Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.198
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000217

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) may play an important role in the pathomechanism/pathogenesis of Alzheimer's disease (AD) and several other neurological/neuropsychiatric disorders. AD leads to progressive alterations in the redox state, ion homeostasis, lipids, and protein metabolism. Significant alterations in molecular processes and the functioning of several signaling pathways result in the degeneration and death of synapses and neuronal cells, leading to the most severe dementia. Peroxisome proliferator-activated receptor alpha (PPAR-α) is among the processes affected by AD; it regulates the transcription of genes related to the metabolism of cholesterol, fatty acids, other lipids and neurotransmission, mitochondria biogenesis, and function. PPAR-α is involved in the cholesterol transport to mitochondria, the substrate for neurosteroid biosynthesis. PPAR-α-coding enzymes, such as sulfotransferases, which are responsible for neurosteroid sulfation. The relation between PPAR-α and cholesterol/neurosteroids may have a significant impact on the course and progression of neurodegeneration/neuroprotection processes. Unfortunately, despite many years of intensive studies, the pathogenesis of AD is unknown and therapy for AD and other neurodegenerative diseases is symptomatic, presenting a significant goal and challenge today. This review presents recent achievements in therapeutic approaches for AD, which are targeting PPAR-α and its relation to cholesterol and neurosteroids in AD and neuropsychiatric disorders.


Subject(s)
Alzheimer Disease , Neurosteroids , PPAR alpha , Animals , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Cholesterol/metabolism , Mental Disorders/metabolism , Mental Disorders/drug therapy , Mitochondria/metabolism , Molecular Targeted Therapy , Neurosteroids/metabolism , PPAR alpha/metabolism
2.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000326

ABSTRACT

Decades of research have identified genetic and environmental factors involved in age-related neurodegenerative diseases and, to a lesser extent, neuropsychiatric disorders. Genomic instability, i.e., the loss of genome integrity, is a common feature among both neurodegenerative (mayo-trophic lateral sclerosis, Parkinson's disease, Alzheimer's disease) and psychiatric (schizophrenia, autism, bipolar depression) disorders. Genomic instability is associated with the accumulation of persistent DNA damage and the activation of DNA damage response (DDR) pathways, as well as pathologic neuronal cell loss or senescence. Typically, DDR signaling ensures that genomic and proteomic homeostasis are maintained in both dividing cells, including neural progenitors, and post-mitotic neurons. However, dysregulation of these protective responses, in part due to aging or environmental insults, contributes to the progressive development of neurodegenerative and/or psychiatric disorders. In this Special Issue, we introduce and highlight the overlap between neurodegenerative diseases and neuropsychiatric disorders, as well as the emerging clinical, genomic, and molecular evidence for the contributions of DNA damage and aberrant DNA repair. Our goal is to illuminate the importance of this subject to uncover possible treatment and prevention strategies for relevant devastating brain diseases.


Subject(s)
DNA Damage , Genomic Instability , Mental Disorders , Neurodegenerative Diseases , Animals , Humans , DNA Repair , Mental Disorders/metabolism , Mental Disorders/etiology , Mental Disorders/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics
3.
Expert Opin Ther Targets ; 28(7): 529-543, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39068514

ABSTRACT

INTRODUCTION: The main inhibitory neurotransmitter in the central nervous system (CNS), γ-aminobutyric acid (GABA), is involved in a multitude of neurological and psychiatric disorders characterized by an imbalance in excitatory and inhibitory signaling. Regulation of extracellular levels of GABA is maintained by the four GABA transporters (GATs; GAT1, GAT2, GAT3, and BGT1), Na+/Cl--coupled transporters of the solute carrier 6 (SLC6) family. Despite mounting evidence for the involvement of the non-GAT1 GABA transporters in diseases, only GAT1 has successfully been translated into clinical practice via the drug tiagabine. AREAS COVERED: In this review, all four GATs will be described in terms of their involvement in disease, and the most recent data on structure, function, expression, and localization discussed in relation to their potential role as drug targets. This includes an overview of various ways to modulate the GATs in relation to treatment of diseases caused by imbalances in the GABAergic system. EXPERT OPINION: The recent publication of various GAT1 structures is an important milestone for future development of compounds targeting the GATs. Such information can provide much needed insight into mechanistic aspects of all GAT subtypes and be utilized to design improved ligands for this highly interesting drug target class.


