTS: Eleven studies were included in this review and the expression of 186 genes was evaluated. PBMT modified the expression of several targets genes studied, such as down-regulation of genes related to extracellular matrix proteases (MMP2 and MMP9) and pro-inflammatory cytokines (IL10 and IL6) and up-regulation of DNMT3A and BFGF. CONCLUSION: This review demonstrates that PBMT is capable of regulating gene expression during wound healing. Most evidence showed a positive impact of PBMT in regulating genes linked to inflammatory cytokines improving skin wound healing. Yet, the effects of PBMT in genes involved in other mechanisms still need to be better understood.


Subject(s)
Low-Level Light Therapy , Skin , Wound Healing , Animals , Humans , Cytokines/metabolism , Gene Expression/radiation effects , Gene Expression Regulation/radiation effects , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Skin/metabolism , Skin/radiation effects , Skin/pathology , Skin/injuries , Wound Healing/radiation effects
6.
Medicine (Baltimore) ; 103(27): e38362, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968481

ABSTRACT

Laryngeal carcinoma (LC) is reported to have a higher incidence rate among all types of head and neck cancers around the globe. Mechanisms resulting in the pathogenesis of LC are complicated due to involvement of invasion and metastasis and there is a need to understand this complicated multistep process. Numerous molecules including matrix metalloproteinases (MMPs) are involved in regulating metastatic mechanisms. Furthermore, activation and expression of different classes of MMPs have been observed in multiple pathological and physiological events including inflammation, invasion, and metastasis. Among all members of MMPs, matrix metalloproteinases-2 (MMP-2), and matrix metalloproteinases-9 (MMP-9) have been frequently reported to correlate with tumor pathogenesis. The present study is designed to check the involvement of MMP-2 and MMP-9 in LC pathogenesis. 184 laryngeal tumor samples along with adjacent uninvolved healthy sections were collected to check the expression deregulation of the above-mentioned gene in LC using real-time PCR and immunohistochemistry (IHC). Real-time PCR and IHC analyses showed the significant upregulation of MMP-2 (P < .0001) and MMP-9 (P < .0001) genes in laryngeal tumors compared to controls. Spearman correlation showed the positive correlation of expression deregulation of selected MMPs with advanced TNM stage [MMP-2, (P < .0001); MMP-9, P < .0001] and smoking status [MMP-2 (P < .0001); MMP-9 P < .0001] in laryngeal pathogenesis. Receiver operating curve (ROC) analysis showed the good diagnostic/prognostic value of said markers in laryngeal cancer patients. The present study showed that significant upregulation of selected MMPs was found associated with an increased risk of laryngeal cancer and can act as good diagnostic markers for the detection of said disease.


Subject(s)
Laryngeal Neoplasms , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Humans , Laryngeal Neoplasms/pathology , Laryngeal Neoplasms/genetics , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Retrospective Studies , Male , Middle Aged , Female , Aged , Adult , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Neoplasm Staging , Immunohistochemistry , Real-Time Polymerase Chain Reaction , Gene Expression Regulation, Neoplastic , Up-Regulation
7.
Exp Dermatol ; 33(6): e15092, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888196

