Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 516
Filter
1.
Molecules ; 29(19)2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39407463

ABSTRACT

The oral cavity is a frequent site for head and neck cancers, which rank as the sixth most common cancer globally, with a 5-year survival rate slightly over 50%. Current treatments are limited, and resistance to therapy remains a significant clinical obstacle. IsCT1, a membrane-active peptide derived from the venom of the scorpion Opisthacanthus madagascariensis, has shown antitumor effects in various cancer cell lines, including breast cancer and chronic myeloid leukemia. However, its hemolytic action limits its potential therapeutic use. This study aims to assess the antitumor and antiproliferative activities of synthetic peptides derived from IsCT1 (IsCT-P, AC-AFPK-IsCT1, AFPK-IsCT1, AC-KKK-IsCT1, and KKK-IsCT1) in the context of oral squamous cell carcinoma. We evaluated the cytotoxic effects of these peptides on tongue squamous cell carcinoma cells and normal cells, as well as their impact on cell cycle phases, the expression of proliferation markers, modulators of cell death pathways, and mitochondrial potential. Our results indicate that the IsCT1 derivatives IsCT-P and AC-AFPK-IsCT1 possess cytotoxic properties towards squamous cell carcinoma cells, reducing mitochondrial membrane potential and the proliferative index. The treatment of cancer cells with AC-AFPK-IsCT1 led to a positive modulation of pro-apoptotic markers p53 and caspases 3 and 8, a decrease in PCNA and Cyclin D1 expression, and cell cycle arrest in the S phase. Notably, contrary to the parental IsCT1 peptide, AC-AFPK-IsCT1 did not exhibit hemolytic activity or cytotoxicity towards normal cells. Therefore, AC-AFPK-IsCT1 might be a viable therapeutic option for head and neck cancer treatment.


Subject(s)
Antineoplastic Agents , Carcinoma, Squamous Cell , Cell Proliferation , Mouth Neoplasms , Scorpion Venoms , Humans , Cell Proliferation/drug effects , Cell Line, Tumor , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Scorpion Venoms/pharmacology , Scorpion Venoms/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Peptides/pharmacology , Peptides/chemistry , Peptides/chemical synthesis , Apoptosis/drug effects , Scorpions/chemistry , Membrane Potential, Mitochondrial/drug effects , Cell Cycle/drug effects
2.
Molecules ; 29(19)2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39407583

ABSTRACT

Visceral leishmaniasis (VL), caused by protozoa of the genus Leishmania, remains a significant public health concern due to its potentially lethal nature if untreated. Current chemotherapy options are limited by severe toxicity and drug resistance. Derivatives of 1,2,4-oxadiazole have emerged as promising drug candidates due to their broad biological activity. This study investigated the effects of novel 1,2,4-oxadiazole derivatives (Ox1-Ox7) on Leishmania infantum, the etiological agent of VL. In silico predictions using SwissADME suggest that these compounds have high oral absorption and good bioavailability. Among them, Ox1 showed the most promise, with higher selectivity against promastigotes and lower cytotoxicity towards L929 fibroblasts and J774.G8 macrophages. Ox1 exhibited selectivity indices of 18.7 and 61.7 against L. infantum promastigotes and amastigotes, respectively, compared to peritoneal macrophages. Ultrastructural analyses revealed severe morphological damage in both parasite forms, leading to cell death. Additionally, Ox1 decreased the mitochondrial membrane potential in promastigotes, as shown by flow cytometry. Molecular docking and dynamic simulations indicated a strong affinity of Ox1 for the L. infantum CYP51 enzyme. Overall, Ox1 is a promising and effective compound against L. infantum.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Molecular Docking Simulation , Molecular Dynamics Simulation , Oxadiazoles , Protozoan Proteins , Leishmania infantum/drug effects , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Animals , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Mice , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Cell Line , Membrane Potential, Mitochondrial/drug effects
3.
Molecules ; 29(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39274835

ABSTRACT

The cell signaling pathways involved in the antiproliferative activities of T. rosea inner bark remain unexplored. This study evaluated the apoptotic effects of two iridoids from the inner bark of T. rosea and apicidin on THP-1 cells. The cytotoxic effects of the extract and the pure compounds on THP-1 and Jurkat cells were also evaluated using the MTT assay. The apoptotic effect was determined by measuring the mitochondrial membrane potential. The expression of mRNA and MAPK kinase, Bax, and Bcl-2 proteins was detected by Western blotting and RT-qPCR, respectively. The extract and the compounds evaluated increased the percentage of apoptotic cells. Depolarization of the mitochondrial membrane was observed, and the number of cells in the G0/G1 phase increased. Catalposide and specioside significantly increased p38 protein expression, mostly in cells pretreated with apicidin. The p38 MAPK signaling pathway is at least one of the pathways by which the n-butanol extract obtained from Tabebuia rosea, catalposide, and specioside exerts its apoptotic effect on THP-1 cells, and this effect generates a response in the G0/G1 phase and subsequent cell death. In addition, there was depolarization of the mitochondrial membrane, an effect that was related to the participation of the proapoptotic protein Bax.