Subject(s)
Drug Development , GABA Plasma Membrane Transport Proteins , Molecular Targeted Therapy , Nervous System Diseases , Tiagabine , gamma-Aminobutyric Acid , Humans , GABA Plasma Membrane Transport Proteins/metabolism , Animals , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , gamma-Aminobutyric Acid/metabolism , Tiagabine/pharmacology , Mental Disorders/drug therapy , Mental Disorders/physiopathology , Mental Disorders/metabolism
4.
BMJ Ment Health ; 27(1)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39079888

ABSTRACT

BACKGROUND: It has been reported that patients with geriatric psychiatric disorders include many cases of the prodromal stages of neurodegenerative diseases. Abnormal 123I-2ß-carbomethoxy-3ß-(4-iodophenyl)-N-(3-fluoropropyl) nortropane dopamine transporter single-photon emission computed tomography (DAT-SPECT) reveals a nigrostriatal dopaminergic deficit and is considered useful to detect dementia with Lewy bodies and Parkinson's disease as well as progressive supranuclear palsy and corticobasal degeneration. We aimed to determine the proportion of cases that are abnormal on DAT-SPECT in patients with geriatric psychiatric disorders and to identify their clinical profile. METHODS: The design is a cross-sectional study. Clinical findings of 61 inpatients aged 60 years or older who underwent DAT-SPECT and had been diagnosed with psychiatric disorders, but not neurodegenerative disease or dementia were analysed. RESULTS: 36 of 61 (59%) had abnormal results on DAT-SPECT. 54 of 61 patients who had DAT-SPECT (89%) had undergone 123I-metaiodobenzylguanidine myocardial scintigraphy (123I-MIBG scintigraphy); 12 of the 54 patients (22.2%) had abnormal findings on 123I-MIBG scintigraphy. There were no cases that were normal on DAT-SPECT and abnormal on 123I-MIBG scintigraphy. DAT-SPECT abnormalities were more frequent in patients with late-onset (55 years and older) psychiatric disorders (69.0%) and depressive disorder (75.7%), especially late-onset depressive disorder (79.3%). CONCLUSION: Patients with geriatric psychiatric disorders include many cases showing abnormalities on DAT-SPECT. It is suggested that these cases are at high risk of developing neurodegenerative diseases characterised by a dopaminergic deficit. It is possible that patients with geriatric psychiatric disorders with abnormal findings on DAT-SPECT tend to show abnormalities on DAT-SPECT first rather than on 123I-MIBG scintigraphy.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Mental Disorders , Tomography, Emission-Computed, Single-Photon , Humans , Cross-Sectional Studies , Aged , Male , Female , Tomography, Emission-Computed, Single-Photon/methods , Dopamine Plasma Membrane Transport Proteins/metabolism , Mental Disorders/metabolism , Mental Disorders/diagnostic imaging , Middle Aged , Aged, 80 and over
5.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892091

ABSTRACT

Substance P (SP) plays a crucial role in pain modulation, with significant implications for major depressive disorder (MDD), anxiety disorders, and post-traumatic stress disorder (PTSD). Elevated SP levels are linked to heightened pain sensitivity and various psychiatric conditions, spurring interest in potential therapeutic interventions. In chronic pain, commonly associated with MDD and anxiety disorders, SP emerges as a key mediator in pain and emotional regulation. This review examines SP's impact on pain perception and its contributions to MDD, anxiety disorders, and PTSD. The association of SP with increased pain sensitivity and chronic pain conditions underscores its importance in pain modulation. Additionally, SP influences the pathophysiology of MDD, anxiety disorders, and PTSD, highlighting its potential as a therapeutic target. Understanding SP's diverse effects provides valuable insights into the mechanisms underlying these psychiatric disorders and their treatment. Further research is essential to explore SP modulation in psychiatric disorders and develop more effective treatment strategies.


