Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.626
1.
J Biosci ; 492024.
Article En | MEDLINE | ID: mdl-38726826

Lung cancer (LC) is the leading cause of cancer-associated deaths worldwide, among which non-small-cell lung cancer (NSCLC) accounts for 80%. Stromal cell-derived factor-1 (SDF-1) inhibition results in a significant depletion of NSCLC metastasis. Additionally, SDF-1 is the only natural chemokine known to bind and activate the receptor CXCR4. Thus, we attempted to clarify the molecular mechanism of SDF-1 underlying NSCLC progression. Transwell migration, adhesion, and G-LISA assays were used to assess megakaryocytic chemotaxis in vitro and in vivo in terms of megakaryocytic migration, adherence, and RhoA activation, respectively. Western blotting was used to assess PI3K/Akt-associated protein abundances in MEG-01 cells and primary megakaryocytes under the indicated treatment. A hematology analyzer and flow cytometry were used to assess platelet counts in peripheral blood and newly formed platelet counts in Lewis LC mice under different treatments. Immunochemistry and flow cytometry were used to measure CD41+ megakaryocyte numbers in Lewis LC mouse tissue under different treatments. ELISA was used to measure serum TPO levels, and H&E staining was used to detect NSCLC metastasis.SDF-1 receptor knockdown suppressed megakaryocytic chemotaxis in Lewis LC mice. SDF-1 receptor inhibition suppressed megakaryocytic chemotaxis via the PI3K/Akt pathway. SDF-1 receptor knockdown suppressed CD41+ megakaryocyte numbers in vivo through PI3K/Akt signaling. SDF-1 receptor inhibition suppressed CD41+ megakaryocytes to hinder NSCLC metastasis. SDF-1 facilitates NSCLC metastasis by enhancing the chemoattraction of megakaryocytes via the PI3K/Akt signaling pathway, which may provide a potential new direction for seeking therapeutic plans for NSCLC.


Carcinoma, Non-Small-Cell Lung , Chemokine CXCL12 , Chemotaxis , Lung Neoplasms , Megakaryocytes , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptors, CXCR4 , Signal Transduction , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Megakaryocytes/metabolism , Megakaryocytes/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Animals , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Mice , Humans , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Cell Line, Tumor , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Neoplasm Metastasis , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
3.
Cells ; 13(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38786077

Patients with COVID-19 have coagulation and platelet disorders, with platelet alterations and thrombocytopenia representing negative prognostic parameters associated with severe forms of the disease and increased lethality. METHODS: The aim of this study was to study the expression of platelet glycoprotein IIIa (CD61), playing a critical role in platelet aggregation, together with TRL-2 as a marker of innate immune activation. RESULTS: A total of 25 patients were investigated, with the majority (24/25, 96%) having co-morbidities and dying from a fatal form of SARS-CoV-2(+) infection (COVID-19+), with 13 men and 12 females ranging in age from 45 to 80 years. When compared to a control group of SARS-CoV-2 (-) negative lungs (COVID-19-), TLR-2 expression was up-regulated in a subset of patients with deadly COVID-19 fatal lung illness. The proportion of Spike-1 (+) patients found by PCR and ISH correlates to the proportion of Spike-S1-positive cases as detected by digital pathology examination. Furthermore, CD61 expression was considerably higher in the lungs of deceased patients. In conclusion, we demonstrate that innate immune prolonged hyperactivation is related to platelet/megakaryocyte over-expression in the lung. CONCLUSIONS: Microthrombosis in deadly COVID-19+ lung disease is associated with an increase in the number of CD61+ platelets and megakaryocytes in the pulmonary interstitium, as well as their functional activation; this phenomenon is associated with increased expression of innate immunity TLR2+ cells, which binds the SARS-CoV-2 E protein, and significantly with the persistence of the Spike-S1 viral sequence.


COVID-19 , Lung , Megakaryocytes , SARS-CoV-2 , Thrombosis , Toll-Like Receptor 2 , Up-Regulation , Humans , COVID-19/pathology , COVID-19/immunology , COVID-19/metabolism , Male , Female , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Megakaryocytes/metabolism , Megakaryocytes/pathology , Megakaryocytes/virology , Aged , Middle Aged , Aged, 80 and over , Lung/pathology , Lung/virology , Lung/metabolism , Up-Regulation/genetics , Thrombosis/pathology , Integrin beta3/metabolism , Integrin beta3/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Pneumonia, Viral/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Pneumonia, Viral/metabolism , Immunity, Innate , Pandemics
4.
J Autoimmun ; 145: 103204, 2024 May.
Article En | MEDLINE | ID: mdl-38520895

Epidemiological studies show that cardiovascular events related to platelet hyperactivity remain the leading causes of death among multiple sclerosis (MS) patients. Quantitative or structural changes of platelet cytoskeleton alter their morphology and function. Here, we demonstrated, for the first time, the structural changes in MS platelets that may be related to their hyperactivity. MS platelets were found to form large aggregates compared to control platelets. In contrast to the control, the images of overactivated, irregularly shaped MS platelets show changes in the cytoskeleton architecture, fragmented microtubule rings. Furthermore, MS platelets have long and numerous pseudopodia rich in actin filaments. We showed that MS platelets and megakaryocytes, overexpress ß1-tubulin and ß-actin mRNAs and proteins and have altered post-translational modification patterns. Moreover, we identified two previously undisclosed mutations in the gene encoding ß1-tubulin in MS. We propose that the demonstrated structural changes of platelet cytoskeleton enhance their ability to adhere, aggregate, and degranulate fueling the risk of adverse cardiovascular events in MS.


Blood Platelets , Cytoskeletal Proteins , Cytoskeleton , Multiple Sclerosis , Tubulin , Humans , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Multiple Sclerosis/blood , Blood Platelets/metabolism , Tubulin/metabolism , Tubulin/genetics , Female , Cytoskeleton/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Adult , Male , Middle Aged , Actins/metabolism , Actins/genetics , Megakaryocytes/metabolism , Megakaryocytes/pathology , Protein Processing, Post-Translational , Mutation
6.
Mil Med Res ; 10(1): 66, 2023 Dec 19.
Article En | MEDLINE | ID: mdl-38111039

BACKGROUND: The essential roles of platelets in thrombosis have been well recognized. Unexpectedly, thrombosis is prevalent during thrombocytopenia induced by cytotoxicity of biological, physical and chemical origins, which could be suffered by military personnel and civilians during chemical, biological, radioactive, and nuclear events. Especially, thrombosis is considered a major cause of mortality from radiation injury-induced thrombocytopenia, while the underlying pathogenic mechanism remains elusive. METHODS: A mouse model of radiation injury-induced thrombocytopenia was built by exposing mice to a sublethal dose of ionizing radiation (IR). The phenotypic and functional changes of platelets and megakaryocytes (MKs) were determined by a comprehensive set of in vitro and in vivo assays, including flow cytometry, flow chamber, histopathology, Western blotting, and chromatin immunoprecipitation, in combination with transcriptomic analysis. The molecular mechanism was investigated both in vitro and in vivo, and was consolidated using MK-specific knockout mice. The translational potential was evaluated using a human MK cell line and several pharmacological inhibitors. RESULTS: In contrast to primitive MKs, mature MKs (mMKs) are intrinsically programmed to be apoptosis-resistant through reprogramming the Bcl-xL-BAX/BAK axis. Interestingly, mMKs undergo minority mitochondrial outer membrane permeabilization (MOMP) post IR, resulting in the activation of the cyclic GMP-AMP synthase-stimulator of IFN genes (cGAS-STING) pathway via the release of mitochondrial DNA. The subsequent interferon-ß (IFN-ß) response in mMKs upregulates a GTPase guanylate-binding protein 2 (GBP2) to produce large and hyperreactive platelets that favor thrombosis. Further, we unmask that autophagy restrains minority MOMP in mMKs post IR. CONCLUSIONS: Our study identifies that megakaryocytic mitochondria-cGAS/STING-IFN-ß-GBP2 axis serves as a fundamental checkpoint that instructs the size and function of platelets upon radiation injury and can be harnessed to treat platelet pathologies.


Radiation Injuries , Thrombocytopenia , Thrombosis , Humans , Animals , Mice , Megakaryocytes/metabolism , Megakaryocytes/pathology , Thrombocytopenia/etiology , Apoptosis , Nucleotidyltransferases/metabolism , Thrombosis/metabolism
7.
Exp Hematol ; 127: 59-69.e2, 2023 11.
Article En | MEDLINE | ID: mdl-37741606

Most thrombopoietin receptor (MPL) mutations result in abnormal megakaryocyte expansion in the spleen or bone marrow (BM), leading to progressive fibrosis. It has been reported that p21 (Rac Family Small GTPase 1 [RAC1])-activated kinase 1 (PAK1) participates in the proliferation and differentiation of megakaryoblasts. PAK1 phosphorylation increased in patients with myeloproliferative neoplasms (MPNs) and murine MPN cells with the Mplw515l mutant gene in this study; however, the function of overactivated PAK1 in MPN cells remains unclear. We found that inhibition of PAK1 caused significant changes in the biological behaviors of MPLW515L mutant cells in vitro, including arrested growth or reduced clonality and increased polyploid DNA and cell apoptosis due to upregulated cleaved caspase 3. In vivo, PAK1 inhibitor treatment caused a slow elevation of leukocytosis and hematocrit (HCT) and a reduction in hepatosplenomegaly in 6133/MPLW515L-transplanted mice, along with reduced tumor cell infiltration and prolonged survival. Further, deletion of PAK1 sustained a relatively normal HCT and platelet count at the beginning of the disease but did not completely alleviate the splenomegaly of MPLW515L mutant mice. Notably, PAK1 knockout attenuated the destruction of splenic structure, and reduced the megakaryocyte burden within the BM. These results suggest that inhibition of PAK1 may be a useful method for treating MPLW515L mutant MPN by intervening megakaryocytes.


Myeloproliferative Disorders , Neoplasms , Humans , Mice , Animals , Megakaryocytes/pathology , Cell Proliferation , Neoplasms/pathology , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Cell Differentiation , p21-Activated Kinases/genetics , p21-Activated Kinases/pharmacology
8.
Expert Rev Hematol ; 16(10): 731-742, 2023.
Article En | MEDLINE | ID: mdl-37668243

INTRODUCTION: Immune thrombocytopenia [ITP] is a common bleeding disorder with an isolated platelet count of less than 100 × 109/L. AREAS COVERED: Relevant literature from 2003 to 2022 was retrieved and reviewed from the Google Scholar search engine and PubMed database. Antibodies produced by autoreactive B lymphocytes and the phagocytic function of macrophages are considered the most critical factors in platelet destruction. Also, macrophages present the antigen to T lymphocytes and activate them. Follicular helper T-cells [TFH] play a role in stimulating, differentiating, and activating autoreactive B cells, while cluster of differentiation [CD]-8+ T plays a role in platelet destruction through apoptosis. The classical pathway of the complement system also causes platelet destruction. By inhibiting platelet production, low levels of thrombopoietin and an immune response against megakaryocytes in the bone marrow worsen thrombocytopenia. EXPERT OPINION: T-cell subset changes and an increase in activated autoreactive B cells, in addition to the function of components of the innate immune system [the complement system, dendritic cells, and natural killer cells], play a critical role in the pathogenesis of the ITP. Accurate detection of these changes may lead to developing new therapeutic strategies and identifying better prognostic/diagnostic factors.


Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Humans , Purpura, Thrombocytopenic, Idiopathic/etiology , Purpura, Thrombocytopenic, Idiopathic/therapy , Blood Platelets , Thrombocytopenia/etiology , Platelet Count , Megakaryocytes/pathology
9.
Platelets ; 34(1): 2237592, 2023 Dec.
Article En | MEDLINE | ID: mdl-37577973

Although thrombocytopenia in neonatal intensive care patients is rarely due to inherited disorders, the number of genetic variants implicated in platelet defects has grown dramatically with increasing genome-wide sequencing. Here we describe a case of severe, oligogenic neonatal thrombocytopenia and reinterpret a reportedly benign mutation that is likely pathogenic. Despite this patient's synonymous mutation (GFI1B 576 C>T, Phe192=) being annotated as benign, GFI1B is a well-known regulator of megakaryopoiesis, this variant alters splicing and megakaryocyte maturation, and our analysis of existing genome-wide associated studies demonstrates that it likely causes gray platelet syndrome. This variant has not been reported in a case of life-threatening thrombocytopenia. We propose that the severity of this patient's phenotype is due to synergistic epistasis between the intrinsic platelet defect caused by this mutation and her concomitant inherited PMM2 congenital glycosylation disorder neither of which have been associated with such a severe phenotype. This case highlights the importance of whole-exome/genome sequencing for critically ill patients, reexamining variant interpretation when clinically indicated, and the need to study diverse genetic variation in hematopoiesis.


What is the context? Low platelets (thrombocytopenia) in the neonatal population is not frequently inherited. As we perform unbiased DNA sequencing in more patients, the number of inherited platelet disorders and implicated variants is growing.The gene GFI1B encodes for a transcription factor that regulates megakaryocytes, the cell type that produces platelets. A synonymous substitution in GFI1B (576 C>T, Phe192=) is annotated as benign; however, experimental studies have shown that it inhibits megakaryocyte production.There is growing appreciation for oligogenic inheritance, where multiple causal variants contribute to clinical phenotypes.What is new? We present a case of life-threatening neonatal macrothrombocytopenia (large, hypogranulated sparse platelets) that has an oligogenic cause. We reinterpret the synonymous substitution GFI1B 576 C>T as pathogenic.This patient's severe phenotype was likely due to the combined effect of GFI1B 576 C>T and her inherited glycosylation disorder (PMM2-CDG). Neither variant alone causes severe thrombocytopenia, but the combined intrinsic platelet defect (GFI1B mutation) and consumption (PMM2-CDG) likely produced her life-threatening phenotype.What is the impact? GFI1B is a critical regulator of megakaryocyte production. The purportedly benign mutation 576 C>T is likely pathogenic causing thrombocytopenia by impairing megakaryocyte maturation.As more patients have unbiased genome sequencing, oligogenic and polygenic inheritance will become increasingly appreciated as causes of platelet disorders.NICU providers should consider whole genome or exome sequencing of neonates with severe thrombocytopenia after reversible causes are ruled out.


Thrombocytopenia, Neonatal Alloimmune , Female , Humans , Megakaryocytes/pathology , Repressor Proteins , Blood Platelets/pathology , Mutation , Proto-Oncogene Proteins/genetics
10.
Hum Vaccin Immunother ; 19(2): 2246542, 2023 08 01.
Article En | MEDLINE | ID: mdl-37614152

A good safety and immunogenicity profile was reported in Phase I and II clinical trials of inactivated SARS-CoV-2 vaccines. Here, we report two cases associated with vaccine-associated adverse events, including one patient with fever and another with anaphylactic shock resulting from inactivated SARS-CoV-2 vaccination. Cell sub-types and the importance of genetic characteristics were assessed using single-cell mRNA sequencing and machine learning. Overall, the patient with fever showed a significant increase in the numbers of cytotoxic CD8 T cells and MKI67high CD8 T cells. A potential concurrent infection with the Epstein-Barr virus enhanced interferon type I responses to vaccination against the virus. STAT1, E2F1, YBX1, and E2F7 played a key role in the transcription regulation of MKI67high CD8 T cells. In contrast, the patient with allergic shock displayed predominant increases in the numbers of S100A9high monocytes, activated CD4 T cells, and PPBPhigh megakaryocytes. The decision tree showed that LYZ and S100A8 in S100A9high monocytes contributed to the degranulation of neutrophils and activation of neutrophils involved in allergic shock. PPBP and PF4 were major contributors to platelet degranulation. These findings highlight the diversity of adverse reactions following inactivated SARS-CoV-2 vaccination and show the emerging role of cellular subtypes and central genes in vaccine-associated adverse reactions.


The identification of cell sub-types may help in the diagnosis of COVID-19 vaccine-related adverse events.COVID-19 vaccination-related acute pulmonary edema may induce a higher risk of thrombosis.The long-term fever after vaccination may attribute to the excessive type I interferon responses.


COVID-19 Vaccines , Humans , Male , Female , Adult , COVID-19 Vaccines/adverse effects , Fever/immunology , Fever/pathology , Pulmonary Edema/immunology , Pulmonary Edema/pathology , CD8-Positive T-Lymphocytes/cytology , Cell Proliferation , Megakaryocytes/pathology , Single-Cell Gene Expression Analysis , B-Lymphocytes/cytology , Monocytes/cytology , Anaphylaxis/immunology , Anaphylaxis/pathology
11.
Infect Immun ; 91(8): e0010223, 2023 08 16.
Article En | MEDLINE | ID: mdl-37404144

Fusobacterium nucleatum colonization contributes to the occurrence of portal vein thrombosis in patients with gastric cancer (GC). However, the underlying mechanism by which F. nucleatum promotes thrombosis remains unclear. In this study, we recruited a total of 91 patients with GC and examined the presence of F. nucleatum in tumor and adjacent non-tumor tissues by fluorescence in situ hybridization and quantitative PCR. Neutrophil extracellular traps (NETs) were detected by immunohistochemistry. Extracellular vesicles (EVs) were extracted from the peripheral blood and proteins in the EVs were identified by mass spectrometry (MS). HL-60 cells differentiated into neutrophils were used to package engineered EVs to imitate the EVs released from NETs. Hematopoietic progenitor cells (HPCs) and K562 cells were used for megakaryocyte (MK) in vitro differentiation and maturation to examine the function of EVs. We observed that F. nucleatum-positive patients had increased NET and platelet counts. EVs from F. nucleatum-positive patients could promote the differentiation and maturation of MKs and had upregulated 14-3-3 proteins, especially 14-3-3ε. 14-3-3ε upregulation promoted MK differentiation and maturation in vitro. HPCs and K562 cells could receive 14-3-3ε from the EVs, which interacted with GP1BA and 14-3-3ζ to trigger PI3K-Akt signaling. In conclusion, we identified for the first time that F. nucleatum infection promotes NET formation, which releases EVs containing 14-3-3ε. These EVs could deliver 14-3-3ε to HPCs and promote their differentiation into MKs via activation of PI3K-Akt signaling.


Extracellular Vesicles , Fusobacterium Infections , Stomach Neoplasms , Humans , Fusobacterium nucleatum/metabolism , In Situ Hybridization, Fluorescence , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Megakaryocytes/metabolism , Megakaryocytes/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Fusobacterium Infections/metabolism , Fusobacterium Infections/microbiology , Fusobacterium Infections/pathology , Extracellular Vesicles/metabolism
12.
Int J Mol Sci ; 24(12)2023 Jun 17.
Article En | MEDLINE | ID: mdl-37373420

Extracellular microparticles provide a means of cell-to-cell communication and can promote information exchanges between adjacent or distant cells. Platelets are cell fragments that are derived from megakaryocytes. Their main functions are to stop bleeding, regulate inflammation, and maintain the integrity of blood vessels. When platelets are activated, they can perform related tasks by secreting platelet-derived microparticles that contain lipids, proteins, nucleic acids, and even organelles. There are differences in the circulating platelet levels in many autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, antiphospholipid antibody syndrome, and Sjogren's syndrome. In this paper, the latest findings in the research field of platelet-derived microparticles are reviewed, including the potential pathogenesis of platelet-derived microparticles in various types of immune diseases, their potential as related markers, and for monitoring the progress and prognosis of disease treatment are expounded.


Arthritis, Rheumatoid , Autoimmune Diseases , Cell-Derived Microparticles , Lupus Erythematosus, Systemic , Humans , Cell-Derived Microparticles/metabolism , Autoimmune Diseases/metabolism , Blood Platelets/metabolism , Arthritis, Rheumatoid/metabolism , Megakaryocytes/pathology
13.
Biochemistry (Mosc) ; 88(Suppl 1): S39-S51, 2023 Jan.
Article En | MEDLINE | ID: mdl-37069113

Platelets are formed from bone marrow megakaryocytes, circulate in blood for 7-10 days, and then are destroyed in the spleen and/or liver. Platelet production depends on the megakaryocyte population state in the bone marrow: number and size of the cells. The platelet turnover, i.e., the number of platelets passing through the bloodstream in a certain time, is determined by both the rate of their production and the rate of their destruction. The review considers laboratory markers, which are used to assess platelet production and turnover in the patients with hematologic and cardiovascular pathologies. These markers include some characteristics of platelets themselves: (i) content of reticulated ("young") forms in the blood detected by their staining with RNA dyes; (ii) indicators of the platelet size determined in hematology analyzers (mean volume, percentage of large forms) and in flow cytometers (light scattering level). Alterations of platelet production and turnover lead to the changes in blood plasma concentrations of such molecules as thrombopoietin (TPO, main mediator of megakaryocyte maturation and platelet formation in the bone marrow) and glycocalicin (soluble fragment of the membrane glycoprotein Ib detached from the surface of platelets during their destruction). Specific changes in the markers of platelet production and turnover have been observed in: (i) hypoproductive thrombocytopenias caused by suppression of megakaryocytes in the bone marrow; (ii) immune thrombocytopenias caused by accelerated clearance of the autoantibody-sensitized platelets; and (iii) thrombocytosis (both primary and reactive). The paper presents the data indicating that in patients with cardiovascular diseases an increased platelet turnover and changes in the corresponding markers (platelet size indexes and content of reticulated forms) are associated with the decreased efficacy of antiplatelet drugs and increased risk of thrombotic events, myocardial infarction, and unstable angina (acute coronary syndrome).


Blood Platelets , Thrombocytopenia , Humans , Platelet Count , Megakaryocytes/pathology , Thrombocytopenia/etiology , Thrombocytopenia/pathology , Biomarkers
14.
Leukemia ; 37(4): 725-727, 2023 04.
Article En | MEDLINE | ID: mdl-36871061

In this Perspective, we discuss criteria for defining a new disease entity or variant of a recognized disease or disorder. We do so in the context of the current topography of the BCR::ABL-negative myeloproliferative neoplasms (MPNs) where two new variants are reported: clonal megakaryocyte dysplasia with normal blood values (CMD-NBV) and clonal megakaryocyte dysplasia with isolated thrombocytosis (CMD-IT). The cardinal feature of these variants is bone marrow megakaryocyte hyperplasia and atypia corresponding the WHO histological criteria for primary myelofibrosis (myelofibrosis-type megakaryocyte dysplasia-MTMD). Persons with these new variants have a different disease course and features from others in the MPN domain. In a broader context we suggest myelofibrosis-type megakaryocyte dysplasia defines a spectrum of related MPN variants including CMD-NBV, CMD-IT, pre-fibrotic myelofibrosis and overt myelofibrosis, which differ from polycythemia vera and essential thrombocythemia. Our proposal needs external validation and we stress the need for a consensus definition of the megakaryocyte dysplasia which is the hallmark of these disorders.


Bone Marrow Diseases , Myeloproliferative Disorders , Polycythemia Vera , Primary Myelofibrosis , Thrombocytosis , Humans , Bone Marrow Diseases/pathology , Megakaryocytes/pathology , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Polycythemia Vera/pathology , Primary Myelofibrosis/genetics , Primary Myelofibrosis/pathology , Thrombocytosis/genetics , Thrombocytosis/pathology , Fusion Proteins, bcr-abl
15.
Blood ; 141(18): 2261-2274, 2023 05 04.
Article En | MEDLINE | ID: mdl-36790527

Pathogenic missense variants in SLFN14, which encode an RNA endoribonuclease protein that regulates ribosomal RNA (rRNA) degradation, are known to cause inherited thrombocytopenia (TP) with impaired platelet aggregation and adenosine triphosphate secretion. Despite mild laboratory defects, the patients displayed an obvious bleeding phenotype. However, the function of SLFN14 in megakaryocyte (MK) and platelet biology remains unknown. This study aimed to model the disease in an immortalized MK cell line (imMKCL) and to characterize the platelet transcriptome in patients with the SLFN14 K219N variant. MK derived from heterozygous and homozygous SLFN14 K219N imMKCL and stem cells of blood from patients mainly presented with a defect in proplatelet formation and mitochondrial organization. SLFN14-defective platelets and mature MK showed signs of rRNA degradation; however, this was absent in undifferentiated imMKCL cells and granulocytes. Total platelet RNA was sequenced in 2 patients and 19 healthy controls. Differential gene expression analysis yielded 2999 and 2888 significantly (|log2 fold change| >1, false discovery rate <0.05) up- and downregulated genes, respectively. Remarkably, these downregulated genes were not enriched in any biological pathway, whereas upregulated genes were enriched in pathways involved in (mitochondrial) translation and transcription, with a significant upregulation of 134 ribosomal protein genes (RPGs). The upregulation of mitochondrial RPGs through increased mammalian target of rapamycin complex 1 (mTORC1) signaling in SLFN14 K219N MK seems to be a compensatory response to rRNA degradation. mTORC1 inhibition with rapamycin resulted in further enhanced rRNA degradation in SLFN14 K219N MK. Taken together, our study indicates dysregulation of mTORC1 coordinated ribosomal biogenesis is the disease mechanism for SLFN14-related TP.


Thrombocytopenia , Humans , Thrombocytopenia/pathology , Blood Platelets/metabolism , Ribosomes/metabolism , Megakaryocytes/pathology , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , RNA/metabolism
16.
Haematologica ; 108(5): 1385-1393, 2023 05 01.
Article En | MEDLINE | ID: mdl-36226497

Congenital amegakaryocytic thrombocytopenia (CAMT) is a recessive disorder characterized by severe reduction of megakaryocytes and platelets at birth, which evolves toward bone marrow aplasia in childhood. CAMT is mostly caused by mutations in MPL (CAMT-MPL), the gene encoding the receptor of thrombopoietin (THPO), a crucial cytokine regulating hematopoiesis. CAMT can be also due to mutations affecting the THPO coding region (CAMT-THPO). In a child with the clinical picture of CAMT, we identified the homozygous c.-323C>T substitution, affecting a potential regulatory region of THPO. Although mechanisms controlling THPO transcription are not characterized, bioinformatics and in vitro analysis showed that c.-323C>T prevents the binding of transcription factors ETS1 and STAT4 to the putative THPO promoter, impairing THPO expression. Accordingly, in the proband the serum THPO concentration indicates defective THPO production. Based on these findings, the patient was treated with the THPO-mimetic agent eltrombopag, which induced a significant increase in platelet count and stable remission of bleeding symptoms. Herein, we report a novel pathogenic variant responsible for CAMT and provide new insights into the mechanisms regulating transcription of the THPO gene.


Receptors, Thrombopoietin , Thrombopoietin , Child , Infant, Newborn , Humans , Thrombopoietin/pharmacology , Receptors, Thrombopoietin/genetics , Mutation , Megakaryocytes/pathology , Promoter Regions, Genetic , Proto-Oncogene Protein c-ets-1/genetics , STAT4 Transcription Factor/genetics
17.
Thromb Res ; 231: 170-181, 2023 11.
Article En | MEDLINE | ID: mdl-36058760

Autophagy, the continuous recycling of intracellular building blocks, molecules, and organelles is necessary to preserve cellular function and homeostasis. In this context, it was demonstrated that autophagy plays an important role in megakaryopoiesis, the development and differentiation of hematopoietic progenitor cells into megakaryocytes. Furthermore, in recent years, autophagic proteins were detected in platelets, anucleate cells generated by megakaryocytes, responsible for hemostasis, thrombosis, and a key cell in inflammation and host immune responses. In the last decade studies have indicated the occurrence of autophagy in platelets. Moreover, autophagy in platelets was subsequently demonstrated to be involved in platelet aggregation, adhesion, and thrombus formation. Here, we review the current knowledge about autophagy in platelets, its function, and clinical implications. However, at the advent of platelet autophagy research, additional discoveries derived from evolving work will be required to precisely define the contributions of autophagy in platelets, and to expand the ever increasing physiologic and pathologic roles these remarkable and versatile blood cells play.


Blood Platelets , Thrombosis , Humans , Blood Platelets/metabolism , Megakaryocytes/pathology , Thrombopoiesis , Thrombosis/pathology , Autophagy , Biology
18.
Klin Padiatr ; 234(6): 388-390, 2022 Nov.
Article En | MEDLINE | ID: mdl-36379227

Congenital amegakaryocytic thrombocytopenia (CAMT) is an autosomal recessive disorder characterized by severe thrombocytopenia that presents soon after birth and is usually not accompanied by specific somatic malformations [Germeshausen M, Ballmaier M. Best Pract Res Clin Haematol 2021; 34: 101286]. CAMT is more prevalent in females than males [Ballmaier M, Germeshausen M. Semin Thromb Hemost 2011; 37: 673-681; Germeshausen M, Ballmaier M. Haematologica 2021; 106: 2439-2448], in contrast to other congenital bone marrow failure syndromes. Patients with CAMT also exhibit cardiac malformations, cerebellar hypoplasia, growth retardation, and a distinctive facial appearance [Yldrm A T, Günes B T, Oymak Y, et al. Blood Coagul Fibrinolysis 2015; 26: 337-341], although it remains unknown whether these are related to CAMT. Mutations in the MPL gene, which encodes the thrombopoietin receptor, are the pathogenetic cause of CAMT [Germeshausen M, Ballmaier M. Haematologica 2021; 106: 2439-2448]. Since thrombopoietin is involved in the maintenance of hematopoietic stem cells and megakaryocyte development [Germeshausen M, Ballmaier M. Best Pract Res Clin Haematol 2021; 34: 101286], CAMT may eventually manifest as a hematopoietic failure. Currently, allogeneic hematopoietic stem cell transplantation (HSCT) is the only cure for CAMT. Human leukocyte antigen (HLA)-matched siblings are the first-choice donors for HSCT because transplantations from matched unrelated donors have a low success rate [King S, Germeshausen M, Strauss G, et al. Br J Haematol 2005; 131: 636-644]. Cancio et al. [Cancio M, Hebert K, Kim S, et al. Transplant Cell Ther 2022; 28: 101 e101-101 e106] reviewed 86 patients treated over 18 years and reported that although HLA-mismatched donors can extend the survival of CAMT patients, HLA-matched donors are preferred. The present report describes the successful treatment of a 3-year-old girl with CAMT using haploidentical allogeneic HSCT from the father, even though he harbored a mutant MPL gene.


Hematopoietic Stem Cell Transplantation , Thrombocytopenia , Male , Female , Humans , Child, Preschool , Congenital Bone Marrow Failure Syndromes , Megakaryocytes/pathology , Thrombocytopenia/diagnosis , Thrombocytopenia/genetics , Thrombocytopenia/therapy
19.
Indian J Pathol Microbiol ; 65(4): 879-885, 2022.
Article En | MEDLINE | ID: mdl-36308198

Purpose: Diagnosis of myelodysplastic syndrome (MDS) primarily relies on the detection of morphological dysplasia in bone marrow. It is subjective and many studies have reported lack of interobserver agreement in reporting. Biopsy is preferred specimen for megakaryocyte assessment. We studied 43 bone marrow biopsies from 40 suspected MDS patient having persistent undiagnosed cytopenia. Utility of immunohistochemistry (IHC) with CD61 and p53 in detecting low-grade MDS was analyzed over routine morphology. Method and Results: Total number of megakaryocytes and number of dysplastic megakaryocytes seen on CD61 IHC was significantly higher than that on H and E stain (P value < 0.05) Out of total 43 biopsies, 13 [30.2%] cases showed dysplastic megakaryocytes that were confirmed by interobserver agreement after IHC. From 30 cases with no significant dysplasia on morphology, 21/43 [48.8%] cases showed >10% dysplastic megakaryocytes on CD61 (P value 0.0001). Nine cases showed no significant dysmegakaryopoiesis with either H and E or CD61 IHC. Fourteen cases could meet higher cut off (30%) of dysmegakaryopoiesis with CD 61 IHC. Out of total 34 cases showing significant dysplasia 7 cases (20.6%) showed positivity for p53 on IHC, which is little less than that reported in low-grade MDS. Conclusion: CD61 IHC is helpful in making correct diagnosis of MDS in cases with minimal dysplasia and should be performed before excluding possibility of MDS on morphology in a patient with undiagnosed cytopenia. IHC is cost effective tool for MDS diagnosis in developing world where access to extensive flow cytometery and molecular testing is limited.


Myelodysplastic Syndromes , Tumor Suppressor Protein p53 , Humans , Immunohistochemistry , Tumor Suppressor Protein p53/analysis , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/pathology , Bone Marrow/pathology , Megakaryocytes/chemistry , Megakaryocytes/pathology , Biomarkers/analysis
20.
Pathol Res Pract ; 237: 154060, 2022 Sep.
Article En | MEDLINE | ID: mdl-35986964

It has been postulated that platelets are produced by fragmentation of the megakaryocytes within the pulmonary circulation rather than budding of their cytoplasm within the bone marrow. Although literature is scarce depicting the levels of the megakaryocytes within the lungs from previously healthy individuals, there are several studies describing the presence of these cells in human necropsy specimens, and it has been hypothesized that their rearrangements could contribute to the pathogenesis of chronic pulmonary vascular disorders. The objective of this study was to describe the characteristics, distribution and total count of megakaryocytes in explants from lung transplant (LTx) recipients based on the final clinicopathological diagnosis, as well as in samples from LTx donors without previously known pulmonary disease. Using the immunohistochemical marker CD61 we quantified and characterized such cells in 20 biopsy samples from LTx donors and in 30 biopsy samples from LTx recipients with different pathologic conditions: vascular disorders of the lungs, obstructive pulmonary disorders and fibrotic lung diseases. Patients suffering from idiopathic pulmonary arterial hypertension (IPAH) showed morphological differences and strikingly higher numbers of the lungs megakaryocytes (264.5 cells/cm2) compared to all the other groups (the average count among donors was 33.55 megakaryocytes/cm2). Such finding could contribute to the understanding of the origin of vasoconstriction, thrombosis and vascular remodeling of the pulmonary circulation - all the basic mechanisms leading to the development of IPAH, as for there is an increasing evidence of several products of platelets and megakaryocytes to be capable of triggering such processes.


Lung Diseases , Megakaryocytes , Humans , Megakaryocytes/pathology , Familial Primary Pulmonary Hypertension/pathology , Pulmonary Artery/pathology , Lung/pathology , Blood Platelets/pathology , Lung Diseases/pathology
...