ABSTRACT

Secreted protein acidic and cysteine rich/osteonectin, cwcv and kazal-like domain proteoglycan 2 (SPOCK2) is a protein that regulates cell differentiation and growth. Recent studies have reported that SPOCK2 plays important roles in the progression of various human cancers; however, the role of SPOCK2 in melanoma remains unknown. Therefore, this study investigated the roles of SPOCK2 and the related mechanisms in melanoma progression. To evaluate the clinical significance of SPOCK2 expression in patients with melanoma, we analysed the association between SPOCK2 expression and its prognostic value for patients with melanoma using systematic multiomic analysis. Subsequently, to investigate the roles of Spock2 in melanoma progression in vitro and in vivo, we knocked down Spock2 in the B16F10 melanoma cell line. High SPOCK2 levels were positively associated with good prognosis and long survival rate of patients with melanoma. Spock2 knockdown promoted melanoma cell proliferation by inducing the cell cycle and inhibiting apoptosis. Moreover, Spock2 downregulation significantly increased cell migration and invasion by upregulating MMP2 and MT1-MMP. The increased cell proliferation and migration were inhibited by MAPK inhibitor, and ERK phosphorylation was considerably enhanced in Spock2 knockdown cells. Therefore, Spock2 could function as a tumour suppressor gene to regulate melanoma progression by regulating the MAPK/ERK signalling pathway. Additionally, Spock2 knockdown cell injection induced considerable tumour growth and lung metastasis in C57BL6 mice compared to that in the control group. Our findings suggest that SPOCK2 plays crucial roles in malignant progression of melanoma and functions as a novel therapeutic target of melanoma.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Disease Progression , Melanoma , Skin Neoplasms , Animals , Female , Humans , Male , Mice , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cell Cycle , Cell Line, Tumor , Gene Knockdown Techniques , MAP Kinase Signaling System , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Mice, Inbred C57BL , Neoplasm Invasiveness , Prognosis , Proteoglycans/metabolism , Proteoglycans/genetics , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism
8.
Arch Oral Biol ; 165: 106028, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908074

ABSTRACT

OBJECTIVE: This study was designed to investigate the biological role and the reaction mechanism of Tweety family member 3 (TTYH3) in oral squamous cell carcinoma (OSCC). DESIGN: The mRNA and protein expressions of TTYH3 were assessed with RT-qPCR and western blot. After silencing TTYH3 expression, the proliferation of OSCC cells were detected using cell counting kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) staining and colony formation assay. Cell migration and invasion were detected using wound healing and transwell. Gelatin zymography protease assay was used to detect matrix metalloproteinase-2 (MMP2) and matrix metalloproteinase-2 (MMP9) activity and western blot was used to detect the expressions of proteins associated with proliferation and epithelial-mesenchymal transition (EMT). The mRNA expression of TTYH3 in THP-1-derived macrophage was detected using real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). The number of CD86-positive cells and CD206-positive cells was detected using immunofluorescence assay. RT-qPCR was used to detect the expressions of M2 markers arginase 1 (ARG1), chitinase-like 3 (YM1) and mannose receptor C-type 1 (MRC1). RESULTS: In this study, it was found that TTYH3 expression was upregulated in OSCC cell lines and TTYH3 knockdown could inhibit the proliferation, migration, invasion and EMT process in OSCC via suppressing M2 polarization of tumor-associated macrophages. CONCLUSIONS: Collectively, TTYH3 facilitated the progression of OSCC through the regulation of tumor-associated macrophages polarization.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Mouth Neoplasms , Tumor-Associated Macrophages , Humans , Blotting, Western , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Disease Progression , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Real-Time Polymerase Chain Reaction , Tumor-Associated Macrophages/metabolism
9.
J Colloid Interface Sci ; 672: 350-362, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850862

ABSTRACT

To overcome the biological barriers in the journey of systemic gene delivery, a multifaceted genomic synthetic nanomedicine was elaborated and strategically equipped with a multiple of intriguing responsiveness. Particularly, core-shell plasmid DNA condensates were created based on polyionic complexation with block copolymer of polyethylene glycol (PEG)-polylysine (PLys), namely, the nanoscaled PLys&pDNA nanoparticle tethered with the biocompatible PEG surroundings. Furthermore, redox-reversible disulfide crosslinking was introduced into PLys&pDNA nanoparticle to accomplish adequate structural stabilities, and thermal-responsive polypropylacrylamide (PNIPAM) was introduced as the secondary intermediate surroundings onto the pre-formulated PLys&pDNA nanoparticle with the aim of preventing the potential enzymatic degradation from the environmental nucleases. Hence, hundreds of times prolonged survival and retention was determined in pertinent to the blood circulation properties. Additionally, the installation of a guide ligand at the distal end of PEG segments was proposed to encourage selective tumor uptake. A linear peptide of GPLGVRG, which is selectively susceptible to digestion by the tumor-enriched matrix metalloproteinase 2 (MMP-2), was used as the linkage between the shell and core. This peptide has been shown to detach the bio-inert PEGylation, resulting in further facilitated cell endocytosis and intracellular trafficking activities. Hence, the precisely defined synthetic nanomedicine, which exhibits desirable characteristics, efficient expression of the therapeutic gene in the affected cells, and contributed to potent therapeutic efficacy in systemic treatment of intractable tumors by encapsulating the anti-angiogenic gene.