Subject(s)
Chronic Pain , Depressive Disorder, Major , Stress Disorders, Post-Traumatic , Substance P , Humans , Chronic Pain/psychology , Substance P/metabolism , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/physiopathology , Stress Disorders, Post-Traumatic/metabolism , Anxiety Disorders , Animals , Mental Disorders/metabolism
6.
Cells ; 13(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38920691

ABSTRACT

Neurological and neuropsychiatric disorders pose substantial challenges to public health, necessitating a comprehensive understanding of the molecular mechanisms underlying their pathogenesis. In recent years, the focus has shifted toward the intricate world of non-coding RNAs (ncRNAs), a class of RNA molecules that do not encode proteins but play pivotal roles in gene regulation and cellular processes. This review explores the emerging significance of ncRNAs in the context of neurological and neuropsychiatric disorders, shedding light on their diverse functions and regulatory mechanisms. The dysregulation of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), has been implicated in the pathophysiology of conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia, and mood disorders. This review delves into the specific roles these ncRNAs play in modulating key cellular processes, including synaptic plasticity, neuroinflammation, and apoptosis, providing a nuanced understanding of their impact on disease progression. Furthermore, it discusses the potential diagnostic and therapeutic implications of targeting ncRNAs in neurological and neuropsychiatric disorders. The identification of specific ncRNA signatures holds promise for the development of novel biomarkers for early disease detection, while the manipulation of ncRNA expression offers innovative therapeutic avenues. Challenges and future directions in the field are also considered, highlighting the need for continued research to unravel the complexities of ncRNA-mediated regulatory networks in the context of neurological and neuropsychiatric disorders. This review aims to provide a comprehensive overview of the current state of knowledge and stimulate further exploration into the fascinating realm of ncRNAs in the brain's intricate landscape.


Subject(s)
Mental Disorders , Nervous System Diseases , RNA, Untranslated , Humans , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Mental Disorders/genetics , Mental Disorders/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Regulation , MicroRNAs/genetics , MicroRNAs/metabolism
7.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928175

ABSTRACT

Endometriosis (EM), a chronic condition in endometrial tissue outside the uterus, affects around 10% of reproductive-age women, significantly affecting fertility. Its prevalence remains elusive due to the surgical confirmation needed for diagnosis. Manifesting with a range of symptoms, including dysmenorrhea, dyschezia, dysuria, dyspareunia, fatigue, and gastrointestinal discomfort, EM significantly impairs quality of life due to severe chronic pelvic pain (CPP). Psychological manifestations, notably depression and anxiety, frequently accompany the physical symptoms, with CPP serving as a key mediator. Pain stems from endometrial lesions, involving oxidative stress, neuroinflammation, angiogenesis, and sensitization processes. Microbial dysbiosis appears to be crucial in the inflammatory mechanisms underlying EM and associated CPP, as well as psychological symptoms. In this scenario, dietary interventions and nutritional supplements could help manage EM symptoms by targeting inflammation, oxidative stress, and the microbiome. Our manuscript starts by delving into the complex relationship between EM pain and psychological comorbidities. It subsequently addresses the emerging roles of the microbiome, inflammation, and oxidative stress as common links among these abovementioned conditions. Furthermore, the review explores how dietary and nutritional interventions may influence the composition and function of the microbiome, reduce inflammation and oxidative stress, alleviate pain, and potentially affect EM-associated psychological disorders.


Subject(s)
Endometriosis , Inflammation , Oxidative Stress , Humans , Female , Endometriosis/metabolism , Endometriosis/microbiology , Endometriosis/complications , Inflammation/metabolism , Microbiota , Pelvic Pain/metabolism , Pelvic Pain/microbiology , Pelvic Pain/etiology , Mental Disorders/metabolism , Mental Disorders/microbiology , Mental Disorders/etiology
8.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928192

ABSTRACT

Copper is a transition metal essential for growth and development and indispensable for eukaryotic life. This metal is essential to neuronal function: its deficiency, as well as its overload have been associated with multiple neurodegenerative disorders such as Alzheimer's disease and Wilson's disease and psychiatric conditions such as schizophrenia, bipolar disorder, and major depressive disorders. Copper plays a fundamental role in the development and function of the human Central Nervous System (CNS), being a cofactor of multiple enzymes that play a key role in physiology during development. In this context, we thought it would be timely to summarize data on alterations in the metabolism of copper at the CNS level that might influence the development of neuropsychiatric symptoms. We present a non-systematic review with the study selection based on the authors' judgement to offer the reader a perspective on the most significant elements of neuropsychiatric symptoms in Wilson's disease. We highlight that Wilson's disease is characterized by marked heterogeneity in clinical presentation among patients with the same mutation. This should motivate more research efforts to disentangle the role of environmental factors in modulating the expression of genetic predisposition to this disorder.


