Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.540
Filter
1.
Nat Commun ; 15(1): 5589, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961063

ABSTRACT

As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.


Subject(s)
Administration, Intranasal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Female , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cricetinae , Humans , Measles-Mumps-Rubella Vaccine/immunology , Measles-Mumps-Rubella Vaccine/administration & dosage , Measles virus/immunology , Measles virus/genetics , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mumps virus/immunology , Mumps virus/genetics , Mice, Knockout , Mesocricetus , Immunoglobulin A/immunology , Immunoglobulin A/blood
2.
J Med Microbiol ; 73(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38995847

ABSTRACT

Introduction. At the end of 2019 and the year before, there was a significant spread of measles in the World Health Organization (WHO) European Region.Gap statement. Among the countries that reported, a measles outbreak was Bosnia and Herzegovina (BiH).Aim. To describe the measles outbreak in BiH (an entity of the Federation of BiH, FBiH) in 2019.Methodology. Confirmatory IgM serology, measles nucleic acid detection by real-time RT-PCR and virus genotyping were done in the WHO-accredited laboratory for measles and rubella at the Clinical Center of the University of Sarajevo, Unit for Clinical Microbiology. Genotype was determined in all measles-RNA-positive cases by sequence analysis of the 450 nt fragment coding the C-terminal of measles virus nucleoprotein (N).Results. From 1 January to 31 December 2019, 1332 measles cases were reported, with the peak observed in April 2019 (413/1332, 31.01 %). Sarajevo Canton had the highest incidence, number of cases and percentage (206.4; 868/1332; 65.17 %) of measles cases. Around four-fifths of infected persons were unvaccinated (1086/1332, 81.53 %), while 4.58 % of the patients (61/1332) were immunized with one dose of measles-containing vaccine. The highest proportion of cases was found in children 0-6 years of age (738/1332, 55.41 %). Measles IgM positivity was determined in 75.88 % (346/456), while virus RNA was detected in 82.46 % (47/57) of the swab samples. All measles virus sequences belonged to genotype B3. SNP (position 216: C=>T) was detected in 1 of the 40 sequences obtained during this outbreak.Conclusion. Due to suboptimal immunization coverage, BiH belongs to countries at a high risk for measles outbreaks. Post-COVID-19 (coronavirus disease 2019) pandemic, targeted and tailored strategies are required to ensure routine vaccination demand and acceptance and broad partner and stakeholder group participation.


Subject(s)
COVID-19 , Disease Outbreaks , Genotype , Measles virus , Measles , Humans , Measles/epidemiology , Measles/virology , Measles/prevention & control , Measles virus/genetics , Measles virus/isolation & purification , Measles virus/classification , Measles virus/immunology , Child , Male , Adult , Child, Preschool , Adolescent , Female , Young Adult , Infant , COVID-19/epidemiology , COVID-19/prevention & control , Bosnia and Herzegovina/epidemiology , Middle Aged , Immunoglobulin M/blood , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Measles Vaccine/administration & dosage , Antibodies, Viral/blood
3.
Oncoimmunology ; 13(1): 2377830, 2024.
Article in English | MEDLINE | ID: mdl-39005546

ABSTRACT

Attenuated measles virus (MV) exerts its oncolytic activity in malignant pleural mesothelioma (MPM) cells that lack type-I interferon (IFN-I) production or responsiveness. However, other cells in the tumor microenvironment (TME), such as myeloid cells, possess functional antiviral pathways. In this study, we aimed to characterize the interplay between MV and the myeloid cells in human MPM. We cocultured MPM cell lines with monocytes or macrophages and infected them with MV. We analyzed the transcriptome of each cell type and studied their secretion and phenotypes by high-dimensional flow cytometry. We also measured transgene expression using an MV encoding GFP (MV-GFP). We show that MPM cells drive the differentiation of monocytes into M2-like macrophages. These macrophages inhibit GFP expression in tumor cells harboring a defect in IFN-I production and a functional signaling downstream of the IFN-I receptor, while having minimal effects on GFP expression in tumor cells with defect of responsiveness to IFN-I. Interestingly, inhibition of the IFN-I signaling by ruxolitinib restores GFP expression in tumor cells. Upon MV infection, cocultured macrophages express antiviral pro-inflammatory genes and induce the expression of IFN-stimulated genes in tumor cells. MV also increases the expression of HLA and costimulatory molecules on macrophages and their phagocytic activity. Finally, MV induces the secretion of inflammatory cytokines, especially IFN-I, and PD-L1 expression in tumor cells and macrophages. These results show that macrophages reduce viral proteins expression in some MPM cell lines through their IFN-I production and generate a pro-inflammatory interplay that may stimulate the patient's anti-tumor immune response.