Subject(s)
Nanomedicine , Nanoparticles , Polyethylene Glycols , Polylysine , Polyethylene Glycols/chemistry , Humans , Polylysine/chemistry , Nanoparticles/chemistry , Animals , Plasmids , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mice , DNA/chemistry , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Cell Line, Tumor , Particle Size , Acrylic Resins/chemistry , Neoplasms/drug therapy , Surface Properties , Gene Transfer Techniques
10.
Nat Commun ; 15(1): 5035, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866788

ABSTRACT

Radio-immunotherapy exploits the immunostimulatory features of ionizing radiation (IR) to enhance antitumor effects and offers emerging opportunities for treating invasive tumor indications such as melanoma. However, insufficient dose deposition and immunosuppressive microenvironment (TME) of solid tumors limit its efficacy. Here we report a programmable sequential therapeutic strategy based on multifunctional fusogenic liposomes (Lip@AUR-ACP-aptPD-L1) to overcome the intrinsic radio-immunotherapeutic resistance of solid tumors. Specifically, fusogenic liposomes are loaded with gold-containing Auranofin (AUR) and inserted with multivariate-gated aptamer assemblies (ACP) and PD-L1 aptamers in the lipid membrane, potentiating melanoma-targeted AUR delivery while transferring ACP onto cell surface through selective membrane fusion. AUR amplifies IR-induced immunogenic death of melanoma cells to release antigens and damage-associated molecular patterns such as adenosine triphosphate (ATP) for triggering adaptive antitumor immunity. AUR-sensitized radiotherapy also upregulates matrix metalloproteinase-2 (MMP-2) expression that combined with released ATP to activate ACP through an "and" logic operation-like process (AND-gate), thus triggering the in-situ release of engineered cytosine-phosphate-guanine aptamer-based immunoadjuvants (eCpG) for stimulating dendritic cell-mediated T cell priming. Furthermore, AUR inhibits tumor-intrinsic vascular endothelial growth factor signaling to suppress infiltration of immunosuppressive cells for fostering an anti-tumorigenic TME. This study offers an approach for solid tumor treatment in the clinics.


Subject(s)
Aptamers, Nucleotide , Immunotherapy , Liposomes , Melanoma , Tumor Microenvironment , Liposomes/chemistry , Aptamers, Nucleotide/chemistry , Animals , Mice , Cell Line, Tumor , Immunotherapy/methods , Melanoma/therapy , Melanoma/immunology , Humans , Tumor Microenvironment/drug effects , Matrix Metalloproteinase 2/metabolism , Gold/chemistry , Mice, Inbred C57BL , Female , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Adenosine Triphosphate/metabolism
11.
PLoS One ; 19(6): e0299389, 2024.
Article in English | MEDLINE | ID: mdl-38870184

ABSTRACT

Renal fibrosis is the most common pathway in progressive kidney diseases. The unilateral ureteral obstruction (UUO) model is used to induce progressive renal fibrosis. We evaluated the effects of irisin on renal interstitial fibrosis in UUO mice. The GSE121190, GSE36496, GSE42303, and GSE96101 datasets were downloaded from the Gene Expression Omnibus (GEO) database. In total, 656 differentially expressed genes (DEGs) were identified in normal and UUO mouse renal samples. Periostin and matrix metalloproteinase-2 (MMP-2) were selected to evaluate the effect of irisin on renal fibrosis in UUO mice. In UUO mice, irisin ameliorated renal function, decreased the expression of periostin and MMP-2, and attenuated epithelial-mesenchymal transition and extracellular matrix deposition in renal tissues. In HK-2 cells, irisin treatment markedly attenuated TGF-ß1-induced expression of periostin and MMP-2. Irisin treatment also inhibited TGF-ß1-induced epithelial-mesenchymal transition, extracellular matrix formation, and inflammatory responses. These protective effects of irisin were abolished by the overexpression of periostin and MMP-2. In summary, irisin treatment can improve UUO-induced renal interstitial fibrosis through the TGF-ß1/periostin/MMP-2 signaling pathway, suggesting that irisin may be used for the treatment of renal interstitial fibrosis.


Subject(s)
Cell Adhesion Molecules , Epithelial-Mesenchymal Transition , Fibronectins , Fibrosis , Kidney Diseases , Matrix Metalloproteinase 2 , Signal Transduction , Transforming Growth Factor beta1 , Ureteral Obstruction , Animals , Ureteral Obstruction/complications , Ureteral Obstruction/pathology , Ureteral Obstruction/metabolism , Ureteral Obstruction/drug therapy , Fibronectins/metabolism , Mice , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Epithelial-Mesenchymal Transition/drug effects , Male , Humans , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/etiology , Kidney Diseases/drug therapy , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Mice, Inbred C57BL , Cell Line , Disease Models, Animal , Periostin
12.
Sci Rep ; 14(1): 12716, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830933

ABSTRACT

To explore the molecular pathogenesis of pulmonary arterial hypertension (PAH) and identify potential therapeutic targets, we performed transcriptome sequencing of lung tissue from mice with hypoxia-induced pulmonary hypertension. Our Gene Ontology analysis revealed that "extracellular matrix organization" ranked high in the biological process category, and matrix metallopeptidases (MMPs) and other proteases also played important roles in it. Moreover, compared with those in the normoxia group, we confirmed that MMPs expression was upregulated in the hypoxia group, while the hub gene Timp1 was downregulated. Crocin, a natural MMP inhibitor, was found to reduce inflammation, decrease MMPs levels, increase Timp1 expression levels, and attenuate hypoxia-induced pulmonary hypertension in mice. In addition, analysis of the cell distribution of MMPs and Timp1 in the human lung cell atlas using single-cell RNAseq datasets revealed that MMPs and Timp1 are mainly expressed in a population of fibroblasts. Moreover, in vitro experiments revealed that crocin significantly inhibited myofibroblast proliferation, migration, and extracellular matrix deposition. Furthermore, we demonstrated that crocin inhibited TGF-ß1-induced fibroblast activation and regulated the pulmonary arterial fibroblast MMP2/TIMP1 balance by inhibiting the TGF-ß1/Smad3 signaling pathway. In summary, our results indicate that crocin attenuates hypoxia-induced pulmonary hypertension in mice by inhibiting TGF-ß1-induced myofibroblast activation.


Subject(s)
Carotenoids , Hypertension, Pulmonary , Hypoxia , Matrix Metalloproteinase 2 , Tissue Inhibitor of Metalloproteinase-1 , Animals , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/genetics , Mice , Hypoxia/metabolism , Hypoxia/complications , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Carotenoids/pharmacology , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Male , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Disease Models, Animal , Cell Proliferation/drug effects , Mice, Inbred C57BL , Smad3 Protein/metabolism , Cell Movement/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects
13.
Eur J Med Chem ; 274: 116563, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38843586

ABSTRACT

Chronic myeloid leukemia (CML) is a global issue and the available drugs such as tyrosine kinase inhibitors (TKIs) comprise various toxic effects as well as resistance and cross-resistance. Therefore, novel molecules targeting specific enzymes may unravel a new direction in antileukemic drug discovery. In this context, targeting gelatinases (MMP-2 and MMP-9) can be an alternative option for the development of novel molecules effective against CML. In this article, some D(-)glutamine derivatives were synthesized and evaluated through cell-based antileukemic assays and tested against gelatinases. The lead compounds, i.e., benzyl analogs exerted the most promising antileukemic potential showing nontoxicity in normal cell line including efficacious gelatinase inhibition. Both these lead molecules yielded effective apoptosis and displayed marked reductions in MMP-2 expression in the K562 cell line. Not only that, but both of them also revealed effective antiangiogenic efficacy. Importantly, the most potent MMP-2 inhibitor, i.e., benzyl derivative of p-tosyl D(-)glutamine disclosed stable binding interaction at the MMP-2 active site correlating with the highly effective MMP-2 inhibitory activity. Therefore, such D(-)glutamine derivatives might be explored further as promising MMP-2 inhibitors with efficacious antileukemic profiles for the treatment of CML in the future.


Subject(s)
Antineoplastic Agents , Drug Screening Assays, Antitumor , Glutamine , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Matrix Metalloproteinase 2 , Matrix Metalloproteinase Inhibitors , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Matrix Metalloproteinase 2/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Glutamine/chemistry , Glutamine/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Matrix Metalloproteinase Inhibitors/chemical synthesis , Matrix Metalloproteinase Inhibitors/chemistry , Structure-Activity Relationship , Molecular Structure , Cell Proliferation/drug effects , K562 Cells , Dose-Response Relationship, Drug , Molecular Docking Simulation , Apoptosis/drug effects
14.
Int J Med Sci ; 21(8): 1414-1427, 2024.
Article in English | MEDLINE | ID: mdl-38903916

ABSTRACT

Glutamine (Gln), known as the most abundant free amino acid, is widely spread in human body. In this study, we demonstrated the protective effects of glutamine against mouse abdominal aortic aneurysm (AAA) induced by both angiotensin II (AngII) and calcium phosphate (Ca3(PO4)2) in vivo, which was characterized with lower incidence of mouse AAA. Moreover, histomorphological staining visually presented more intact elastic fiber and less collagen deposition in abdominal aortas of mice treated by glutamine. Further, we found glutamine inhibited the excessive production of reactive oxide species (ROS), activity of matrix metalloproteinase (MMP), M1 macrophage activation, and apoptosis of vascular smooth muscle cells (VSMCs) in suprarenal abdominal aortas of mice, what's more, the high expressions of MMP-2 protein, MMP-9 protein, pro-apoptotic proteins, and IL-6 as well as TNF-α in protein and mRNA levels in cells treated by AngII were down-regulated by glutamine. Collectively, these results revealed that glutamine protected against mouse AAA through inhibiting apoptosis of VSMCs, M1 macrophage activation, oxidative stress, and extracellular matrix degradation.


Subject(s)
Angiotensin II , Aortic Aneurysm, Abdominal , Apoptosis , Glutamine , Macrophage Activation , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Oxidative Stress , Animals , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/prevention & control , Aortic Aneurysm, Abdominal/metabolism , Apoptosis/drug effects , Mice , Glutamine/pharmacology , Angiotensin II/pharmacology , Macrophage Activation/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/cytology , Humans , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Disease Models, Animal , Male , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Aorta, Abdominal/pathology , Aorta, Abdominal/drug effects , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Calcium Phosphates
15.
Chem Biol Interact ; 398: 111115, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38908811

ABSTRACT

In the present study, the effect of sulfonamide-chalcone 185 (SSC185) was investigated against B16-F10 metastatic melanoma cells aggressive actions, besides migration and adhesion processes, by in silico and in vitro assays. In silico studies were used to characterize the pharmacokinetic profile and possible targets of SSC185, using the pkCSM web server, and docking simulations with AutoDock Tools. Furthermore, the antimetastatic effect of SSC185 was investigated by in vitro experiments using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide), colony, scratch, and cell adhesion assays, and atomic force microscopy (AFM). The molecular docking results show better affinity of SSC185 with the metalloproteinases-2 (MMP-2) and α5ß1 integrin. SSC185 effectively restricts the formation of colonies, migration, and adhesion of B16-F10 metastatic melanoma cells. Through the AFM images changes in cells morphology was identified, with a decrease in the filopodia and increase in the average cellular roughness. The results obtained demonstrate the potential of this molecule in inhibit the primordial steps for metastasis, which is responsible for a worse prognosis of late stage cancer, being the main cause of morbidity among cancer patients.


Subject(s)
Cell Adhesion , Cell Movement , Chalcone , Molecular Docking Simulation , Sulfonamides , Cell Movement/drug effects , Cell Adhesion/drug effects , Sulfonamides/pharmacology , Sulfonamides/chemistry , Mice , Animals , Cell Line, Tumor , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/analogs & derivatives , Matrix Metalloproteinase 2/metabolism , Melanoma, Experimental/pathology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Microscopy, Atomic Force , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Chalcones/pharmacology , Chalcones/chemistry , Humans
16.
Life Sci ; 351: 122819, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38857651

ABSTRACT

AIMS: Our aim was to evaluate whether the hydrogen sulfide (H2S) donor, 4-carboxyphenyl-isothiocyanate (4-CPI), exerts cardioprotective effect in the two kidney- one clip (2K-1C) rats through oxidative stress and MMP-2 activity attenuation and compare it with the classical H2S donor, Sodium Hydrosulfide (NaHS). MATERIALS AND METHODS: Renovascular hypertension (two kidneys-one clip; 2K-1C) was surgically induced in male Wistar rats. After two weeks, normotensive (2K) and hypertensive rats were intraperitoneally treated with vehicle (0.6 % dimethyl sulfoxide), NaHS (0.24 mg/Kg/day) or with 4-CPI (0.24 mg/Kg/day), for more 4 weeks. Systolic blood pressure (SBP) was evaluated weekly by tail-cuff plethysmography. Heart function was assessed by using the Millar catheter. Cardiac hypertrophy and fibrosis were evaluated by hematoxylin and eosin, and Picrosirius Red staining, respectively. The H2S was analyzed using WSP-1 fluorimetry and the cardiac oxidative stress was measured by lucigenin chemiluminescence and Amplex Red. MMP-2 activity was measured by in-gel gelatin or in situ zymography assays. Nox1, gp91phox, MMP-2 and the phospho-p65 subunit (Serine 279) nuclear factor kappa B (NF-κB) levels were evaluated by Western blotting. KEY FINDINGS: 4-CPI reduced blood pressure in hypertensive rats, decreased cardiac remodeling and promoted cardioprotection through the enhancement of cardiac H2S levels. An attenuation of oxidative stress, with inactivation of the p65-NF-κB/MMP-2 axis was similarly observed after NaHS or 4-CPI treatment in 2K-1C hypertension. SIGNIFICANCE: H2S is a mediator that promotes cardioprotective effects and decreases blood pressure, and 4-CPI seems to be a good candidate to reverse the maladaptive remodeling and cardiac dysfunction in renovascular hypertension.


Subject(s)
Blood Pressure , Hydrogen Sulfide , Matrix Metalloproteinase 2 , NF-kappa B , Oxidative Stress , Animals , Male , Rats , Blood Pressure/drug effects , Cardiotonic Agents/pharmacology , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Hypertension/drug therapy , Hypertension/metabolism , Hypertension, Renovascular/drug therapy , Hypertension, Renovascular/metabolism , Hypertension, Renovascular/physiopathology , Isothiocyanates/pharmacology , Matrix Metalloproteinase 2/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Rats, Wistar , Sulfides/pharmacology
17.
Biomed Pharmacother ; 176: 116927, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870633

ABSTRACT

Echinops plants have received great attention for the treatment of many diseases due to pharmacological properties such as their antidiabetic, antioxidant, and anti-inflammatory characteristics. The major purpose of the present study was to investigate the cardioprotective benefits of Echinops cephalotes (Ech) against myocardial ischemia-reperfusion (MI/R) injury. Male Wistar rats were randomly allocated to three groups: sham, MI, and MI + Ech. The left coronary artery (LAD) was blocked for 30 minutes to induce MI. In the treatment group, rats were given 150 mg/kg/day of Ech extract for 28 days. Aqueous extracts were made from Echinops plants. To study heart function, fibrosis, cardiac damage indicators, and oxidative stress factors, echocardiography, Masson's trichrome staining, and biochemical tests were used. The expression of matrix metalloproteinase 2 and 9 (MMP2 and MMP-9) and tissue inhibitor of metalloproteinase (TIMP) was determined using Western blotting. Tissue damage was assessed using hematoxylin and eosin staining. MI group exhibited significantly reduced ejection fraction (EF) and fractional shortening (FS), enhanced levels of lactate dehydrogenase (LDH), creatine kinase MB (CK-MB), cardiac Troponin I (cTnI), and malondialdehyde (MDA), as well as a decrease in the Glutathione (GSH) tissue content, reduced activity of superoxide dismutase (SOD), increasing fibrosis, upregulations of MMP-2 and MMP-9, and reduction of TIMP compared to the sham group. The findings suggest that Ech in particular, could be a promising therapeutic agent to reduce the damage in MI by targeting oxidative stress and modulating the activities of matrix metalloproteinases and their tissue inhibitors.


Subject(s)
Cardiotonic Agents , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Myocardial Reperfusion Injury , Oxidative Stress , Plant Extracts , Rats, Wistar , Animals , Male , Oxidative Stress/drug effects , Matrix Metalloproteinase 2/metabolism , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Matrix Metalloproteinase 9/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/metabolism , Cardiotonic Agents/pharmacology , Cardiotonic Agents/isolation & purification , Rats , Myocardium/pathology , Myocardium/metabolism , Tissue Inhibitor of Metalloproteinases/metabolism , Fibrosis , Water/chemistry , Antioxidants/pharmacology
18.
Sci Rep ; 14(1): 13612, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871929

ABSTRACT

One of the most prevalent disorders of the urinary system is urinary tract infection, which is mostly brought on by uropathogenic Escherichia coli (UPEC). The objective of this study was to evaluate the regenerative therapeutic and antibacterial efficacy of PRP for induced bacterial cystitis in dogs in comparison to conventional antibiotics. 25 healthy male mongrel dogs were divided into 5 groups (n = 5). Control negative group that received neither induced infection nor treatments. 20 dogs were randomized into 4 groups after two weeks of induction of UPEC cystitis into; Group 1 (control positive; G1) received weekly intravesicular instillation of sodium chloride 0.9%. Group 2 (syst/PRP; G2), treated with both systemic intramuscular antibiotic and weekly intravesicular instillation of PRP; Group 3 (PRP; G3), treated with weekly intravesicular instillation of PRP, and Group 4 (syst; G4) treated with an intramuscular systemic antibiotic. Animals were subjected to weekly clinical, ultrasonographic evaluation, urinary microbiological analysis, and redox status biomarkers estimation. Urinary matrix metalloproteinases (MMP-2, MMP-9) and urinary gene expression for platelet-derived growth factor -B (PDGF-B), nerve growth factor (NGF), and vascular endothelial growth factor (VEGF) were measured. At the end of the study, dogs were euthanized, and the bladder tissues were examined macroscopically, histologically, and immunohistochemically for NF-κB P65 and Cox-2. The PRP-treated group showed significant improvement for all the clinical, Doppler parameters, and the urinary redox status (p < 0.05). The urinary MMPs activity was significantly decreased in the PRP-treated group and the expression level of urinary NGF and VEGF were downregulated while PDGFB was significantly upregulated (p < 0.05). Meanwhile, the urinary viable cell count was significantly reduced in all treatments (P < 0.05). Gross examination of bladder tissue showed marked improvement for the PRP-treated group, expressed in the histopathological findings. Immunohistochemical analysis revealed a marked increase in Cox-2 and NF-κB P65 in the PRP-treated group (P < 0.05). autologous CaCl2-activated PRP was able to overcome the bacterial infection, generating an inflammatory environment to overcome the old one and initiate tissue healing. Hence, PRP is a promising alternative therapeutic for UPEC cystitis instead of conventional antibiotics.


Subject(s)
Cystitis , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Nerve Growth Factor , Platelet-Rich Plasma , Vascular Endothelial Growth Factor A , Animals , Dogs , Nerve Growth Factor/metabolism , Platelet-Rich Plasma/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Cystitis/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Disease Models, Animal , Uropathogenic Escherichia coli/pathogenicity , Escherichia coli Infections , Down-Regulation , Urinary Tract Infections/drug therapy
19.
Toxicol In Vitro ; 99: 105883, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936442

ABSTRACT

Melanoma is a type of tumor skin with high metastatic potential. Reconstructed human skin, development for pre-clinic assay, are make using primary human cells, but with same limitations. The aim this study was to characterize a cell culture model, with structure similar to human skin containing melanoma cells entirely from cell lines. Reconstructed skin with melanoma were development using human fibroblasts (MRC5), human epidermal keratinocytes (HaCat), and human melanoma (SK-MEL-28) embedded in collagen type I. The structure was characterized by hematoxylin-eosin stained, as well as points of melanoma cell invasion, which was associated with activity of MMPs (MMP-2 and MMP-9) by zymographic method. Then, the gene expression of the target molecular mechanisms involved in melanoma progression were evaluated. Here, the model development showed a region epidermis organized and separated from the dermis, with fibroblast cells confined and melanoma cells form delimited area invasion. MMP-2 and MMP-9 were identified during of cell culture and gene expression of BRAF, NRAS, and Vimentin was confirmed. The proposed model provides one more opportunity to study in vitro tumor biology of melanoma and also to allows the study of new drugs with more reliable results then whats we would find in vivo.


Subject(s)
Fibroblasts , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Melanoma , Skin Neoplasms , Humans , Melanoma/pathology , Melanoma/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Skin Neoplasms/pathology , Fibroblasts/metabolism , Fibroblasts/drug effects , Cell Line, Tumor , Skin/metabolism , Skin/pathology , Neoplasm Invasiveness , Keratinocytes/drug effects , Cell Line , Vimentin/metabolism , Vimentin/genetics
20.
Eur J Histochem ; 68(3)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934084

ABSTRACT

Artificial light can affect eyeball development and increase myopia rate. Matrix metalloproteinase 2 (MMP-2) degrades the extracellular matrix, and induces its remodeling, while tissue inhibitor of matrix MMP-2 (TIMP-2) inhibits active MMP-2. The present study aimed to look into how refractive development and the expression of MMP-2 and TIMP-2 in the guinea pigs' remodeled sclerae are affected by artificial light with varying spectral compositions. Three weeks old guinea pigs were randomly assigned to groups exposed to five different types of light: natural light, LED light with a low color temperature, three full spectrum artificial lights, i.e. E light (continuous spectrum in the range of ~390-780 nm), G light (a blue peak at 450 nm and a small valley 480 nm) and F light (continuous spectrum and wavelength of 400 nm below filtered). A-scan ultrasonography was used to measure the axial lengths of their eyes, every two weeks throughout the experiment. Following twelve weeks of exposure to light, the sclerae were observed by optical and transmission electron microscopy. Immunohistochemistry, Western blot and RT-qPCR were used to detect the MMP-2 and TIMP-2 protein and mRNA expression levels in the sclerae. After four, six, eight, ten, and twelve weeks of illumination, the guinea pigs in the LED and G light groups had axial lengths that were considerably longer than the animals in the natural light group while the guinea pigs in the E and F light groups had considerably shorter axial lengths than those in the LED group. Following twelve weeks of exposure to light, the expression of the scleral MMP-2 protein and mRNA were, from low to high, N group, E group, F group, G group, LED group; however, the expression of the scleral TIMP-2 protein and mRNA were, from high to low, N group, E group, F group, G group, LED group. The comparison between groups was statistically significant (p<0.01). Continuous, peaks-free or valleys-free artificial light with full-spectrum preserves remodeling of scleral extracellular matrix in guinea pigs by downregulating MMP-2 and upregulating TIMP-2, controlling eye axis elongation, and inhibiting the onset and progression of myopia.


Subject(s)
Matrix Metalloproteinase 2 , Sclera , Tissue Inhibitor of Metalloproteinase-2 , Animals , Guinea Pigs , Matrix Metalloproteinase 2/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism , Tissue Inhibitor of Metalloproteinase-2/genetics , Sclera/metabolism , Light , Myopia/metabolism , Refraction, Ocular
SELECTION OF CITATIONS
SEARCH DETAIL