Subject(s)
Copper , Hepatolenticular Degeneration , Humans , Copper/metabolism , Hepatolenticular Degeneration/metabolism , Hepatolenticular Degeneration/genetics , Mental Disorders/metabolism , Mental Disorders/etiology , Animals
9.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928227

ABSTRACT

Glutamate is the main excitatory neurotransmitter in the brain wherein it controls cognitive functional domains and mood. Indeed, brain areas involved in memory formation and consolidation as well as in fear and emotional processing, such as the hippocampus, prefrontal cortex, and amygdala, are predominantly glutamatergic. To ensure the physiological activity of the brain, glutamatergic transmission is finely tuned at synaptic sites. Disruption of the mechanisms responsible for glutamate homeostasis may result in the accumulation of excessive glutamate levels, which in turn leads to increased calcium levels, mitochondrial abnormalities, oxidative stress, and eventually cell atrophy and death. This condition is known as glutamate-induced excitotoxicity and is considered as a pathogenic mechanism in several diseases of the central nervous system, including neurodevelopmental, substance abuse, and psychiatric disorders. On the other hand, these disorders share neuroplasticity impairments in glutamatergic brain areas, which are accompanied by structural remodeling of glutamatergic neurons. In the current narrative review, we will summarize the role of glutamate-induced excitotoxicity in both the pathophysiology and therapeutic interventions of neurodevelopmental and adult mental diseases with a focus on autism spectrum disorders, substance abuse, and psychiatric disorders. Indeed, glutamatergic drugs are under preclinical and clinical development for the treatment of different mental diseases that share glutamatergic neuroplasticity dysfunctions. Although clinical evidence is still limited and more studies are required, the regulation of glutamate homeostasis is attracting attention as a potential crucial target for the control of brain diseases.


Subject(s)
Glutamic Acid , Mental Disorders , Humans , Glutamic Acid/metabolism , Mental Disorders/metabolism , Mental Disorders/drug therapy , Mental Disorders/etiology , Animals , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/etiology , Neuronal Plasticity , Brain/metabolism , Brain/pathology , Adult , Substance-Related Disorders/metabolism , Autism Spectrum Disorder/metabolism
10.
Nervenarzt ; 95(7): 667-680, 2024 Jul.
Article in German | MEDLINE | ID: mdl-38884643

ABSTRACT

This review article explores the intricate relationship between nutrition, metabolism, brain function and mental health. It highlights two key complementary models: the energy balance model and the more comprehensive carbohydrate-insulin model, to understand the development of obesity and metabolic dysfunctions. It particularly focuses on the role of dopamine in dietary regulation and insulin in the brain, both of which are crucial in the pathogenesis of neurodegenerative and stress-associated mental disorders. Additionally, the significance of sleep and dietary habits, such as medically assisted calorie restriction for mental health and the concept of "brain food" are described. These findings emphasize the importance of nutritional medicine in psychiatry and psychotherapy and the consideration of metabolic states for the prevention and treatment of mental and neurodegenerative diseases.


Subject(s)
Brain , Mental Disorders , Humans , Brain/metabolism , Mental Disorders/metabolism , Mental Disorders/therapy , Energy Metabolism/physiology , Obesity/metabolism , Obesity/therapy , Mental Health , Dopamine/metabolism , Insulin/metabolism
12.
Biochem Pharmacol ; 226: 116395, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942087

ABSTRACT

GPR56, also known as GPR56/ADGRG1, is a member of the ADGRG subgroup belonging to adhesion G protein-coupled receptors (aGPCRs). aGPCRs are the second largest subfamily of the GPCR superfamily, which is the largest family of membrane protein receptors in the human genome. Studies in recent years have demonstrated that GPR56 is integral to the normal development of the brain and functions as an important player in cortical development, suggesting that GPR56 is involved in many physiological processes. Indeed, aberrant expression of GPR56 has been implicated in multiple neurological and psychiatric disorders, including bilateral frontoparietal polymicrogyria (BFPP), depression and epilepsy. In a recent study, it was found that upregulated expression of GPR56 reduced depressive-like behaviours in an animal model of depression, indicating that GPR56 plays an important role in the antidepressant response. Given the link of GPR56 with the antidepressant response, the function of GPR56 has become a focus of research. Although GPR56 may be a potential target for the development of antidepressants, the underlying molecular mechanisms remain largely unknown. Therefore, in this review, we will summarize the latest findings of GPR56 function in neurological and psychiatric disorders (depression, epilepsy, autism, and BFPP) and emphasize the mechanisms of GPR56 in activation and signalling in those conditions. After reviewing several studies, attributing to its significant biological functions and exceptionally long extracellular N-terminus that interacts with multiple ligands, we draw a conclusion that GPR56 may serve as an important drug target for neuropsychological diseases.