Subject(s)
Apoptosis , Membrane Potential, Mitochondrial , Plant Bark , Plant Extracts , Tabebuia , Humans , Apoptosis/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Bark/chemistry , Membrane Potential, Mitochondrial/drug effects , Tabebuia/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Jurkat Cells , Leukemia/drug therapy , Leukemia/metabolism , Leukemia/pathology , 1-Butanol/chemistry , p38 Mitogen-Activated Protein Kinases/metabolism , THP-1 Cells , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects
4.
Chem Biol Interact ; 403: 111216, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39218371

ABSTRACT

Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania and is responsible for more than 1 million new cases and 70,000 deaths annually worldwide. Treatment has high costs, toxicity, complex and long administration time, several adverse effects, and drug-resistant strains, therefore new therapies are urgently needed. Synthetic compounds have been highlighted in the medicinal chemistry field as a strong option for drug development against different diseases. Organic salts (OS) have multiple biological activities, including activity against protozoa such as Leishmania spp. This study aimed to investigate the in vitro leishmanicidal activity and death mechanisms of a thiohydantoin salt derived from l-arginine (ThS) against Leishmania amazonensis. We observed that ThS treatment inhibited promastigote proliferation, increased ROS production, phosphatidylserine exposure and plasma membrane permeabilization, loss of mitochondrial membrane potential, lipid body accumulation, autophagic vacuole formation, cell cycle alteration, and morphological and ultrastructural changes, showing parasites death. Additionally, ThS presents low cytotoxicity in murine macrophages (J774A.1), human monocytes (THP-1), and sheep erythrocytes. ThS in vitro cell treatment reduced the percentage of infected macrophages and the number of amastigotes per macrophage by increasing ROS production and reducing TNF-α levels. These results highlight the potential of ThS among thiohydantoins, mainly related to the arginine portion, as a leishmanicidal drug for future drug strategies for leishmaniasis treatment. Notably, in silico investigation of key targets from L. amazonensis, revealed that a ThS compound from the l-arginine amino acid strongly interacts with arginase (ARG) and TNF-α converting enzyme (TACE), suggesting its potential as a Leishmania inhibitor.


Subject(s)
Arginine , Leishmania , Macrophages , Molecular Docking Simulation , Reactive Oxygen Species , Animals , Arginine/pharmacology , Arginine/chemistry , Arginine/metabolism , Mice , Humans , Leishmania/drug effects , Reactive Oxygen Species/metabolism , Macrophages/drug effects , Macrophages/metabolism , Macrophages/parasitology , Membrane Potential, Mitochondrial/drug effects , Sheep , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Erythrocytes/drug effects , Erythrocytes/parasitology , Erythrocytes/metabolism , Cell Line , Leishmania mexicana/drug effects , Leishmania mexicana/metabolism , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism
5.
Biol Res ; 57(1): 57, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39175101

ABSTRACT

BACKGROUND: While calcium is known to play a crucial role in mammalian sperm physiology, how it flows in and out of the male gamete is not completely understood. Herein, we investigated the involvement of Na+/Ca2+ exchangers (NCX) in mammalian sperm capacitation. Using the pig as an animal model, we first confirmed the presence of NCX1 and NCX2 isoforms in the sperm midpiece. Next, we partially or totally blocked Ca2+ outflux (forward transport) via NCX1/NCX2 with different concentrations of SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline; 0, 0.5, 5 and 50 µM) and Ca2+ influx (reverse transport) with SN6 (ethyl 2-[[4-[(4-nitrophenyl)methoxy]phenyl]methyl]-1,3-thiazolidine-4-carboxylate; 0, 0.3, 3 or 30 µM). Sperm were incubated under capacitating conditions for 180 min; after 120 min, progesterone was added to induce the acrosome reaction. At 0, 60, 120, 130, and 180 min, sperm motility, membrane lipid disorder, acrosome integrity, mitochondrial membrane potential (MMP), tyrosine phosphorylation of sperm proteins, and intracellular levels of Ca2+, reactive oxygen species (ROS) and superoxides were evaluated. RESULTS: Partial and complete blockage of Ca2+ outflux and influx via NCX induced a significant reduction of sperm motility after progesterone addition. Early alterations on sperm kinematics were also observed, the effects being more obvious in totally blocked than in partially blocked samples. Decreased sperm motility and kinematics were related to both defective tyrosine phosphorylation and mitochondrial activity, the latter being associated to diminished MMP and ROS levels. As NCX blockage did not affect the lipid disorder of plasma membrane, the impaired acrosome integrity could result from reduced tyrosine phosphorylation. CONCLUSIONS: Inhibition of outflux and influx of Ca2+ triggered similar effects, thus indicating that both forward and reverse Ca2+ transport through NCX exchangers are essential for sperm capacitation.


Subject(s)
Calcium , Sodium-Calcium Exchanger , Sperm Capacitation , Animals , Male , Sperm Capacitation/drug effects , Sodium-Calcium Exchanger/metabolism , Sodium-Calcium Exchanger/drug effects , Calcium/metabolism , Swine , Spermatozoa/drug effects , Reactive Oxygen Species/metabolism , Sperm Motility/drug effects , Acrosome Reaction/drug effects , Membrane Potential, Mitochondrial/drug effects
6.
Int J Mol Sci ; 25(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39063180

ABSTRACT

T-cell malignancies, including T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoblastic lymphoma (T-LBL), present significant challenges to treatment due to their aggressive nature and chemoresistance. Chemotherapies remain a mainstay for their management, but the aggressiveness of these cancers and their associated toxicities pose limitations. Immunepotent CRP (ICRP), a bovine dialyzable leukocyte extract, has shown promise in inducing cytotoxicity against various cancer types, including hematological cancers. In this study, we investigated the combined effect of ICRP with a panel of chemotherapies on cell line models of T-ALL and T-LBL (CEM and L5178Y-R cells, respectively) and its impact on immune system cells (peripheral blood mononuclear cells, splenic and bone marrow cells). Our findings demonstrate that combining ICRP with chemotherapies enhances cytotoxicity against tumoral T-cell lymphoblasts. ICRP + Cyclophosphamide (CTX) cytotoxicity is induced through a caspase-, reactive oxygen species (ROS)-, and calcium-dependent mechanism involving the loss of mitochondrial membrane potential, an increase in ROS production, and caspase activation. Low doses of ICRP in combination with CTX spare non-tumoral immune cells, overcome the bone marrow-induced resistance to CTX cell death, and improves the CTX antitumor effect in vivo in syngeneic Balb/c mice challenged with L5178Y-R. This led to a reduction in tumor volume and a decrease in Ki-67 proliferation marker expression and the granulocyte/lymphocyte ratio. These results set the basis for further research into the clinical application of ICRP in combination with chemotherapeutic regimens for improving outcomes in T-cell malignancies.


Subject(s)
Cyclophosphamide , Reactive Oxygen Species , Animals , Mice , Humans , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Cyclophosphamide/pharmacology , Drug Synergism , Membrane Potential, Mitochondrial/drug effects , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Apoptosis/drug effects , Cattle , Cell Death/drug effects , Antineoplastic Agents/pharmacology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice, Inbred BALB C , Cell Proliferation/drug effects
7.
Biol Res ; 57(1): 44, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965573

ABSTRACT

BACKGROUND: Exposure of humans and animals to heavy metals is increasing day-by-day; thus, lead even today remains of significant public health concern. According to CDC, blood lead reference value (BLRV) ranges from 3.5 µg/dl to 5 µg/dl in adults. Recently, almost 2.6% decline in male fertility per year has been reported but the cause is not well established. Lead (Pb2+) affects the size of testis, semen quality, and secretory functions of prostate. But the molecular mechanism(s) of lead toxicity in sperm cells is not clear. Thus, present study was undertaken to evaluate the adverse effects of lead acetate at environmentally relevant exposure levels (0.5, 5, 10 and 20 ppm) on functional and molecular dynamics of spermatozoa of bucks following in vitro exposure for 15 min and 3 h. RESULTS: Lead significantly decreased motility, viable count, and motion kinematic patterns of spermatozoa like curvilinear velocity, straight-line velocity, average path velocity, beat cross frequency and maximum amplitude of head lateral displacement even at 5 ppm concentration. Pb2+ modulated intracellular cAMP and Ca2+ levels in sperm cells through L-type calcium channels and induced spontaneous or premature acrosome reaction (AR) by increasing tyrosine phosphorylation of sperm proteins and downregulated mitochondrial transmembrane potential. Lead significantly increased DNA damage and apoptosis as well. Electron microscopy studies revealed Pb2+ -induced deleterious effects on plasma membrane of head and acrosome including collapsed cristae in mitochondria. CONCLUSIONS: Pb2+ not only mimics Ca2+ but also affects cellular targets involved in generation of cAMP, mitochondrial transmembrane potential, and ionic exchange. Lead seems to interact with Ca2+ channels because of charge similarity and probably enters the sperm cell through these channels and results in hyperpolarization. Our findings also indicate lead-induced TP and intracellular Ca2+ release in spermatozoa which in turn may be responsible for premature acrosome exocytosis which is essential feature of capacitation for fertilization. Thus, lead seems to reduce the fertilizing capacity of spermatozoa even at 0.5 ppm concentrations.


Subject(s)
Acrosome Reaction , Acrosome , Calcium , Lead , Sperm Motility , Spermatozoa , Male , Spermatozoa/drug effects , Calcium/metabolism , Sperm Motility/drug effects , Animals , Acrosome/drug effects , Lead/toxicity , Acrosome Reaction/drug effects , Cyclic AMP/metabolism , Cattle , Membrane Potential, Mitochondrial/drug effects , Signal Transduction/drug effects , Semen Analysis , DNA Damage/drug effects , Organometallic Compounds/toxicity , Organometallic Compounds/pharmacology
8.
Chem Res Toxicol ; 37(8): 1269-1282, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39058280

ABSTRACT

Epidemiological and experimental studies have demonstrated that combined exposure to the pesticides paraquat (PQ) and maneb (MB) increases the risk of developing Parkinson's disease. However, the mechanisms mediating the toxicity induced by combined exposure to these pesticides are not well understood. The aim of this study was to investigate the mechanism(s) of neurotoxicity induced by exposure to the pesticides PQ and MB isolated or in association (PQ + MB) in SH-SY5Y neuroblastoma cells. PQ + MB exposure for 24 and 48 h decreased cell viability and disrupted cell membrane integrity. In addition, PQ + MB exposure for 12 h decreased the mitochondrial membrane potential. PQ alone increased reactive oxygen species (ROS) and superoxide anion generation and decreased the activity of mitochondrial complexes I and II at 12 h of exposure. MB alone increased ROS generation and depleted intracellular glutathione (GSH) within 6 h of exposure. In contrast, MB exposure for 12 h increased the GSH levels, the glutamate cysteine ligase (GCL, the rate-limiting enzyme in the GSH synthesis pathway) activity, and increased nuclear Nrf2 staining. Pretreatment with buthionine sulfoximine (BSO, a GCL inhibitor) abolished the MB-mediated GSH increase, indicating that MB increases GSH synthesis by upregulating GCL, probably by the activation of the Nrf2/ARE pathway. BSO pretreatment, which did not modify cell viability per se, rendered cells more sensitive to MB-induced toxicity. In contrast, treatment with the antioxidant N-acetylcysteine protected cells from MB-induced toxicity. These findings show that the combined exposure of SH-SY5Y cells to PQ and MB induced a cytotoxic effect higher than that observed when cells were subjected to individual exposures. Such a higher effect seems to be related to additive toxic events resulting from PQ and MB exposures. Thus, our study contributes to a better understanding of the toxicity of PQ and MB in combined exposures.


Subject(s)
Cell Survival , Maneb , Neuroblastoma , Paraquat , Reactive Oxygen Species , Paraquat/toxicity , Humans , Maneb/toxicity , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Neuroblastoma/pathology , Neuroblastoma/metabolism , Glutathione/metabolism , Membrane Potential, Mitochondrial/drug effects , Cell Line, Tumor , NF-E2-Related Factor 2/metabolism , Buthionine Sulfoximine/pharmacology
9.
Arch Biochem Biophys ; 758: 110059, 2024 08.
Article in English | MEDLINE | ID: mdl-38936683

ABSTRACT

BACKGROUND: It has been previously demonstrated that the maintenance of ischemic acidic pH or the delay of intracellular pH recovery at the onset of reperfusion decreases ischemic-induced cardiomyocyte death. OBJECTIVE: To examine the role played by nitric oxide synthase (NOS)/NO-dependent pathways in the effects of acidic reperfusion in a regional ischemia model. METHODS: Isolated rat hearts perfused by Langendorff technique were submitted to 40 min of left coronary artery occlusion followed by 60 min of reperfusion (IC). A group of hearts received an acid solution (pH = 6.4) during the first 2 min of reperfusion (AR) in absence or in presence of l-NAME (NOS inhibitor). Infarct size (IS) and myocardial function were determined. In cardiac homogenates, the expression of P-Akt, P-endothelial and inducible isoforms of NOS (P-eNOS and iNOS) and the level of 3-nitrotyrosine were measured. In isolated cardiomyocytes, the intracellular NO production was assessed by confocal microscopy, under control and acidic conditions. Mitochondrial swelling after Ca2+ addition and mitochondrial membrane potential (Δψ) were also determined under control and acidosis. RESULTS: AR decreased IS, improved postischemic myocardial function recovery, increased P-Akt and P-eNOS, and decreased iNOS and 3-nitrotyrosine. NO production increased while mitochondrial swelling and Δψ decreased in acidic conditions. l-NAME prevented the beneficial effects of AR. CONCLUSIONS: Our data strongly supports that a brief acidic reperfusion protects the myocardium against the ischemia-reperfusion injury through eNOS/NO-dependent pathways.


Subject(s)
Nitric Oxide , Animals , Hydrogen-Ion Concentration , Nitric Oxide/metabolism , Male , Rats , Rats, Wistar , Nitric Oxide Synthase Type III/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/drug therapy , NG-Nitroarginine Methyl Ester/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Nitric Oxide Synthase Type II/metabolism , Membrane Potential, Mitochondrial/drug effects , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Nitric Oxide Synthase/metabolism
10.
Phytomedicine ; 131: 155796, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852475

ABSTRACT

BACKGROUND AND PURPOSE: Leishmaniasis is a globally prevalent vector-borne disease caused by parasites of the genus Leishmania. The available chemotherapeutic drugs present problems related to efficacy, emergence of parasite resistance, toxicity and high cost, justifying the search for new drugs. Several classes of compounds have demonstrated activity against Leishmania, including icetexane-type diterpenes, previously isolated from Salvia and other Lamiaceae genera. Thus, in this study, compounds of Salvia procurrens were investigated for their leishmanicidal and immunomodulatory activities. METHODS: The exudate of S. procurrens was obtained by rapidly dipping the aerial parts in dichloromethane. The compounds were isolated by column and centrifugal planar chromatography over silica gel. The effects on L. amazonensis growth, survival, membrane integrity, reactive oxygen species (ROS) generation, mitochondrial membrane potential and cytotoxicity of the compounds towards human erythrocytes, peripheral blood mononuclear cells and macrophages were evaluated. The effects on intracellular amastigote forms, nitric oxide (NO) and TNF-α production were also investigated. RESULTS: The exudate from the leaves afforded the novel icetexane 7-hydroxyfruticulin A (1) as well as the known demethylisofruticulin A (2), fruticulin A (3) and demethylfruticulin A (4). The compounds (1-4) were tested against promastigotes of L. amazonensis and showed an effective inhibition of the parasite survival (IC50 = 4.08-16.26 µM). In addition, they also induced mitochondrial ROS production, plasma membrane permeability and mitochondrial dysfunction in treated parasites, and presented low cytotoxicity against macrophages. Furthermore, all diterpenes tested reduced the number of parasites inside macrophages, by mechanisms involving TNF-α, NO and ROS. CONCLUSION: The results suggest the potential of 7-hydroxyfruticulin A (1) as well as the known demethylisofruticulin A (2),fruticulin A (3) and demethylfruticulin A (4) as candidates for use in further studies on the design of anti-leishmanial drugs.


Subject(s)
Leishmania , Nitric Oxide , Reactive Oxygen Species , Salvia , Tumor Necrosis Factor-alpha , Salvia/chemistry , Reactive Oxygen Species/metabolism , Humans , Leishmania/drug effects , Animals , Tumor Necrosis Factor-alpha/metabolism , Nitric Oxide/metabolism , Mice , Macrophages/drug effects , Antiprotozoal Agents/pharmacology , Membrane Potential, Mitochondrial/drug effects , Plant Leaves/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Leukocytes, Mononuclear/drug effects , Erythrocytes/drug effects , Erythrocytes/parasitology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice, Inbred BALB C , RAW 264.7 Cells
11.
Pestic Biochem Physiol ; 202: 105954, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879337

ABSTRACT

Fungicides are often used prophylactically, to control fungal diseases. Although fungicides have been designed to control pests/fungi, they frequently share molecular targets with non-target species, including humans. Tebuconazole, a fungicide belonging to the class of triazoles, is widely employed, has moderate to high persistence in soil, and can be found in different environmental levels. This fungicide is metabolized to the main hydroxy-derived metabolite, Tebuconazole-tert-butyl-hydroxy (or hydroxytebuconazole). This study aims to unveil the action mechanism of Tebuconazole and the role played by its metabolite, Tebuconazole-tert-butyl-hydroxy (5-(4-Chlorophenyl)-2,2-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)-1,3-pentanediol), within the expected spectrum of toxicity. In silico and in vitro analyses (MTT assay, cell cycle evaluation, annexin/PI assay, ROS accumulation assay, and mitochondrial membrane potential determination) were performed in HepG2 cells for 24 h and 48 h. Although in silico analysis suggested that both Tebuconazole and Tebuconazole-tert-butyl-hydroxy are potentially hepatotoxic, only Tebuconazole affected the tested cell line. Reduced MTT metabolism, and decreased mitochondrial membrane potential were the main findings. In conclusion, the action mechanism of Tebuconazole may be related to mitochondrial dysfunction. However, the findings of this study pointed out that Tebuconazole-tert-butyl-hydroxy does not play an important role in Tebuconazol toxicity. The study has generated new data that will help to understand how fungicides behave in the environment.


Subject(s)
Fungicides, Industrial , Membrane Potential, Mitochondrial , Triazoles , Triazoles/toxicity , Humans , Fungicides, Industrial/toxicity , Hep G2 Cells , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Cell Survival/drug effects
12.
Theriogenology ; 226: 29-38, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38824691

ABSTRACT

Although under appropriate laboratory conditions, sperm from different mammalian species can be capacitated in vitro, the optimal conditions for sperm capacitation in the stallion have been elusive. This study evaluated the effect of different capacitating inducers in Whitten and Tyrode media and assessed their impact on capacitation-related factors. Stallion sperm were incubated with different combinations of capacitating inducers at 38.5 °C in an air atmosphere. Sperm quality variables such as motility, mitochondrial membrane potential, and lipid peroxidation were assessed. Membrane fluidity and intracellular calcium levels were evaluated as early markers of capacitation, while tyrosine phosphorylation events and the sperm's ability to perform acrosomal exocytosis were used as late capacitation markers. Finally, these sperm were evaluated using a heterologous zona pellucida binding assay. The findings confirm that capacitating conditions evaluated increase intracellular calcium levels and membrane fluidity in both media. Similarly, including 2 or 3 inducers in both media increased tyrosine phosphorylation levels and acrosomal exocytosis after exposure to progesterone, confirming that stallion sperm incubated in these conditions shows cellular and molecular changes consistent with sperm capacitation. Furthermore, the zona pellucida binding assay confirmed the binding capacity of sperm incubated in capacitation conditions, a key step for stallion in vitro fertilization success. Further studies are needed to evaluate the effect of these conditions on in vitro fertilization in the horse.


Subject(s)
Sperm Capacitation , Spermatozoa , Animals , Sperm Capacitation/drug effects , Male , Horses/physiology , Spermatozoa/drug effects , Spermatozoa/physiology , Calcium/metabolism , Zona Pellucida/drug effects , Sperm Motility/drug effects , Membrane Potential, Mitochondrial/drug effects , Phosphorylation
13.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791311

ABSTRACT

Doxorubicin (DOX), widely used as a chemotherapeutic agent for various cancers, is limited in its clinical utility by its cardiotoxic effects. Despite its widespread use, the precise mechanisms underlying DOX-induced cardiotoxicity at the cellular and molecular levels remain unclear, hindering the development of preventive and early detection strategies. To characterize the cytotoxic effects of DOX on isolated ventricular cardiomyocytes, focusing on the expression of specific microRNAs (miRNAs) and their molecular targets associated with endogenous cardioprotective mechanisms such as the ATP-sensitive potassium channel (KATP), Sirtuin 1 (SIRT1), FOXO1, and GSK3ß. We isolated Guinea pig ventricular cardiomyocytes by retrograde perfusion and enzymatic dissociation. We assessed cell morphology, Reactive Oxygen Species (ROS) levels, intracellular calcium, and mitochondrial membrane potential using light microscopy and specific probes. We determined the miRNA expression profile using small RNAseq and validated it using stem-loop qRT-PCR. We quantified mRNA levels of some predicted and validated molecular targets using qRT-PCR and analyzed protein expression using Western blot. Exposure to 10 µM DOX resulted in cardiomyocyte shortening, increased ROS and intracellular calcium levels, mitochondrial membrane potential depolarization, and changes in specific miRNA expression. Additionally, we observed the differential expression of KATP subunits (ABCC9, KCNJ8, and KCNJ11), FOXO1, SIRT1, and GSK3ß molecules associated with endogenous cardioprotective mechanisms. Supported by miRNA gene regulatory networks and functional enrichment analysis, these findings suggest that DOX-induced cardiotoxicity disrupts biological processes associated with cardioprotective mechanisms. Further research must clarify their specific molecular changes in DOX-induced cardiac dysfunction and investigate their diagnostic biomarkers and therapeutic potential.


Subject(s)
Cardiotoxicity , Doxorubicin , MicroRNAs , Myocytes, Cardiac , Reactive Oxygen Species , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Animals , Doxorubicin/adverse effects , Doxorubicin/toxicity , Cardiotoxicity/etiology , MicroRNAs/genetics , MicroRNAs/metabolism , Reactive Oxygen Species/metabolism , Guinea Pigs , Membrane Potential, Mitochondrial/drug effects , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Heart Ventricles/cytology , Male , Calcium/metabolism , Gene Expression Regulation/drug effects
14.
Chem Biol Drug Des ; 103(5): e14535, 2024 May.
Article in English | MEDLINE | ID: mdl-38772877

ABSTRACT

Despite efforts, available alternatives for the treatment of leishmaniasis are still scarce. In this work we tested a class of 15 quinolinylhydrazone analogues and presented data that support the use of the most active compound in cutaneous leishmaniasis caused by Leishmania amazonensis. In general, the compounds showed activity at low concentrations for both parasitic forms (5.33-37.04 µM to promastigotes, and 14.31-61.98 µM to amastigotes). In addition, the best compound (MHZ15) is highly selective for the parasite. Biochemical studies indicate that the treatment of promastigotes with MHZ15 leads the loss of mitochondrial potential and increase in ROS levels as the primary effects, which triggers accumulation of lipid droplets, loss of plasma membrane integrity and apoptosis hallmarks, including DNA fragmentation and phosphatidylserine exposure. These effects were similar in the intracellular form of the parasite. However, in this parasitic form there is no change in plasma membrane integrity in the observed treatment time, which can be attributed to metabolic differences and the resilience of the amastigote. Also, ultrastructural changes such as vacuolization suggesting autophagy were observed. The in vivo effectiveness of MHZ15 in the experimental model of cutaneous leishmaniasis was carried out in mice of the BALB/c strain infected with L. amazonensis. The treatment by intralesional route showed that MHZ15 acted with great efficiency with significantly reduction in the parasite load in the injured paws and draining lymph nodes, without clinical signs of distress or compromise of animal welfare. In vivo toxicity was also evaluated and null alterations in the levels of hepatic enzymes aspartate aminotransferase, and alanine aminotransferase was observed. The data presented herein demonstrates that MHZ15 exhibits a range of favorable characteristics conducive to the development of an antileishmanial agent.


Subject(s)
Apoptosis , Hydrazones , Leishmaniasis, Cutaneous , Mice, Inbred BALB C , Mitochondria , Animals , Apoptosis/drug effects , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Hydrazones/pharmacology , Hydrazones/chemistry , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/therapeutic use , Leishmania/drug effects , Reactive Oxygen Species/metabolism , Female , Leishmania mexicana/drug effects , Membrane Potential, Mitochondrial/drug effects
15.
Parasitol Res ; 123(5): 217, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38772951

ABSTRACT

Toxoplasmosis poses a global health threat, ranging from asymptomatic cases to severe, potentially fatal manifestations, especially in immunocompromised individuals and congenital transmission. Prior research suggests that oregano essential oil (OEO) exhibits diverse biological effects, including antiparasitic activity against Toxoplasma gondii. Given concerns about current treatments, exploring new compounds is important. This study was to assess the toxicity of OEO on BeWo cells and T. gondii tachyzoites, as well as to evaluate its effectiveness in in vitro infection models and determine its direct action on free tachyzoites. OEO toxicity on BeWo cells and T. gondii tachyzoites was assessed by MTT and trypan blue methods, determining cytotoxic concentration (CC50), inhibitory concentration (IC50), and selectivity index (SI). Infection and proliferation indices were analyzed. Direct assessments of the parasite included reactive oxygen species (ROS) levels, mitochondrial membrane potential, necrosis, and apoptosis, as well as electron microscopy. Oregano oil exhibited low cytotoxicity on BeWo cells (CC50: 114.8 µg/mL ± 0.01) and reduced parasite viability (IC50 12.5 ± 0.06 µg/mL), demonstrating 9.18 times greater selectivity for parasites than BeWo cells. OEO treatment significantly decreased intracellular proliferation in infected cells by 84% after 24 h with 50 µg/mL. Mechanistic investigations revealed increased ROS levels, mitochondrial depolarization, and lipid droplet formation, linked to autophagy induction and plasma membrane permeabilization. These alterations, observed through electron microscopy, suggested a necrotic process confirmed by propidium iodide labeling. OEO treatment demonstrated anti-T. gondii action through cellular and metabolic change while maintaining low toxicity to trophoblastic cells.


Subject(s)
Autophagy , Oils, Volatile , Origanum , Reactive Oxygen Species , Toxoplasma , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Toxoplasma/drug effects , Toxoplasma/growth & development , Origanum/chemistry , Humans , Autophagy/drug effects , Reactive Oxygen Species/metabolism , Cell Line , Antiprotozoal Agents/pharmacology , Inhibitory Concentration 50 , Necrosis/drug therapy , Cell Survival/drug effects , Apoptosis/drug effects , Membrane Potential, Mitochondrial/drug effects
16.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732141

ABSTRACT

Familial Alzheimer's disease (FAD) is a complex and multifactorial neurodegenerative disorder for which no curative therapies are yet available. Indeed, no single medication or intervention has proven fully effective thus far. Therefore, the combination of multitarget agents has been appealing as a potential therapeutic approach against FAD. Here, we investigated the potential of combining tramiprosate (TM), curcumin (CU), and the JNK inhibitor SP600125 (SP) as a treatment for FAD. The study analyzed the individual and combined effects of these two natural agents and this pharmacological inhibitor on the accumulation of intracellular amyloid beta iAß; hyperphosphorylated protein TAU at Ser202/Thr205; mitochondrial membrane potential (ΔΨm); generation of reactive oxygen species (ROS); oxidized protein DJ-1; proapoptosis proteins p-c-JUN at Ser63/Ser73, TP53, and cleaved caspase 3 (CC3); and deficiency in acetylcholine (ACh)-induced transient Ca2+ influx response in cholinergic-like neurons (ChLNs) bearing the mutation I416T in presenilin 1 (PSEN1 I416T). We found that single doses of TM (50 µM), CU (10 µM), or SP (1 µM) were efficient at reducing some, but not all, pathological markers in PSEN 1 I416T ChLNs, whereas a combination of TM, CU, and SP at a high (50, 10, 1 µM) concentration was efficient in diminishing the iAß, p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 markers by -50%, -75%, -86%, and -100%, respectively, in PSEN1 I417T ChLNs. Although combinations at middle (10, 2, 0.2) and low (5, 1, 0.1) concentrations significantly diminished p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 by -69% and -38%, -100% and -62%, -100% and -62%, respectively, these combinations did not alter the iAß compared to untreated mutant ChLNs. Moreover, a combination of reagents at H concentration was able to restore the dysfunctional ACh-induced Ca2+ influx response in PSEN 1 I416T. Our data suggest that the use of multitarget agents in combination with anti-amyloid (TM, CU), antioxidant (e.g., CU), and antiapoptotic (TM, CU, SP) actions might be beneficial for reducing iAß-induced ChLN damage in FAD.


Subject(s)
Alzheimer Disease , Anthracenes , Curcumin , Presenilin-1 , Taurine/analogs & derivatives , Curcumin/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Presenilin-1/genetics , Presenilin-1/metabolism , Anthracenes/pharmacology , Animals , Reactive Oxygen Species/metabolism , Mice , Amyloid beta-Peptides/metabolism , Humans , tau Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Membrane Potential, Mitochondrial/drug effects
17.
Redox Biol ; 72: 103142, 2024 06.
Article in English | MEDLINE | ID: mdl-38581860

ABSTRACT

Platelets are the critical target for preventing and treating pathological thrombus formation. However, despite current antiplatelet therapy, cardiovascular mortality remains high, and cardiovascular events continue in prescribed patients. In this study, first results were obtained with ortho-carbonyl hydroquinones as antiplatelet agents; we found that linking triphenylphosphonium cation to a bicyclic ortho-carbonyl hydroquinone moiety by a short alkyl chain significantly improved their antiplatelet effect by affecting the mitochondrial functioning. The mechanism of action involves uncoupling OXPHOS, which leads to an increase in mitochondrial ROS production and a decrease in the mitochondrial membrane potential and OCR. This alteration disrupts the energy production by mitochondrial function necessary for the platelet activation process. These effects are responsive to the complete structure of the compounds and not to isolated parts of the compounds tested. The results obtained in this research can be used as the basis for developing new antiplatelet agents that target mitochondria.


Subject(s)
Blood Platelets , Hydroquinones , Membrane Potential, Mitochondrial , Organophosphorus Compounds , Platelet Aggregation Inhibitors , Humans , Blood Platelets/metabolism , Blood Platelets/drug effects , Hydroquinones/pharmacology , Hydroquinones/chemistry , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/chemistry , Oxidative Phosphorylation/drug effects , Platelet Activation/drug effects , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/chemistry , Reactive Oxygen Species/metabolism
18.
Acta Physiol (Oxf) ; 240(6): e14151, 2024 06.
Article in English | MEDLINE | ID: mdl-38676357

ABSTRACT

AIMS: Ischaemic heart disease remains a significant cause of mortality globally. A pharmacological agent that protects cardiac mitochondria against oxygen deprivation injuries is welcome in therapy against acute myocardial infarction. Here, we evaluate the effect of large-conductance Ca2+-activated K+ channels (BKCa) activator, Compound Z, in isolated mitochondria under hypoxia and reoxygenation. METHODS: Mitochondria from mice hearts were obtained by differential centrifugation. The isolated mitochondria were incubated with a BKCa channel activator, Compound Z, and subjected to normoxia or hypoxia/reoxygenation. Mitochondrial function was evaluated by measurement of O2 consumption in the complexes I, II, and IV in the respiratory states 1, 2, 3, and by maximal uncoupled O2 uptake, ATP production, ROS production, transmembrane potential, and calcium retention capacity. RESULTS: Incubation of isolated mitochondria with Compound Z under normoxia conditions reduced the mitochondrial functions and induced the production of a significant amount of ROS. However, under hypoxia/reoxygenation, the Compound Z prevented a profound reduction in mitochondrial functions, including reducing ROS production over the hypoxia/reoxygenation group. Furthermore, hypoxia/reoxygenation induced a large mitochondria depolarization, which Compound Z incubation prevented, but, even so, Compound Z created a small depolarization. The mitochondrial calcium uptake was prevented by the BKCa activator, extruding the mitochondrial calcium present before Compound Z incubation. CONCLUSION: The Compound Z acts as a mitochondrial BKCa channel activator and can protect mitochondria function against hypoxia/reoxygenation injury, by handling mitochondrial calcium and transmembrane potential.


Subject(s)
Calcium , Mitochondria, Heart , Animals , Mice , Calcium/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Male , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Hypoxia/metabolism , Membrane Potentials/drug effects , Oxygen Consumption/drug effects , Oxygen/metabolism
19.
Exp Parasitol ; 261: 108749, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593864

ABSTRACT

Trypanosoma cruzi (T. cruzi) causes Chagas, which is a neglected tropical disease (NTD). WHO estimates that 6 to 7 million people are infected worldwide. Current treatment is done with benznidazole (BZN), which is very toxic and effective only in the acute phase of the disease. In this work, we designed, synthesized, and characterized thirteen new phenoxyhydrazine-thiazole compounds and applied molecular docking and in vitro methods to investigate cell cytotoxicity, trypanocide activity, nitric oxide (NO) production, cell death, and immunomodulation. We observed a higher predicted affinity of the compounds for the squalene synthase and 14-alpha demethylase enzymes of T. cruzi. Moreover, the compounds displayed a higher predicted affinity for human TLR2 and TLR4, were mildly toxic in vitro for most mammalian cell types tested, and LIZ531 (IC50 2.8 µM) was highly toxic for epimastigotes, LIZ311 (IC50 8.6 µM) for trypomastigotes, and LIZ331 (IC50 1.9 µM) for amastigotes. We observed that LIZ311 (IC50 2.5 µM), LIZ431 (IC50 4.1 µM) and LIZ531 (IC50 5 µM) induced 200 µg/mL of NO and JM14 induced NO production in three different concentrations tested. The compound LIZ331 induced the production of TNF and IL-6. LIZ311 induced the secretion of TNF, IFNγ, IL-2, IL-4, IL-10, and IL-17, cell death by apoptosis, decreased acidic compartment formation, and induced changes in the mitochondrial membrane potential. Taken together, LIZ311 is a promising anti-T. cruzi compound is not toxic to mammalian cells and has increased antiparasitic activity and immunomodulatory properties.


Subject(s)
Chagas Disease , Molecular Docking Simulation , Nitric Oxide , Thiazoles , Trypanocidal Agents , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Thiazoles/pharmacology , Thiazoles/chemistry , Chagas Disease/drug therapy , Chagas Disease/immunology , Humans , Animals , Mice , Nitric Oxide/metabolism , Nitric Oxide/biosynthesis , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Inhibitory Concentration 50 , Membrane Potential, Mitochondrial/drug effects , Hydrazines/pharmacology , Hydrazines/chemistry , Cytokines/metabolism , Mice, Inbred BALB C
20.
Mol Neurobiol ; 61(7): 4908-4922, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38151612

ABSTRACT

Carnosine is composed of ß-alanine and L-histidine and is considered to be an important neuroprotective agent with antioxidant, metal chelating, and antisenescence properties. However, children with serum carnosinase deficiency present increased circulating carnosine and severe neurological symptoms. We here investigated the in vitro effects of carnosine on redox and mitochondrial parameters in cultured cortical astrocytes from neonatal rats. Carnosine did not alter mitochondrial content or mitochondrial membrane potential. On the other hand, carnosine increased mitochondrial superoxide anion formation, levels of thiobarbituric acid reactive substances and oxidation of 2',7'-dichlorofluorescin diacetate (DCF-DA), indicating that carnosine per se acts as a pro-oxidant agent. Nonetheless, carnosine prevented DCF-DA oxidation induced by H2O2 in cultured cortical astrocytes. Since alterations on mitochondrial membrane potential are not likely to be involved in these effects of carnosine, the involvement of N-Methyl-D-aspartate (NMDA) receptors in the pro-oxidant actions of carnosine was investigated. MK-801, an antagonist of NMDA receptors, prevented DCF-DA oxidation induced by carnosine in cultured cortical astrocytes. Astrocyte reactivity induced by carnosine was also prevented by the coincubation with MK-801. The present study shows for the very first time the pro-oxidant effects of carnosine per se in astrocytes. The data raise awareness on the importance of a better understanding of the biological actions of carnosine, a nutraceutical otherwise widely reported as devoid of side effects.


Subject(s)
Astrocytes , Carnosine , Cerebral Cortex , Rats, Wistar , Reactive Oxygen Species , Animals , Carnosine/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Cells, Cultured , Reactive Oxygen Species/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Membrane Potential, Mitochondrial/drug effects , Animals, Newborn , Rats , Mitochondria/metabolism , Mitochondria/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Hydrogen Peroxide , Oxidation-Reduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL