Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.990
Filter
1.
Arch Microbiol ; 206(8): 355, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017938

ABSTRACT

Cryptococcus neoformans is an opportunistic pathogenic fungus that produces melanin during infection, an important virulence factor in Cryptococcal infections that enhances the ability of the fungus to resist immune defense. This fungus can synthesize melanin from a variety of substrates, including L-DOPA (L-3,4-dihydroxyphenylalanine). Since melanin protects the fungus from various stress factors such as oxidative, nitrosative, extreme heat and cold stress; we investigated the effects of environmental conditions on melanin production and survival. In this study, we investigated the effects of different pH values (5.6, 7.0 and 8.5) and temperatures (30 °C and 37 °C) on melanization and cell survival using a microtiter plate-based melanin production assay and an oxidative stress assay, respectively. In addition, the efficacy of compounds known to inhibit laccase involved in melanin synthesis, i.e., tunicamycin, ß-mercaptoethanol, dithiothreitol, sodium azide and caspofungin on melanization was evaluated and their sensitivity to temperature and pH changes was measured. The results showed that melanin content correlated with pH and temperature changes and that pH 8.5 and 30 °C, were best for melanin production. Besides that, melanin production protects the fungal cells from oxidative stress induced by hydrogen peroxide. Thus, changes in pH and temperature drastically alter melanin production in C. neoformans and it correlates with the fungal survival. Due to the limited antifungal repertoire and the development of resistance in cryptococcal infections, the investigation of environmental conditions in the regulation of melanization and survival of C. neoformans could be useful for future research and clinical phasing.


Subject(s)
Cryptococcus neoformans , Melanins , Oxidative Stress , Temperature , Cryptococcus neoformans/metabolism , Cryptococcus neoformans/drug effects , Melanins/metabolism , Hydrogen-Ion Concentration , Hydrogen Peroxide/metabolism , Laccase/metabolism , Tunicamycin/pharmacology , Caspofungin/pharmacology , Sodium Azide/pharmacology , Mercaptoethanol/pharmacology , Dithiothreitol/pharmacology , Cryptococcosis/microbiology , Microbial Viability/drug effects , Lipopeptides/pharmacology , Lipopeptides/metabolism
2.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000342

ABSTRACT

Post-burn hypertrophic scars often exhibit abnormal pigmentation. Exosomes play important roles in maintaining normal physiological homeostasis and in the pathological development of diseases. This study investigated the effects of the exosomes derived from hypertrophic scar fibroblasts (HTSFs) on melanocytes, which are pigment-producing cells. Normal fibroblasts (NFs) and HTSFs were isolated and cultured from normal skin and hypertrophic scar (HTS) tissue. Both the NF- and HTSF-exosomes were isolated from a cell culture medium and purified using a column-based technique. The normal human epidermal melanocytes were treated with both exosomes at a concentration of 100 µg/mL at different times. The cell proliferation, melanin content in the medium, apoptotic factors, transcription factors, melanin synthesis enzymes, signaling, signal transduction pathways, and activators of transcription factors (STAT) 1, 3, 5, and 6 were investigated. Compared with the Dulbecco's phosphate-buffered saline (DPBS)-treated controls and NF-exosomes, the HTSF-exosomes decreased the melanocyte proliferation and melanin secretion. The molecular patterns of apoptosis, proliferation, melanin synthesis, Smad and non-Smad signaling, and STATs were altered by the treatment with the HTSF-exosomes. No significant differences were observed between the DPBS-treated control and NF-exosome-treated cells. HTSF-derived exosomes may play a role in the pathological epidermal hypopigmentation observed in patients with HTS.


Subject(s)
Cell Proliferation , Cicatrix, Hypertrophic , Exosomes , Fibroblasts , Melanins , Melanocytes , Signal Transduction , Humans , Exosomes/metabolism , Melanocytes/metabolism , Fibroblasts/metabolism , Melanins/biosynthesis , Melanins/metabolism , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Apoptosis , Epidermis/metabolism , Epidermis/pathology , Cells, Cultured , Melanogenesis
3.
Sensors (Basel) ; 24(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39001098

ABSTRACT

The quartz tuning fork (QTF) is a promising instrument for biosensor applications due to its advanced properties such as high sensitivity to physical quantities, cost-effectiveness, frequency stability, and high-quality factor. Nevertheless, the fork's small size and difficulty in modifying the prongs' surfaces limit its wide use in experimental research. Our study presents the development of a QTF immunosensor composed of three active layers: biocompatible natural melanin nanoparticles (MNPs), glutaraldehyde (GLU), and anti-IgG layers, for the detection of immunoglobulin G (IgG). Frequency shifts of QTFs after MNP functionalization, GLU activation, and anti-IgG immobilization were measured with an Asensis QTF F-master device. Using QTF immunosensors that had been modified under optimum conditions, the performance of QTF immunosensors for IgG detection was evaluated. Accordingly, a finite element method (FEM)-based model was produced using the COMSOL Multiphysics software program (COMSOL License No. 2102058) to simulate the effect of deposited layers on the QTF resonance frequency. The experimental results, which demonstrated shifts in frequency with each layer during QTF surface functionalization, corroborated the simulation model predictions. A modelling error of 0.05% was observed for the MNP-functionalized QTF biosensor compared to experimental findings. This study validated a simulation model that demonstrates the advantages of a simulation-based approach to optimize QTF biosensors, thereby reducing the need for extensive laboratory work.


Subject(s)
Biosensing Techniques , Immunoglobulin G , Melanins , Nanoparticles , Quartz , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Nanoparticles/chemistry , Melanins/chemistry , Quartz/chemistry , Immunoassay/methods , Immunoassay/instrumentation , Computer Simulation , Antibodies, Anti-Idiotypic/immunology , Antibodies, Anti-Idiotypic/chemistry , Humans
4.
PLoS One ; 19(7): e0306614, 2024.
Article in English | MEDLINE | ID: mdl-38976656

ABSTRACT

Pigment patterns are incredibly diverse across vertebrates and are shaped by multiple selective pressures from predator avoidance to mate choice. A common pattern across fishes, but for which we know little about the underlying mechanisms, is repeated melanic vertical bars. To understand the genetic factors that modify the level or pattern of vertical barring, we generated a genetic cross of 322 F2 hybrids between two cichlid species with distinct barring patterns, Aulonocara koningsi and Metriaclima mbenjii. We identify 48 significant quantitative trait loci that underlie a series of seven phenotypes related to the relative pigmentation intensity, and four traits related to patterning of the vertical bars. We find that genomic regions that generate variation in the level of eumelanin produced are largely independent of those that control the spacing of vertical bars. Candidate genes within these intervals include novel genes and those newly-associated with vertical bars, which could affect melanophore survival, fate decisions, pigment biosynthesis, and pigment distribution. Together, this work provides insights into the regulation of pigment diversity, with direct implications for an animal's fitness and the speciation process.


Subject(s)
Cichlids , Melanins , Quantitative Trait Loci , Animals , Cichlids/genetics , Cichlids/metabolism , Melanins/metabolism , Melanins/genetics , Pigmentation/genetics , Phenotype , Male , Female
5.
Nat Commun ; 15(1): 5817, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987270

ABSTRACT

Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo. Aspergillus-derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.


Subject(s)
Aspergillus fumigatus , Calcium , Chemokine CXCL1 , Interleukin-8 , Melanins , Melanins/metabolism , Humans , Interleukin-8/metabolism , Calcium/metabolism , Chemokine CXCL1/metabolism , Animals , Respiratory Mucosa/metabolism , Respiratory Mucosa/microbiology , Mice , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Chemokines/metabolism , Mice, Inbred C57BL
6.
Science ; 385(6705): 194-200, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38991070

ABSTRACT

Millions of hibernating bats across North America have died from white-nose syndrome (WNS), an emerging disease caused by a psychrophilic (cold-loving) fungus, Pseudogymnoascus destructans, that invades their skin. Mechanisms of P. destructans invasion of bat epidermis remain obscure. Guided by our in vivo observations, we modeled hibernation with a newly generated little brown bat (Myotis lucifugus) keratinocyte cell line. We uncovered the stealth intracellular lifestyle of P. destructans, which inhibits apoptosis of keratinocytes and spreads through the cells by two epidermal growth factor receptor (EGFR)-dependent mechanisms: active penetration during torpor and induced endocytosis during arousal. Melanin of endocytosed P. destructans blocks endolysosomal maturation, facilitating P. destructans survival and germination after return to torpor. Blockade of EGFR aborts P. destructans entry into keratinocytes.


Subject(s)
Arousal , Ascomycota , Chiroptera , ErbB Receptors , Hibernation , Keratinocytes , Animals , Apoptosis , Ascomycota/physiology , Ascomycota/pathogenicity , Cell Line , Chiroptera/microbiology , Chiroptera/physiology , Endocytosis , ErbB Receptors/metabolism , Keratinocytes/microbiology , Melanins/metabolism
7.
Diagn Pathol ; 19(1): 92, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961434

ABSTRACT

AIMS: Vitiligo is a chronic dermatological condition characterized by the progressive loss of melanocytes, for which traditional therapy has shown limited efficacy. This study aimed to establish a vitiligo model with easy operability, high repeatability, and stable depigmentation to provide a foundation for studying the pathogenesis and developing novel therapies for vitiligo. METHODS: (1) Establishing vitiligo model: Firstly, deliver B16F10 cells to the back skin of C57BL/6 J via intradermal injection (day 0), and the CD4 depletion antibody was injected intraperitoneally on day 4 and 10. Secondly, the melanoma was surgically removed on day 12. Thirdly, CD8 antibody was administered intraperitoneally every fourth day till day 30. (2) Identification of vitiligo model: H&E staining, immunohistochemistry, and immunofluorescence were used to detect the melanocytes. The melanin was detected by transmission electron microscopy (TEM), Lillie ferrous sulfate staining and L-DOPA staining. RESULTS: (1) The back skin and hair began to appear white on day 30. Melanin loss reached peak on day 60; (2) Hematoxylin and eosin (H&E) staining, immunohistochemistry and immunofluorescence results showed melanocytes were reduced. L-DOPA staining, Lillie ferrous sulfate staining and TEM results showed that melanin decreased in the epidermis. CONCLUSION: We successfully establishment a vitiligo mouse model which can be more capable to simulate the pathogenesis of human vitiligo and provide an important basis for the study of pathogenesis and therapy of vitiligo.


Subject(s)
Disease Models, Animal , Melanocytes , Mice, Inbred C57BL , Vitiligo , Animals , Vitiligo/pathology , Vitiligo/metabolism , Vitiligo/therapy , Melanocytes/pathology , Melanocytes/metabolism , Mice , Melanins/metabolism
8.
Methods Mol Biol ; 2816: 253-263, 2024.
Article in English | MEDLINE | ID: mdl-38977604

ABSTRACT

Lipids are compounds involved in many biologic functions including cell structure, metabolism, energy storage and are involved in signaling. A prominent lipid in these functions is cholesterol. Cholesterol also plays a part in the signaling of melanocytes, which contain melanosomes. The maturation of these melanosomes happens during melanocyte growth. The deficit of melanogenesis or melanosome maturation is associated with ocular albinism in the eye. Aberrations of melanosome maturation are also associated with pigment dispersion syndrome. Albinism and pigment dispersion manifestations are systemic. Both melanogenesis and melanocyte maturation are affected by cholesterol metabolism. Cholesterol signaling is a part of many pathways in the body, and evaluating these signals can have implications in systemic disease processes of melanogenesis and melanosome maturation, like ocular albinism and pigment dispersion. Cholesterol is carried by lipoprotein particles. Low-density lipoprotein (LDL) is usually the transport vehicle for cholesterol to reach tissues and organelles. The LDL uptake on cells often sends out a cascade of internal signaling within the cells. We describe here LDL signaling related to lipase activity changes using enzymatic methods with a kit. We describe analyses of cholesterol esters and free cholesterol with liquid chromatography and gas chromatography with or in tandem with mass spectrometry (GC-MS and LC-MS/MS). These analyses will provide insight into melanosome maturation and melanogenesis. The methods described here are applicable to all melanocytes within the body of a model mammalian organism.


Subject(s)
Cholesterol , Iris , Melanocytes , Signal Transduction , Melanocytes/metabolism , Humans , Cholesterol/metabolism , Iris/metabolism , Lipoproteins/metabolism , Melanosomes/metabolism , Lipoproteins, LDL/metabolism , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/methods , Chromatography, Liquid/methods , Lipase/metabolism , Melanins/metabolism , Cholesterol Esters/metabolism
9.
Mikrochim Acta ; 191(7): 435, 2024 06 29.
Article in English | MEDLINE | ID: mdl-38949689

ABSTRACT

A novel scaffold for in situ electrochemical detection of cell biomarkers was developed using electrospun nanofibers and commercial adhesive polymeric membranes. The electrochemical sensing of cell biomarkers requires the cultivation of the cells on/near the (bio)sensor surface in a manner to preserve an appropriate electroactive available surface and to avoid the surface passivation and sensor damage. This can be achieved by employing biocompatible nanofiber meshes that allow the cells to have a normal behavior and do not alter the electrochemical detection. For a better mechanical stability and ease of handling, nylon 6/6 nanofibers were collected on commercial polymeric membranes, at an optimal fiber density, obtaining a double-layered platform. To demonstrate the functionality of the fabricated scaffold, the screening of cellular stress has been achieved integrating melanoma B16-F10 cells and the (bio)sensor components on the transducer whereas the melanin exocytosis was successfully quantified using a commercial electrode. Either directly on the surface of the (bio)sensor or spatially detached from it, the integration of cell cultures in biosensing platforms based on electrospun nanofibers represents a powerful bioanalytical tool able to provide real-time information about the biomarker release, enzyme activity or inhibition, and monitoring of various cellular events.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Nanofibers , Nanofibers/chemistry , Animals , Mice , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Biosensing Techniques/methods , Cell Line, Tumor , Melanins , Biomarkers/analysis , Tissue Scaffolds/chemistry , Exocytosis , Melanoma, Experimental/pathology , Melanoma, Experimental/diagnosis
10.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000472

ABSTRACT

Melanin is produced by melanocytes to protect human skin from harmful ultraviolet radiation. During skin cell renewal, melanin and dead skin cells are disposed of. However, prolonged exposure to ultraviolet rays or aging can disturb this cycle, leading to skin hyperpigmentation due to melanin accumulation. Tyrosinase is a crucial enzyme involved in melanin biosynthesis. Although various compounds, including tyrosine inhibitors, that counteract melanin accumulation have been reported, some, such as hydroquinone, are toxic and can cause vitiligo. Meanwhile, the skin is the largest organ and the outermost layer of the immune system, containing a diverse range of bacteria that produce low-toxicity compounds. In the current study, we aim to identify metabolites produced by skin microbiota that inhibit tyrosinase. Specifically, mushroom tyrosinase served as the study model. Following commensal skin bacteria screening, Corynebacterium tuberculostearicum was found to inhibit tyrosinase activity. The active compound was cyclo(l-Pro-l-Tyr); commercially available cyclo(l-Pro-l-Tyr) also exhibited inhibitory activity. Docking simulations suggested that cyclo(l-Pro-l-Tyr) binds to the substrate-binding site of mushroom tyrosinase, obstructing the substrate pocket and preventing its activity. Hence, cyclo(l-Pro-l-Tyr) might have potential applications as a cosmetic agent and food additive.


Subject(s)
Corynebacterium , Monophenol Monooxygenase , Skin , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Humans , Skin/microbiology , Skin/drug effects , Skin/metabolism , Molecular Docking Simulation , Agaricales/enzymology , Enzyme Inhibitors/pharmacology , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Melanins/metabolism , Melanins/biosynthesis
11.
Exp Dermatol ; 33(7): e15138, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39005203

ABSTRACT

Seborrheic keratosis (SK) is a common benign tumour, often associated with hyperpigmentation. To investigate the mechanism of melanin accumulation in SK, we have conducted comprehensive gene expression and histological analyses. We obtained five pairs of skin samples, including non-lesional and SK samples, from the backs of three male Japanese participants aged 40-59 years. To examine melanocytes and keratinocytes in SK, three pairs of skin samples were separated by laser capture microdissection into the basal layer and the other layer in the epidermis. We performed a comprehensive gene expression analysis to identify differentially expressed genes between non-lesional and SK skin, followed by gene ontology and pathway analysis. We found abnormal morphogenesis and cell proliferation in the basal layer, along with increased immune response and impaired cell differentiation and metabolism in the other layer of SK. We focused on cell proliferation and differentiation, as these are directly associated with melanin accumulation. Immunohistochemical analyses of Ki67, keratin 10, and keratin 14 demonstrated the decreases in the proliferation and early differentiation of the epidermis. Contrarily, no significant changes were observed in terminal differentiation markers, filaggrin and loricrin. Although the number of melanocytes was higher in SK than in non-lesional skin, melanogenic activity showed no difference. These results indicated that melanin accumulation in SK is caused by delayed melanin excretion due to reduced turnover around the basal and spinous layers of the epidermis and melanin production due to an increased number of melanocytes. Our findings provide new insights for therapeutic approaches in SK.


Subject(s)
Cell Differentiation , Cell Proliferation , Filaggrin Proteins , Keratinocytes , Keratosis, Seborrheic , Melanins , Melanocytes , Humans , Melanocytes/metabolism , Melanocytes/pathology , Keratosis, Seborrheic/metabolism , Keratosis, Seborrheic/pathology , Male , Melanins/metabolism , Middle Aged , Keratinocytes/metabolism , Adult , Epidermis/metabolism , Epidermis/pathology , Membrane Proteins
12.
Georgian Med News ; (349): 6-11, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38963193

ABSTRACT

A comparative study of the morphological and functional state of the microvasculature of the substantia nigra pars compacta of the brain (SNc) and bone marrow of rats was carried out using the rotenone model of Parkinson's disease (PD) and with subsequent administration of bacterial melanin (BM). The detection of microvasculature was carried out according to the histoangiological method of Chilingaryan. Animal behavior was studied using a cylinder test. An analysis of morphometric data showed that, in comparison with control animals, experimental animals with rotenone dysfunction showed an increase in capillary diameters and a general reduction in the capillary link in SNc. Behavioral tests have shown that the animals with rotenone intoxication exhibit a form of behavior inherent in PD (freezing, immobility, apathy). Under the influence of BM, the diameter of the capillaries in the SNc approaches the norm, and the capillary link is restored. Due to the protective effect of BM in rats with rotenone intoxication, the trophism of the brain tissue increases as a result of the approach of the lumen of the vessels to the norm and the opening of new branches in the capillary network, an increase in the density of capillaries, which ensures the safety of nerve cells. Animal behavior indicators are close to normal. A comprehensive analysis of cytogenetic data of rat bone marrow was also carried out. In animals with PD, compared to controls, there is a significant increase in the amount of polyploid cells (PC) and a decrease in the level of mitotic index (MI), which usually manifests itself in inflammatory processes and is accompanied by inhibition of bone marrow hematopoiesis. Under the influence of BM, a tendency towards normalization of MI was noted and a significant decrease in the percentage of PC was obtained, which possibly indicates its beneficial effect. The data obtained suggest that BM can be used as a therapeutic agent in the treatment of PD.


Subject(s)
Behavior, Animal , Disease Models, Animal , Melanins , Rotenone , Animals , Melanins/metabolism , Rats , Behavior, Animal/drug effects , Male , Bone Marrow/drug effects , Parkinson Disease/pathology , Pars Compacta/drug effects , Pars Compacta/pathology , Pars Compacta/metabolism , Rats, Wistar , Capillaries/drug effects , Capillaries/pathology
13.
Carbohydr Polym ; 340: 122215, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38857996

ABSTRACT

The healing of diabetic wounds is significantly impeded due to severe oxidative stress and hindered angiogenesis, presenting a major challenge to clinical treatment. In this context, we introduces a novel hydrogel dressing strategy that uniquely combines α-lipoic acid-modified chitosan (LAMC) and melanin nanoparticles (MNPs). This innovative hydrogel, LAMC@MNPs, is formulated to gel under ultraviolet (UV) light without the need for a photoinitiator, simplifying the preparation process and potentially enhancing safety. Our experimental results demonstrate that the LAMC@MNPs hydrogel not only exhibits superior skin adhesion, with an average strength of 56.59 ± 3.16 KPa, but also effectively alleviates oxidative stress and accelerates vascular regeneration and wound healing. This is achieved by promoting cell migration and scavenging free radicals, addressing the critical barriers in diabetic wound care. The combination of these materials and their functional benefits presents a promising new approach to diabetic wound treatment.


Subject(s)
Chitosan , Diabetes Mellitus, Experimental , Hydrogels , Melanins , Thioctic Acid , Wound Healing , Wound Healing/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Thioctic Acid/chemistry , Thioctic Acid/pharmacology , Animals , Melanins/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Nanoparticles/chemistry , Mice , Oxidative Stress/drug effects , Male , Humans , Cell Movement/drug effects , Skin/drug effects , Rats , Rats, Sprague-Dawley
14.
Sci Rep ; 14(1): 13979, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886457

ABSTRACT

Hyperspectral imaging (HSI) is a new emerging modality useful for the noncontact assessment of free flap perfusion. This measurement technique relies on the optical properties within the tissue. Since the optical properties of hemoglobin (Hb) and melanin overlap, the results of the perfusion assessment and other tissue-specific parameters are likely to be distorted by the melanin, especially at higher melanin concentrations. Many spectroscopic devices have been shown to struggle with a melanin related bias, which results in a clinical need to improve non-invasive perfusion assessment, especially for a more pigmented population. This study investigated the influence of skin tones on tissue indices measurements using HSI. In addition, other factors that might affect HSI, such as age, body mass index (BMI), sex or smoking habits, were also considered. Therefore, a prospective feasibility study was conducted, including 101 volunteers from whom tissue indices measurements were performed on 16 different body sites. Skin tone classification was performed using the Fitzpatrick skin type classification questionnaire, and the individual typology angle (ITA) acquired from the RGB images was calculated simultaneously with the measurements. Tissue indices provided by the used HSI-device were correlated to the possible influencing factors. The results show that a dark skin tone and, therefore, higher levels of pigmentation influence the HSI-derived tissue indices. In addition, possible physiological factors influencing the HSI-measurements were found. In conclusion, the HSI-based tissue indices can be used for perfusion assessment for people with lighter skin tone levels but show limitations in people with darker skin tones. Furthermore, it could be used for a more individual perfusion assessment if different physiological influencing factors are respected.


Subject(s)
Free Tissue Flaps , Hyperspectral Imaging , Skin Pigmentation , Humans , Female , Male , Adult , Middle Aged , Hyperspectral Imaging/methods , Skin/blood supply , Skin/diagnostic imaging , Melanins/metabolism , Aged , Prospective Studies , Young Adult , Feasibility Studies , Hemoglobins/metabolism , Hemoglobins/analysis
15.
Brain Behav ; 14(6): e3573, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898625

ABSTRACT

INTRODUCTION: Anorexia nervosa (AN) is a debilitating and potentially chronic eating disorder, characterized by low hedonic drive toward food, which has been linked with perturbations in both reward processing and dopaminergic activity. Neuromelanin-sensitive magnetic resonance imaging (MRI) is an emerging method to index midbrain neuromelanin-a by-product of dopaminergic synthesis. The assessment of midbrain neuromelanin, and its association with AN psychopathology and reward-related processes, may provide critical insights into reward circuit function in AN. METHODS: This study will incorporate neuromelanin-sensitive MRI into an existing study of appetitive conditioning in those with AN. Specifically, those with acute and underweight AN (N = 30), those with weight-restored AN (N = 30), and age-matched healthy controls (N = 30) will undergo clinical assessment of current and previous psychopathology, in addition to structural neuromelanin-sensitive MRI, diffusion MRI, and functional MRI (fMRI) during appetitive conditioning. CONCLUSION: This study will be among the first to interrogate midbrain neuromelanin in AN-a disorder characterized by altered dopaminergic activity. Results will help establish whether abnormalities in the midbrain synthesis of dopamine are evident in those with AN and are associated with symptomatic behavior and reduced ability to experience pleasure and reward.


Subject(s)
Anorexia Nervosa , Magnetic Resonance Imaging , Melanins , Mesencephalon , Reward , Humans , Melanins/metabolism , Anorexia Nervosa/diagnostic imaging , Anorexia Nervosa/metabolism , Anorexia Nervosa/physiopathology , Mesencephalon/diagnostic imaging , Mesencephalon/metabolism , Magnetic Resonance Imaging/methods , Female , Adult , Young Adult , Adolescent , Male , Pre-Registration Publication
16.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892049

ABSTRACT

Nanotechnology is revolutionizing fields of high social and economic impact. such as human health preservation, energy conversion and storage, environmental decontamination, and art restoration. However, the possible global-scale application of nanomaterials is raising increasing concerns, mostly related to the possible toxicity of materials at the nanoscale. The possibility of using nanomaterials in cosmetics, and hence in products aimed to be applied directly to the human body, even just externally, is strongly debated. Preoccupation arises especially from the consideration that nanomaterials are mostly of synthetic origin, and hence are often seen as "artificial" and their effects as unpredictable. Melanin, in this framework, is a unique material since in nature it plays important roles that specific cosmetics are aimed to cover, such as photoprotection and hair and skin coloration. Moreover, melanin is mostly present in nature in the form of nanoparticles, as is clearly observable in the ink of some animals, like cuttlefish. Moreover, artificial melanin nanoparticles share the same high biocompatibility of the natural ones and the same unique chemical and photochemical properties. Melanin is hence a natural nanocosmetic agent, but its actual application in cosmetics is still under development, also because of regulatory issues. Here, we critically discuss the most recent examples of the application of natural and biomimetic melanin to cosmetics and highlight the requirements and future steps that would improve melanin-based cosmetics in the view of future applications in the everyday market.


Subject(s)
Hair Color , Melanins , Melanins/chemistry , Melanins/metabolism , Humans , Animals , Cosmetics/chemistry , Nanoparticles/chemistry , Skin Pigmentation/drug effects , Nanostructures/chemistry , Nanotechnology/methods
17.
J Oleo Sci ; 73(6): 825-837, 2024.
Article in English | MEDLINE | ID: mdl-38825536

ABSTRACT

Hair is important to our appearance as well as to protect our heads. Human hair mainly consists of proteins (80-85%), melanin pigments (0-5%), water (10-13%), and lipids (1-6%). The physicochemical properties of hair have been studied for over 100 years. However, they are not yet thoroughly understood. In this review, recent progress and the latest findings are summarized from the following three perspectives: structural characteristics, delivery and distribution of active ingredients, and hair as a template. The structural characteristics of hair have been mainly investigated by microscopic and/or spectroscopic techniques such as atomic force microscopy integrated with infrared spectroscopy (AFM-IR) and rheological measurements. The distribution of active ingredients has been generally evaluated through techniques such as nanoscale secondary ion mass spectrometry (NanoSIMS). And finally, attempts to explore the potential of hair to be used as a substrate for flexible device fabrication will be introduced.


Subject(s)
Hair , Hair/chemistry , Humans , Microscopy, Atomic Force , Melanins , Chemical Phenomena , Spectrometry, Mass, Secondary Ion/methods , Rheology , Spectrophotometry, Infrared/methods , Lipids/analysis , Lipids/chemistry , Water , Proteins/analysis
18.
Int J Nanomedicine ; 19: 5479-5492, 2024.
Article in English | MEDLINE | ID: mdl-38863646

ABSTRACT

Background: In recent years, PD-L1 has been primarily utilized as an immune checkpoint marker in cancer immunotherapy. However, due to tumor heterogeneity, the response rate to such therapies often falls short of expectations. In addition to its role in immunotherapy, PD-L1 serves as a specific target on the surface of tumor cells for targeted diagnostic and therapeutic interventions. There is an absence of a fully developed PD-L1-targeted diagnostic and therapeutic probe for clinical use, which constrains the exploration and clinical exploitation of this target. Methods and Results: In this study, we engineered a PD-L1-targeted probe with multimodal imaging and dual therapeutic functionalities utilizing organic melanin nanoparticles. Functionalization with the WL12-SH peptide endowed the nanoprobe with specific targeting capabilities. Subsequent radiolabeling with 89Zr (half-life: 100.8 hours) and chelation of Mn2+ ions afforded the probe the capacity for simultaneous PET and MRI imaging modalities. Cellular uptake assays revealed pronounced specificity, with -positive cells exhibiting significantly higher uptake than -negative counterparts (p < 0.05). Dual-modal PET/MRI imaging delineated rapid and sustained accumulation at the neoplastic site, yielding tumor-to-non-tumor (T/NT) signal ratios at 24 hours post-injection of 16.67±3.45 for PET and 6.63±0.64 for MRI, respectively. We conjugated the therapeutic radionuclide 131I (half-life: 8.02 days) to the construct and combined low-dose radiotherapy and photothermal treatment (PTT), culminating in superior antitumor efficacy while preserving a high safety profile. The tumors in the cohort receiving the dual-modality therapy exhibited significantly reduced volume and weight compared to those in the control and monotherapy groups. Conclusion: We developed and applied a novel -targeted multimodal theranostic nanoprobe, characterized by its high specificity and superior imaging capabilities as demonstrated in PET/MRI modalities. Furthermore, this nanoprobe facilitates potent therapeutic efficacy at lower radionuclide doses when used in conjunction with PTT.


Subject(s)
B7-H1 Antigen , Magnetic Resonance Imaging , Multimodal Imaging , Nanoparticles , Positron-Emission Tomography , Theranostic Nanomedicine , Theranostic Nanomedicine/methods , Animals , B7-H1 Antigen/metabolism , Positron-Emission Tomography/methods , Nanoparticles/chemistry , Humans , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Cell Line, Tumor , Mice , Melanins/chemistry , Zirconium/chemistry , Radioisotopes/chemistry , Female , Immunotherapy/methods
19.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892114

ABSTRACT

This study presents the effects of treating polystyrene (PS) cell culture plastic with oxidoreductase enzyme laccase and the catechol substrates caffeic acid (CA), L-DOPA, and dopamine on the culturing of normal human epidermal melanocytes (NHEMs) and human embryonal carcinoma cells (NTERA-2). The laccase-substrate treatment improved PS hydrophilicity and roughness, increasing NHEM and NTERA-2 adherence, proliferation, and NHEM melanogenesis to a level comparable with conventional plasma treatment. Cell adherence dynamics and proliferation were evaluated. The NHEM endpoint function was quantified by measuring melanin content. PS surfaces treated with laccase and its substrates demonstrated the forming of polymer-like structures. The surface texture roughness gradient and the peak curvature were higher on PS treated with a combination of laccase and substrates than laccase alone. The number of adherent NHEM and NTERA-2 was significantly higher than on the untreated surface. The proliferation of NHEM and NTERA-2 correspondingly increased on treated surfaces. NHEM melanin content was enhanced 6-10-fold on treated surfaces. In summary, laccase- and laccase-substrate-modified PS possess improved PS surface chemistry/hydrophilicity and altered roughness compared to untreated and plasma-treated surfaces, facilitating cellular adherence, subsequent proliferation, and exertion of the melanotic phenotype. The presented technology is easy to apply and creates a promising custom-made, substrate-based, cell-type-specific platform for both 2D and 3D cell culture.


Subject(s)
Caffeic Acids , Cell Proliferation , Dopamine , Laccase , Melanins , Melanocytes , Polystyrenes , Humans , Laccase/metabolism , Melanocytes/metabolism , Melanocytes/drug effects , Cell Proliferation/drug effects , Polystyrenes/chemistry , Caffeic Acids/pharmacology , Caffeic Acids/chemistry , Dopamine/metabolism , Melanins/metabolism , Cell Adhesion/drug effects , Levodopa/pharmacology , Levodopa/metabolism , Levodopa/chemistry , Surface Properties , Cell Line, Tumor , Embryonal Carcinoma Stem Cells/metabolism , Embryonal Carcinoma Stem Cells/drug effects
20.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892387

ABSTRACT

The skin-brain axis has been suggested to play a role in several pathophysiological conditions, including opioid addiction, Parkinson's disease and many others. Recent evidence suggests that pathways regulating skin pigmentation may directly and indirectly regulate behaviour. Conversely, CNS-driven neural and hormonal responses have been demonstrated to regulate pigmentation, e.g., under stress. Additionally, due to the shared neuroectodermal origins of the melanocytes and neurons in the CNS, certain CNS diseases may be linked to pigmentation-related changes due to common regulators, e.g., MC1R variations. Furthermore, the HPA analogue of the skin connects skin pigmentation to the endocrine system, thereby allowing the skin to index possible hormonal abnormalities visibly. In this review, insight is provided into skin pigment production and neuromelanin synthesis in the brain and recent findings are summarised on how signalling pathways in the skin, with a particular focus on pigmentation, are interconnected with the central nervous system. Thus, this review may supply a better understanding of the mechanism of several skin-brain associations in health and disease.


Subject(s)
Brain , Skin Pigmentation , Skin , Ultraviolet Rays , Humans , Skin Pigmentation/radiation effects , Brain/metabolism , Animals , Skin/metabolism , Skin/radiation effects , Ultraviolet Rays/adverse effects , Melanins/metabolism , Melanins/biosynthesis , Signal Transduction , Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...