Subject(s)
Mental Disorders , Nervous System Diseases , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/metabolism , Animals , Mental Disorders/drug therapy , Mental Disorders/metabolism , Mental Disorders/genetics , Nervous System Diseases/metabolism , Nervous System Diseases/drug therapy , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
13.
Biochem Pharmacol ; 226: 116358, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857830

ABSTRACT

With societal development and an ageing population, psychiatric disorders have become a common cause of severe and long-term disability and socioeconomic burdens worldwide. Semaphorin 3A (Sema-3A) is a secreted glycoprotein belonging to the semaphorin family. Sema-3A is well known as an axon guidance factor in the neuronal system and a potent immunoregulator at all stages of the immune response. It is reported to have various biological functions and is involved in many human diseases, including autoimmune diseases, angiocardiopathy, osteoporosis, and tumorigenesis. The signals of sema-3A involved in the pathogenesis of these conditions, are transduced through its cognate receptors and diverse downstream signalling pathways. An increasing number of studies show that sema-3A plays important roles in synaptic and dendritic development, which are closely associated with the pathophysiological mechanisms of psychiatric disorders, including schizophrenia, depression, and autism, suggesting the involvement of sema-3A in the pathogenesis of mental diseases. This indicates that mutations in sema-3A and alterations in its receptors and signalling may compromise neurodevelopment and predispose patients to these disorders. However, the role of sema-3A in psychiatric disorders, particularly in regulating neurodevelopment, remains elusive. In this review, we summarise the recent progress in understanding sema-3A in the pathogenesis of mental diseases and highlight sema-3A as a potential target for the prevention and treatment of these diseases.


Subject(s)
Schizophrenia , Semaphorin-3A , Animals , Humans , Anxiety/metabolism , Depression/metabolism , Mental Disorders/metabolism , Mental Disorders/genetics , Schizophrenia/metabolism , Schizophrenia/genetics , Semaphorin-3A/metabolism , Semaphorin-3A/genetics , Semaphorin-3A/physiology , Signal Transduction/physiology
14.
Open Biol ; 14(6): 240063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864245

ABSTRACT

Frontotemporal lobe abnormalities are linked to neuropsychiatric disorders and cognition, but the role of cellular heterogeneity between temporal lobe (TL) and frontal lobe (FL) in the vulnerability to genetic risk factors remains to be elucidated. We integrated single-nucleus transcriptome analysis in 'fresh' human FL and TL with genetic susceptibility, gene dysregulation in neuropsychiatric disease and psychoactive drug response data. We show how intrinsic differences between TL and FL contribute to the vulnerability of specific cell types to both genetic risk factors and psychoactive drugs. Neuronal populations, specifically PVALB neurons, were most highly vulnerable to genetic risk factors for psychiatric disease. These psychiatric disease-associated genes were mostly upregulated in the TL, and dysregulated in the brain of patients with obsessive-compulsive disorder, bipolar disorder and schizophrenia. Among these genes, GRIN2A and SLC12A5, implicated in schizophrenia and bipolar disorder, were significantly upregulated in TL PVALB neurons and in psychiatric disease patients' brain. PVALB neurons from the TL were twofold more vulnerable to psychoactive drugs than to genetic risk factors, showing the influence and specificity of frontotemporal lobe differences on cell vulnerabilities. These studies provide a cell type resolved map of the impact of brain regional differences on cell type vulnerabilities in neuropsychiatric disorders.


Subject(s)
Frontal Lobe , Mental Disorders , Psychotropic Drugs , Temporal Lobe , Humans , Psychotropic Drugs/pharmacology , Frontal Lobe/metabolism , Frontal Lobe/pathology , Temporal Lobe/metabolism , Temporal Lobe/pathology , Mental Disorders/genetics , Mental Disorders/metabolism , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Genetic Predisposition to Disease , Gene Expression Profiling , Transcriptome , Gene Expression Regulation , Schizophrenia/genetics , Schizophrenia/metabolism , Bipolar Disorder/genetics , Bipolar Disorder/metabolism
15.
Article in English | MEDLINE | ID: mdl-38885875

ABSTRACT

Mounting evidence points towards a crucial role of the kynurenine pathway (KP) in the altered gut-brain axis (GBA) balance in severe mental illness (SMI, namely depression, bipolar disorder, and schizophrenia) and cardiometabolic comorbidities. Preliminary evidence shows that serotonergic psychedelics and their analogues may hold therapeutic potential in addressing the altered KP in the dysregulated GBA in SMI and comorbidities. In fact, aside from their effects on mood, psychedelics elicit therapeutic improvement in preclinical models of obesity, metabolic syndrome, and vascular inflammation, which are highly comorbid with SMI. Here, we review the literature on the therapeutic modulation of the KP in the dysregulated GBA in SMI and comorbidities, and the potential application of psychedelics to address the altered KP in the brain and systemic dysfunction underlying SMI and comorbidities. Psychedelics might therapeutically modulate the KP in the altered GBA in SMI and comorbidities either directly, via altering the metabolic pathway by influencing the rate-limiting enzymes of the KP and affecting the levels of available tryptophan, or indirectly, by affecting the gut microbiome, gut metabolome, metabolism, and the immune system. Despite promising preliminary evidence, the mechanisms and outcomes of the KP modulation with psychedelics in SMI and systemic comorbidities remain largely unknown and require further investigation. Several concerns are discussed surrounding the potential side effects of this approach in specific cohorts of individuals with SMI and systemic comorbidities.


Subject(s)
Hallucinogens , Kynurenine , Humans , Kynurenine/metabolism , Hallucinogens/therapeutic use , Hallucinogens/pharmacology , Animals , Brain-Gut Axis/drug effects , Brain-Gut Axis/physiology , Mental Disorders/drug therapy , Mental Disorders/metabolism , Comorbidity , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology
16.
Psychoneuroendocrinology ; 166: 107070, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38733757

ABSTRACT

Estrogen is a group of hormones that collaborate with the nervous system to impact the overall well-being of all genders. It influences many processes, including those occurring in the central nervous system, affecting learning and memory, and playing roles in neurodegenerative diseases and mental disorders. The hormone's action is mediated by specific receptors. Significant roles of classical estrogen receptors, ERα and ERß, in various diseases were known since many years, but after identifying a structurally and locationally distinct receptor, the G protein-coupled estrogen receptor (GPER), its role in human physiology and pathophysiology was investigated. This review compiles GPER-related information, highlighting its impact on homeostasis and diseases, while putting special attention on functions and dysfunctions of this receptor in neurobiology and biobehavioral processes. Understanding the receptor modulation possibilities is essential for therapy, as disruptions in receptors can lead to diseases or disorders, irrespective of correct estrogen levels. We conclude that studies on the GPER receptor have the potential to develop therapies that regulate estrogen and positively impact human health.


Subject(s)
Estrogens , Receptors, Estrogen , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/physiology , Receptors, Estrogen/metabolism , Receptors, Estrogen/physiology , Estrogens/metabolism , Neurodegenerative Diseases/metabolism , Mental Disorders/metabolism , Mental Disorders/physiopathology , Animals
17.
Pharmacol Res ; 204: 107201, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704108

ABSTRACT

Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like ß-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.


Subject(s)
Estrogens , Exercise Therapy , Mental Disorders , Animals , Humans , Estrogens/metabolism , Exercise/physiology , Mental Disorders/metabolism , Mental Disorders/therapy , Receptors, Estrogen/metabolism , Signal Transduction
18.
Psychopharmacology (Berl) ; 241(8): 1491-1516, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38801530

ABSTRACT

RATIONALE: Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate various physiological processes such as inflammation, lipid metabolism, and glucose homeostasis. Recent studies suggest that targeting PPARs could be beneficial in treating neuropsychiatric disorders by modulating neuronal function and signaling pathways in the brain. PPAR-α, PPAR-δ, and PPAR-γ have been found to play important roles in cognitive function, neuroinflammation, and neuroprotection. Dysregulation of PPARs has been associated with neuropsychiatric disorders like bipolar disorder, schizophrenia, major depression disorder, and autism spectrum disorder. The limitations and side effects of current treatments have prompted research to target PPARs as a promising novel therapeutic strategy. Preclinical and clinical studies have shown the potential of PPAR agonists and antagonists to improve symptoms associated with these disorders. OBJECTIVE: This review aims to provide an overview of the current understanding of PPARs in neuropsychiatric disorders, their potential as therapeutic targets, and the challenges and future directions for developing PPAR-based therapies. METHODS: An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out with the keywords "PPAR, Neuropsychiatric disorders, Oxidative stress, Inflammation, Bipolar Disorder, Schizophrenia, Major depression disorder, Autism spectrum disorder, molecular pathway". RESULT & CONCLUSION: Although PPARs present a hopeful direction for innovative therapeutic approaches in neuropsychiatric conditions, additional research is required to address obstacles and convert this potential into clinically viable and individualized treatments.


Subject(s)
Mental Disorders , Peroxisome Proliferator-Activated Receptors , Humans , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/metabolism , Mental Disorders/drug therapy , Mental Disorders/metabolism , Animals , Molecular Targeted Therapy
19.
Cells ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786025

ABSTRACT

Stress is a common denominator of complex disorders and the FK-506 binding protein (FKBP)51 plays a central role in stress. Hence, it is not surprising that multiple studies imply the involvement of the FKBP51 protein and/or its coding gene, FKBP5, in complex disorders. This review summarizes such reports concentrating on three disorder clusters-neuropsychiatric, cancer, and type 2 diabetes mellitus (T2DM). We also attempt to point to potential mechanisms suggested to mediate the effect of FKBP5/FKBP51 on these disorders. Neuropsychiatric diseases considered in this paper include (i) Huntington's disease for which increased autophagic cellular clearance mechanisms related to decreased FKBP51 protein levels or activity is discussed, Alzheimer's disease for which increased FKBP51 activity has been shown to induce Tau phosphorylation and aggregation, and Parkinson's disease in the context of which FKBP12 is mentioned; and (ii) mental disorders, for which significant association with the single nucleotide polymorphism (SNP) rs1360780 of FKBP5 intron 7 along with decreased DNA methylation were revealed. Since cancer is a large group of diseases that can start in almost any organ or tissue of the body, FKBP51's role depends on the tissue type and differences among pathways expressed in those tumors. The FKBP51-heat-shock protein-(Hsp)90-p23 super-chaperone complex might function as an oncogene or as a tumor suppressor by downregulating the serine/threonine protein kinase (AKt) pathway. In T2DM, two potential pathways for the involvement of FKBP51 are highlighted as affecting the pathogenesis of the disease-the peroxisome proliferator-activated receptor-γ (PPARγ) and AKt.


Subject(s)
Diabetes Mellitus, Type 2 , Mental Disorders , Neoplasms , Tacrolimus Binding Proteins , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/genetics , Neoplasms/genetics , Neoplasms/metabolism , Mental Disorders/genetics , Mental Disorders/metabolism , Animals
20.
Comput Biol Med ; 175: 108536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701592

ABSTRACT

In response to the shortcomings in data quality and coverage for neurological and psychiatric disorders (NPDs) in existing comprehensive databases, this paper introduces the DTNPD database, specifically designed for NPDs. DTNPD contains detailed information on 30 NPDs types, 1847 drugs, 514 drug targets, 64 drug combinations, and 61 potential target combinations, forming a network with 2389 drug-target associations. The database is user-friendly, offering open access and downloadable data, which is crucial for network pharmacology studies. The key strength of DTNPD lies in its robust networks of drug and target combinations, as well as drug-target networks, facilitating research and development in the field of NPDs. The development of the DTNPD database marks a significant milestone in understanding and treating NPDs. For accessing the DTNPD database, the primary URL is http://dtnpd.cnsdrug.com, complemented by a mirror site available at http://dtnpd.lyhbio.com.


Subject(s)
Mental Disorders , Nervous System Diseases , Humans , Mental Disorders/drug therapy , Mental Disorders/metabolism , Nervous System Diseases/drug therapy , Databases, Pharmaceutical , Databases, Factual
SELECTION OF CITATIONS
SEARCH DETAIL