Subject(s)
Coculture Techniques , Macrophages , Measles virus , Oncolytic Virotherapy , Oncolytic Viruses , Tumor Microenvironment , Humans , Measles virus/genetics , Measles virus/physiology , Tumor Microenvironment/immunology , Macrophages/metabolism , Macrophages/immunology , Macrophages/virology , Oncolytic Viruses/genetics , Oncolytic Virotherapy/methods , Cell Line, Tumor , Mesothelioma, Malignant/pathology , Mesothelioma, Malignant/therapy , Interferon Type I/metabolism , Monocytes/immunology , Monocytes/metabolism , Monocytes/virology , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/virology , Cell Differentiation
4.
Euro Surveill ; 29(28)2024 Jul.
Article in English | MEDLINE | ID: mdl-38994600

ABSTRACT

We investigated a variant of measles virus that encodes three mismatches to the reverse priming site for a widely used diagnostic real-time RT-PCR assay; reduction of sensitivity was hypothesised. We examined performance of the assay in context of the variant using in silico data, synthetic RNA templates and clinical specimens. Sensitivity was reduced observed at low copy numbers for templates encoding the variant sequence. We designed and tested an alternate priming strategy, rescuing the sensitivity of the assay.


Subject(s)
Measles virus , Measles , RNA, Viral , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Humans , Measles/diagnosis , Measles/virology , Measles virus/genetics , Measles virus/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , RNA, Viral/genetics
5.
Virology ; 596: 110104, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761640

ABSTRACT

As countries and regions move toward measles elimination, extended sequence window including noncoding region located between the matrix and fusion protein genes (M - F NCR) was considered to be used in molecular surveillance. The molecular resolution of M - F NCR was evaluated with 192 genotype H1 strains circulating during 2011-2018 in China. Phylogenetic analyses of the N450 and M - F NCR targets indicated that both two targets could confirm epi-linked outbreak, while M - F NCR target could further improve resolution of the molecular characterization: (1) it could differentiate the strains with identical N450 circulated in one county within one month of disease onset; (2) different transmission chains could be distinguished for strains with identical N450; (3) better spatial-temporal consistency with topology could be provided among sporadic cases with inconsistent N450. Accordingly, M - F NCR could be used to complement the information from N450 to address the specific questions in tracking the virus transmission chains.


Subject(s)
Genotype , Measles virus , Measles , Phylogeny , Measles virus/genetics , Measles virus/classification , Measles virus/isolation & purification , Measles/transmission , Measles/virology , Measles/epidemiology , Humans , China/epidemiology , Untranslated Regions , RNA, Viral/genetics
6.
Methods Mol Biol ; 2808: 1-7, 2024.
Article in English | MEDLINE | ID: mdl-38743358

ABSTRACT

We have adopted a real-time assay based on a dual-split reporter to assess cell-cell fusion mediated by the measles virus (MeV) membrane fusion machinery. This reporter system is comprised of two expression vectors, each encoding a segment of Renilla luciferase fused to a segment of GFP. To regain function, the two segments need to associate, which is dependent on cell-cell fusion between effector cells expressing the MeV fusion machinery and target cells expressing the corresponding MeV receptor. By measuring reconstituted luciferase activity, we can follow the kinetics of cell-cell fusion and quantify the extent of fusion. This assay lends itself to the study of the MeV fusion machinery comprised of the attachment and fusion glycoproteins, the matrix protein, and the MeV receptors. Moreover, entry inhibitors targeting attachment or fusion can be readily screened using this assay. Finally, this assay can be easily adopted to study the entry of other members of the Paramyxoviridae, as we have demonstrated for the henipaviruses.


Subject(s)
Cell Fusion , Measles virus , Virus Internalization , Measles virus/genetics , Measles virus/physiology , Humans , Animals , Cell Fusion/methods , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Chlorocebus aethiops , Cell Line , Vero Cells , Luciferases, Renilla/genetics , Luciferases, Renilla/metabolism
7.
Methods Mol Biol ; 2808: 19-33, 2024.
Article in English | MEDLINE | ID: mdl-38743360

ABSTRACT

Morbilliviruses such as measles virus (MeV) are responsible for major morbidity and mortality worldwide, despite the availability of an effective vaccine and global vaccination campaigns. MeV belongs to the mononegavirus order of viral pathogens that store their genetic information in non-segmented negative polarity RNA genomes. Genome replication and viral gene expression are carried out by a virus-encoded RNA-dependent RNA polymerase (RdRP) complex that has no immediate host cell analog. To better understand the organization and regulation of the viral RdRP and mechanistically characterize antiviral candidates, biochemical RdRP assays have been developed that employ purified recombinant polymerase complexes and synthetic RNA templates to monitor the initiation of RNA synthesis and RNA elongation in vitro. In this article, we will discuss strategies for the efficient expression and preparation of mononegavirus polymerase complexes, provide detailed protocols for the execution and optimization of RdRP assays, evaluate alternative options for the choice of template and detection system, and describe the application of the assay for the characterization of inhibitor candidates. Although MeV RdRP assays are the focus of this article, the general strategies and experimental approaches are readily transferable to related viruses in the mononegavirus order.


Subject(s)
Measles virus , RNA-Dependent RNA Polymerase , Virus Replication , Measles virus/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA, Viral/genetics , Mononegavirales/genetics , Animals , Viral Proteins/metabolism , Viral Proteins/genetics , Humans
8.
Methods Mol Biol ; 2808: 89-103, 2024.
Article in English | MEDLINE | ID: mdl-38743364

ABSTRACT

The study of virus-host interactions is essential to achieve a comprehensive understanding of the viral replication process. The commonly used methods are yeast two-hybrid approach and transient expression of a single tagged viral protein in host cells followed by affinity purification of interacting cellular proteins and mass spectrometry analysis (AP-MS). However, by these approaches, virus-host protein-protein interactions are detected in the absence of a real infection, not always correctly compartmentalized, and for the yeast two-hybrid approach performed in a heterologous system. Thus, some of the detected protein-protein interactions may be artificial. Here we describe a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect protein partners during the infection (AP-MS in viral context). This way, virus-host protein-protein interacting co-complexes can be purified directly from infected cells for further characterization.


Subject(s)
Host-Pathogen Interactions , Measles virus , Reverse Genetics , Viral Proteins , Measles virus/genetics , Humans , Host-Pathogen Interactions/genetics , Reverse Genetics/methods , Viral Proteins/metabolism , Viral Proteins/genetics , Two-Hybrid System Techniques , Virus Replication , Mass Spectrometry , Protein Interaction Mapping/methods , Measles/virology , Measles/metabolism , Animals , Protein Binding
9.
Methods Mol Biol ; 2808: 105-120, 2024.
Article in English | MEDLINE | ID: mdl-38743365

ABSTRACT

Measles is a highly infectious disease that continues to spread mainly in developing countries, often resulting in child mortality. Despite the existence of effective vaccines, no specific antivirals are available as targeted therapy to combat measles virus (MeV). The implementation of genome-wide siRNA screens can provide a powerful platform to discover host factors that mediate MeV infection and replication, which could be essential to develop novel therapeutic strategies against this disease. Here, we describe a human genome-wide siRNA screen for MeV.


Subject(s)
Measles virus , RNA, Small Interfering , Humans , RNA, Small Interfering/genetics , Measles virus/genetics , Measles virus/physiology , Host-Pathogen Interactions/genetics , Virus Replication/genetics , Genome, Human , RNA Interference
10.
Methods Mol Biol ; 2808: 121-127, 2024.
Article in English | MEDLINE | ID: mdl-38743366

ABSTRACT

During the infection of a host cell by an infectious agent, a series of gene expression changes occurs as a consequence of host-pathogen interactions. Unraveling this complex interplay is the key for understanding of microbial virulence and host response pathways, thus providing the basis for new molecular insights into the mechanisms of pathogenesis and the corresponding immune response. Dual RNA sequencing (dual RNA-seq) has been developed to simultaneously determine pathogen and host transcriptomes enabling both differential and coexpression analyses between the two partners as well as genome characterization in the case of RNA viruses. Here, we provide a detailed laboratory protocol and bioinformatics analysis guidelines for dual RNA-seq experiments focusing on - but not restricted to - measles virus (MeV) as a pathogen of interest. The application of dual RNA-seq technologies in MeV-infected patients can potentially provide valuable information on the structure of the viral RNA genome and on cellular innate immune responses and drive the discovery of new targets for antiviral therapy.


Subject(s)
Genome, Viral , Host-Pathogen Interactions , Measles virus , Measles , RNA, Viral , Humans , Measles/virology , Measles/immunology , Measles/genetics , Measles virus/genetics , Measles virus/pathogenicity , RNA, Viral/genetics , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Computational Biology/methods , Sequence Analysis, RNA/methods , RNA-Seq/methods , Transcriptome , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods
11.
Viruses ; 16(4)2024 04 03.
Article in English | MEDLINE | ID: mdl-38675901

ABSTRACT

As SARS-CoV-2 continues to evolve and COVID-19 cases rapidly increase among children and adults, there is an urgent need for a safe and effective vaccine that can elicit systemic and mucosal humoral immunity to limit the emergence of new variants. Using the Chinese Hu191 measles virus (MeV-hu191) vaccine strain as a backbone, we developed MeV chimeras stably expressing the prefusion forms of either membrane-anchored, full-length spike (rMeV-preFS), or its soluble secreted spike trimers with the help of the SP-D trimerization tag (rMeV-S+SPD) of SARS-CoV-2 Omicron BA.2. The two vaccine candidates were administrated in golden Syrian hamsters through the intranasal or subcutaneous routes to determine the optimal immunization route for challenge. The intranasal delivery of rMeV-S+SPD induced a more robust mucosal IgA antibody response than the subcutaneous route. The mucosal IgA antibody induced by rMeV-preFS through the intranasal routine was slightly higher than the subcutaneous route, but there was no significant difference. The rMeV-preFS vaccine stimulated higher mucosal IgA than the rMeV-S+SPD vaccine through intranasal or subcutaneous administration. In hamsters, intranasal administration of the rMeV-preFS vaccine elicited high levels of NAbs, protecting against the SARS-CoV-2 Omicron BA.2 variant challenge by reducing virus loads and diminishing pathological changes in vaccinated animals. Encouragingly, sera collected from the rMeV-preFS group consistently showed robust and significantly high neutralizing titers against the latest variant XBB.1.16. These data suggest that rMeV-preFS is a highly promising COVID-19 candidate vaccine that has great potential to be developed into bivalent vaccines (MeV/SARS-CoV-2).


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunity, Humoral , Immunity, Mucosal , Immunoglobulin A , Measles virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Measles virus/immunology , Measles virus/genetics , Cricetinae , Immunoglobulin A/blood , Humans , Administration, Intranasal , Mesocricetus , Female
12.
J Infect ; 88(5): 106148, 2024 May.
Article in English | MEDLINE | ID: mdl-38588959

ABSTRACT

OBJECTIVES: In this study, we investigated the causes of measles-like illnesses (MLI) in the Uganda national surveillance program in order to inform diagnostic assay selection and vaccination strategies. METHODS: We used metagenomic next-generation sequencing (M-NGS) on the Illumina platform to identify viruses associated with MLI (defined as fever and rash in the presence of either cough, coryza or conjunctivitis) in patient samples that had tested IgM negative for measles between 2010 and 2019. RESULTS: Viral genomes were identified in 87/271 (32%) of samples, of which 44/271 (16%) contained 12 known viral pathogens. Expected viruses included rubella, human parvovirus B19, Epstein Barr virus, human herpesvirus 6B, human cytomegalovirus, varicella zoster virus and measles virus (detected within the seronegative window-period of infection) and the blood-borne hepatitis B virus. We also detected Saffold virus, human parvovirus type 4, the human adenovirus C2 and vaccine-associated poliovirus type 1. CONCLUSIONS: The study highlights the presence of undiagnosed viruses causing MLI in Uganda, including vaccine-preventable illnesses. NGS can be used to monitor common viral infections at a population level, especially in regions where such infections are prevalent, including low and middle income countries to guide vaccination policy and optimize diagnostic assays.


Subject(s)
High-Throughput Nucleotide Sequencing , Measles , Humans , Uganda/epidemiology , Child, Preschool , Measles/epidemiology , Measles/virology , Infant , Child , Male , Female , Adolescent , Viruses/isolation & purification , Viruses/genetics , Viruses/classification , Genome, Viral , Adult , Young Adult , Virus Diseases/epidemiology , Virus Diseases/virology , Metagenomics , Measles virus/genetics , Measles virus/isolation & purification , Measles virus/classification
13.
J Virol ; 98(5): e0169323, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38563763

ABSTRACT

In the early COVID-19 pandemic with urgent need for countermeasures, we aimed at developing a replicating viral vaccine using the highly efficacious measles vaccine as vector, a promising technology with prior clinical proof of concept. Building on our successful pre-clinical development of a measles virus (MV)-based vaccine candidate against the related SARS-CoV, we evaluated several recombinant MV expressing codon-optimized SARS-CoV-2 spike glycoprotein. Candidate V591 expressing a prefusion-stabilized spike through introduction of two proline residues in HR1 hinge loop, together with deleted S1/S2 furin cleavage site and additional inactivation of the endoplasmic reticulum retrieval signal, was the most potent in eliciting neutralizing antibodies in mice. After single immunization, V591 induced similar neutralization titers as observed in sera of convalescent patients. The cellular immune response was confirmed to be Th1 skewed. V591 conferred long-lasting protection against SARS-CoV-2 challenge in a murine model with marked decrease in viral RNA load, absence of detectable infectious virus loads, and reduced lesions in the lungs. V591 was furthermore efficacious in an established non-human primate model of disease (see companion article [S. Nambulli, N. Escriou, L. J. Rennick, M. J. Demers, N. L. Tilston-Lunel et al., J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23]). Thus, V591 was taken forward into phase I/II clinical trials in August 2020. Unexpected low immunogenicity in humans (O. Launay, C. Artaud, M. Lachâtre, M. Ait-Ahmed, J. Klein et al., eBioMedicine 75:103810, 2022, https://doi.org/10.1016/j.ebiom.2021.103810) revealed that the underlying mechanisms for resistance or sensitivity to pre-existing anti-measles immunity are not yet understood. Different hypotheses are discussed here, which will be important to investigate for further development of the measles-vectored vaccine platform.IMPORTANCESARS-CoV-2 emerged at the end of 2019 and rapidly spread worldwide causing the COVID-19 pandemic that urgently called for vaccines. We developed a vaccine candidate using the highly efficacious measles vaccine as vector, a technology which has proved highly promising in clinical trials for other pathogens. We report here and in the companion article by Nambulli et al. (J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23) the design, selection, and preclinical efficacy of the V591 vaccine candidate that was moved into clinical development in August 2020, 7 months after the identification of SARS-CoV-2 in Wuhan. These unique in-human trials of a measles vector-based COVID-19 vaccine revealed insufficient immunogenicity, which may be the consequence of previous exposure to the pediatric measles vaccine. The three studies together in mice, primates, and humans provide a unique insight into the measles-vectored vaccine platform, raising potential limitations of surrogate preclinical models and calling for further refinement of the platform.


Subject(s)
COVID-19 Vaccines , Measles virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Female , Humans , Mice , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Disease Models, Animal , Genetic Vectors , Measles Vaccine/immunology , Measles Vaccine/genetics , Measles virus/immunology , Measles virus/genetics , Mice, Inbred BALB C , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics
14.
Euro Surveill ; 29(16)2024 Apr.
Article in English | MEDLINE | ID: mdl-38639095

ABSTRACT

Between late 2023 and early 2024, two measles outbreaks occurred in Israel, each caused by importation of measles virus strains of respective B3 and D8 genotypes. In this study, we validate transmission pathways uncovered by epidemiological investigations using a rapid molecular approach, based on complete measles virus genomes. The presented findings support this rapid molecular approach in complementing conventional contact tracing and highlight its potential for informing public health interventions.


Subject(s)
Measles , Humans , Molecular Epidemiology , Israel/epidemiology , Phylogeny , Sequence Analysis, DNA , Measles/diagnosis , Measles/epidemiology , Measles virus/genetics , Disease Outbreaks , Genotype
15.
J Med Virol ; 96(4): e29583, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576266

ABSTRACT

The measles virus, also known as the morbillivirus, or MV, is a virus that infects humans. The goal of this research is to assess to adult cases of measles. Eleven patients thought to be confirmed cases of measles were enrolled in the investigation. Following the identification of symptoms of tiredness, fever, and rash in one soldier, the results of 10 more troops from the pertinent military group were assessed. The diagnosis was made based on the presence of serum immunoglobulin M (IgM) and positive polymerase chain reaction (PCR) results. When the control IgM, immunoglobulin G, and PCR findings were evaluated a fortnight after hospitalization, a cluster of 11 incidents was found. It is now necessary to address the issue of the cautious stance towards vaccination or the anti-vaccination sentiment that has grown increasingly popular, particularly in light of the COVID-19 pandemic, for both our nation and the entire world.


Subject(s)
Measles , Pandemics , Adult , Humans , Infant , Antibodies, Viral , Measles/diagnosis , Measles/epidemiology , Measles/prevention & control , Measles virus/genetics , Disease Outbreaks , Hospitalization , Hospitals , Immunoglobulin M , Measles Vaccine
16.
Euro Surveill ; 29(16)2024 Apr.
Article in English | MEDLINE | ID: mdl-38639092

ABSTRACT

Since late 2023, the Metropolitan City of Milan and surrounding areas (northern Italy) have been experiencing a resurgence of measles, with most cases detected starting from January 2024. During this brief period, we observed measles in travellers from endemic areas, participants in international events, vaccinees and healthcare workers. Indigenous cases have also been identified. Even though we have not yet identified large and disruptive outbreaks, strengthening surveillance and vaccination activities is pivotal to help limit the impact of measles spread.


Subject(s)
Measles virus , Measles , Humans , Measles virus/genetics , Measles/epidemiology , Measles/prevention & control , Disease Outbreaks , Vaccination , Italy/epidemiology , Measles Vaccine
17.
Emerg Infect Dis ; 30(5): 926-933, 2024 May.
Article in English | MEDLINE | ID: mdl-38579738

ABSTRACT

We investigated clinically suspected measles cases that had discrepant real-time reverse transcription PCR (rRT-PCR) and measles-specific IgM test results to determine diagnoses. We performed rRT-PCR and measles-specific IgM testing on samples from 541 suspected measles cases. Of the 24 IgM-positive and rRT-PCR--negative cases, 20 were among children who received a measles-containing vaccine within the previous 6 months; most had low IgG relative avidity indexes (RAIs). The other 4 cases were among adults who had an unknown previous measles history, unknown vaccination status, and high RAIs. We detected viral nucleic acid for viruses other than measles in 15 (62.5%) of the 24 cases with discrepant rRT-PCR and IgM test results. Measles vaccination, measles history, and contact history should be considered in suspected measles cases with discrepant rRT-PCR and IgM test results. If in doubt, measles IgG avidity and PCR testing for other febrile exanthematous viruses can help confirm or refute the diagnosis.


Subject(s)
Antibodies, Viral , Immunoglobulin M , Measles virus , Measles , Humans , Immunoglobulin M/blood , Measles/diagnosis , Measles/epidemiology , Measles/virology , Measles/immunology , Antibodies, Viral/blood , Japan/epidemiology , Child , Child, Preschool , Measles virus/immunology , Measles virus/genetics , Male , Adult , Female , Infant , Adolescent , Immunoglobulin G/blood , Reverse Transcriptase Polymerase Chain Reaction/methods , Measles Vaccine/immunology , Young Adult , Real-Time Polymerase Chain Reaction/methods
18.
J Infect Public Health ; 17(6): 994-1000, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636313

ABSTRACT

BACKGROUND: Measles has been a significant public health concern in Pakistan, especially in the Khyber Pakhtunkhwa (KPK) province, where sporadic and silent epidemics continue to challenge existing control measures. This study aimed to estimate the prevalence and investigate the molecular epidemiology of the measles virus (MeV) in KPK and explore the vaccination status among the suspected individuals. METHODS: A cross-sectional study was conducted between February and October 2021. A total of 336 suspected measles cases from the study population were analyzed for IgM antibodies using Enzyme-Linked Immunosorbent Assay (ELISA). Throat swabs were randomly collected from a subset of positive cases for molecular analysis. Phylogenetic analysis of MeV isolates was performed using the neighbor-joining method. The vaccination status of individuals was also recorded. RESULTS: Among the suspected participants, 61.0% (205/336) were ELISA positive for IgM antibodies, with a higher prevalence in males (64.17%) compared to females (57.04%). The majority of cases (36.0%) were observed in infants and toddlers, consistent with previous reports. The majority of IgM-positive cases (71.7%) had not received any dose of measles vaccine, highlighting gaps in vaccine coverage and the need for improved immunization programs. Genetic analysis revealed that all MeV isolates belonged to the B3 genotype, with minor genetic variations from previously reported variants in the region. CONCLUSION: This study provides valuable insights into the genetic epidemiology of the MeV in KPK, Pakistan. The high incidence of measles infection among unvaccinated individuals highlights the urgency of raising awareness about vaccine importance and strengthening routine immunization programs.


Subject(s)
Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Genotype , Immunoglobulin M , Measles virus , Measles , Phylogeny , Humans , Measles virus/genetics , Measles virus/immunology , Measles virus/isolation & purification , Measles virus/classification , Measles/epidemiology , Measles/virology , Female , Male , Pakistan/epidemiology , Cross-Sectional Studies , Infant , Child, Preschool , Antibodies, Viral/blood , Immunoglobulin M/blood , Child , Adolescent , Adult , Measles Vaccine/immunology , Molecular Epidemiology , Young Adult , Prevalence , Seroepidemiologic Studies , Middle Aged
19.
J Virol ; 98(5): e0176223, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38563762

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and is responsible for the largest human pandemic in 100 years. Thirty-four vaccines are currently approved for use worldwide, and approximately 67% of the world population has received a complete primary series of one, yet countries are dealing with new waves of infections, variant viruses continue to emerge, and breakthrough infections are frequent secondary to waning immunity. Here, we evaluate a measles virus (MV)-vectored vaccine expressing a stabilized prefusion SARS-CoV-2 spike (S) protein (MV-ATU3-S2PΔF2A; V591) with demonstrated immunogenicity in mouse models (see companion article [J. Brunet, Z. Choucha, M. Gransagne, H. Tabbal, M.-W. Ku et al., J Virol 98:e01693-23, 2024, https://doi.org/10.1128/jvi.01693-23]) in an established African green monkey model of disease. Animals were vaccinated with V591 or the control vaccine (an equivalent MV-vectored vaccine with an irrelevant antigen) intramuscularly using a prime/boost schedule, followed by challenge with an early pandemic isolate of SARS-CoV-2 at 56 days post-vaccination. Pre-challenge, only V591-vaccinated animals developed S-specific antibodies that had virus-neutralizing activity as well as S-specific T cells. Following the challenge, V591-vaccinated animals had lower infectious virus and viral (v) RNA loads in mucosal secretions and stopped shedding virus in these secretions earlier. vRNA loads were lower in these animals in respiratory and gastrointestinal tract tissues at necropsy. This correlated with a lower disease burden in the lungs as quantified by PET/CT at early and late time points post-challenge and by pathological analysis at necropsy.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the largest human pandemic in 100 years. Even though vaccines are currently available, countries are dealing with new waves of infections, variant viruses continue to emerge, breakthrough infections are frequent, and vaccine hesitancy persists. This study uses a safe and effective measles vaccine as a platform for vaccination against SARS-CoV-2. The candidate vaccine was used to vaccinate African green monkeys (AGMs). All vaccinated AGMs developed robust antigen-specific immune responses. After challenge, these AGMs produced less virus in mucosal secretions, for a shorter period, and had a reduced disease burden in the lungs compared to control animals. At necropsy, lower levels of viral RNA were detected in tissue samples from vaccinated animals, and the lungs of these animals lacked the histologic hallmarks of SARS-CoV-2 disease observed exclusively in the control AGMs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Measles virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Chlorocebus aethiops , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Measles virus/immunology , Measles virus/genetics , COVID-19 Vaccines/immunology , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Genetic Vectors , Vero Cells , Pandemics/prevention & control , Female , Betacoronavirus/immunology , Betacoronavirus/genetics , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Pneumonia, Viral/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Disease Models, Animal
20.
MMWR Morb Mortal Wkly Rep ; 73(12): 260-264, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38547036

ABSTRACT

Syndromic polymerase chain reaction (PCR) panels are used to test for pathogens that can cause rash illnesses, including measles. Rash illnesses have infectious and noninfectious causes, and approximately 5% of persons experience a rash 7-10 days after receipt of a measles, mumps, and rubella (MMR) vaccine. MMR vaccine includes live attenuated measles virus, which is detectable by PCR tests. No evidence exists of person-to-person transmission of measles vaccine virus, and illness does not typically result among immunocompetent persons. During September 2022-January 2023, the Tennessee Department of Health received two reports of measles detected by syndromic PCR panels. Both reports involved children (aged 1 and 6 years) without known risk factors for measles, who were evaluated for rash that occurred 11-13 days after routine MMR vaccination. After public health responses in Tennessee determined that both PCR panels had detected measles vaccine virus, six state health departments collaborated to assess the frequency and characteristics of persons receiving a positive measles PCR panel test result in the United States. Information was retrospectively collected from a commercial laboratory testing for measles in syndromic multiplex PCR panels. During May 2022-April 2023, among 1,548 syndromic PCR panels, 17 (1.1%) returned positive test results for measles virus. Among 14 persons who received a positive test result and for whom vaccination and case investigation information were available, all had received MMR vaccine a median of 12 days before specimen collection, and none had known risk factors for acquiring measles. All positive PCR results were attributed to detection of measles vaccine virus. Increased awareness among health care providers about potential measles detection by PCR after vaccination is needed. Any detection of measles virus by syndromic PCR testing should be immediately reported to public health agencies, which can use measles vaccination history and assessment of risk factors to determine the appropriate public health response. If a person recently received MMR vaccine and has no risk factors for acquiring measles, additional public health response is likely unnecessary.


Subject(s)
Exanthema , Measles , Mumps , Rubella , Child , Humans , United States/epidemiology , Infant , Measles-Mumps-Rubella Vaccine , Retrospective Studies , Measles/diagnosis , Measles/epidemiology , Measles/prevention & control , Measles virus/genetics , Mumps/prevention & control , Vaccination , Tennessee/epidemiology , Polymerase Chain Reaction , Rubella/prevention & control , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL