Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.449
Filter
1.
Cell Mol Life Sci ; 81(1): 408, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287634

ABSTRACT

Diabetic kidney disease (DKD) is the predominant type of end-stage renal disease. Increasing evidence suggests thatglomerular mesangial cell (MC) inflammation is pivotal for cell proliferation and DKD progression. However, the exactmechanism of MC inflammation remains largely unknown. This study aims to elucidate the role of inflammatoryfactor high-mobility group box 1 (Hmgb1) in DKD. Inflammatory factors related to DKD progression are screened viaRNA sequencing (RNA-seq). In vivo and in vitro experiments, including db/db diabetic mice model, CCK-8 assay, EdUassay, flow cytometric analysis, Co-IP, FISH, qRT-PCR, western blot, single cell nuclear RNA sequencing (snRNA-seq),are performed to investigate the effects of Hmgb1 on the inflammatory behavior of MCs in DKD. Here, wedemonstrate that Hmgb1 is significantly upregulated in renal tissues of DKD mice and mesangial cells cultured withhigh glucose, and Hmgb1 cytopasmic accumulation promotes MC inflammation and proliferation. Mechanistically,Hmgb1 cytopasmic accumulation is two-way regulated by MC-specific cyto-lncRNA E130307A14Rik interaction andlactate-mediated acetylated and lactylated Hmgb1 nucleocytoplasmic translocation, and accelerates NFκB signalingpathway activation via directly binding to IκBα. Together, this work reveals the promoting role of Hmgb1 on MCinflammation and proliferation in DKD and helps expound the regulation of Hmgb1 cytopasmic accumulation in twoways. In particular, Hmgb1 may be a promising therapeutic target for DKD.


Subject(s)
Diabetic Nephropathies , HMGB1 Protein , Mesangial Cells , NF-kappa B , Signal Transduction , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Mesangial Cells/metabolism , Mesangial Cells/pathology , Mice , NF-kappa B/metabolism , Male , Cell Proliferation , Disease Progression , Mice, Inbred C57BL , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Cytosol/metabolism , Humans , Inflammation/pathology , Inflammation/metabolism
2.
Am J Physiol Regul Integr Comp Physiol ; 327(4): R410-R422, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39133777

ABSTRACT

Inflammation and fibrosis play important roles in diabetic kidney disease (DKD). Previous studies have shown that glucagon-like peptide-1 receptor (GLP-1R) agonists had renal protective effects. However, the mechanisms are not clear. The present study explored the effect of liraglutide (LR), a GLP-1R agonist, on the downregulation of glomerular inflammation and fibrosis in DKD by regulating the Toll-like receptor (TLR)4/myeloid differentiation marker 88 (MyD88)/nuclear factor κB (NF-κB) signaling pathway in mesangial cells (MCs). In vitro, rat MCs were cultured in high glucose (HG). We found that liraglutide treatment significantly reduced the HG-mediated activation of the TLR4/MYD88/NF-κB signaling pathway, extracellular matrix (ECM)-related proteins, and inflammatory factors. A combination of TLR4 inhibitor (TAK242) and liraglutide did not synergistically inhibit inflammatory factors and ECM proteins. Furthermore, in the presence of TLR4 siRNA, liraglutide significantly blunted HG-induced expression of fibronectin protein and inflammatory factors. Importantly, TLR4 selective agonist LPS or TLR4 overexpression eliminated the improvement effects of liraglutide on the HG-induced response. In vivo, administration of liraglutide for 8 wk significantly improved the glomerular damage in streptozotocin-induced diabetic mice and reduced the expression of TLR4/MYD88/NF-κB signaling proteins, ECM protein, and inflammatory factors in renal cortex. TLR4-/- diabetic mice showed significant amelioration in urine protein excretion rate, glomerular pathological damage, inflammation, and fibrosis. Liraglutide attenuated glomerular hypertrophy, renal fibrosis, and inflammatory response in TLR4-/- diabetic mice. Taken together, our findings suggest that TLR4/MYD88/NF-κB signaling is involved in the regulation of inflammatory response and ECM protein proliferation in DKD. Liraglutide alleviates inflammation and fibrosis by downregulating the TLR4/MYD88/NF-κB signaling pathway in MCs.NEW & NOTEWORTHY Liraglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has renoprotective effect in diabetic kidney disease (DKD). In DKD, TLR4/MYD88/NF-κB signaling is involved in the regulation of inflammatory responses and extracellular matrix (ECM) protein proliferation. Liraglutide attenuates renal inflammation and overexpression of ECM proteins by inhibiting TLR4/MYD88/NF-κB signaling pathway. Therefore, we have identified a new mechanism that contributes to the renal protection of GLP-1RA, thus helping to design innovative treatment strategies for diabetic patients with various complications.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Fibrosis , Liraglutide , Myeloid Differentiation Factor 88 , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Animals , Liraglutide/pharmacology , Liraglutide/therapeutic use , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Male , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Mice , Mice, Inbred C57BL , Rats , Down-Regulation/drug effects , Rats, Sprague-Dawley , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Mesangial Cells/pathology , Mice, Knockout , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
3.
Ren Fail ; 46(2): 2378210, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39090966

ABSTRACT

Objectives: To explore the therapeutic effects of M2 macrophages in diabetic nephropathy (DN) and their mechanism.Methods: We infused M2 macrophages stimulated with IL-4 into 10-week-old db/db mice once a week for 4 weeks through the tail vein as M2 group. Then we investigated the role of M2 macrophages in alleviating the infammation of DN and explored the mechanism.Results: M2 macrophages hindered the progression of DN, reduced the levels of IL-1ß (DN group was 34%, M2 group was 13%, p < 0.01) and MCP-1 (DN group was 49%, M2 group was 16%, p < 0.01) in the glomeruli. It was also proven that M2 macrophages alleviate mesangial cell injury caused by a high glucose environment. M2 macrophage tracking showed that the infused M2 macrophages migrated to the kidney, and the number of M2 macrophages in the kidney reached a maximum on day 3. Moreover, the ratio of M2 to M1 macrophages was 2.3 in the M2 infusion group, while 0.4 in the DN group (p < 0.01). Mechanistically, M2 macrophages downregulated Janus kinase (JAK) 2 and signal transducer and activator of transcription (STAT) 3 in mesangial cells.Conclusions: Multiple infusions of M2 macrophages significantly alleviated inflammation in the kidney and hindered the progression of DN at least partially by abrogating the M1/M2 homeostasis disturbances and suppressing the JAK2/STAT3 pathway in glomerular mesangial cells. M2 macrophage infusion may be a new therapeutic strategy for DN treatment.


Subject(s)
Diabetic Nephropathies , Janus Kinase 2 , Macrophages , STAT3 Transcription Factor , Signal Transduction , Animals , Janus Kinase 2/metabolism , Diabetic Nephropathies/metabolism , STAT3 Transcription Factor/metabolism , Mice , Macrophages/metabolism , Male , Mesangial Cells/metabolism , Disease Models, Animal , Kidney Glomerulus/pathology , Kidney Glomerulus/metabolism , Chemokine CCL2/metabolism , Mice, Inbred C57BL , Interleukin-1beta/metabolism
4.
Int J Mol Sci ; 25(16)2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39201671

ABSTRACT

Diabetic nephropathy, a leading cause of end-stage renal disease, accounts for significant morbidity and mortality. It is characterized by microinflammation in the glomeruli and myofibroblast activation in the tubulointerstitium. Salvia miltiorrhiza Bunge, a traditional Chinese medicine, is shown to possess anti-inflammatory and anti-fibrotic properties, implying its renal-protective potential. This study investigates which type of component can reduce the damage caused by diabetic nephropathy in a single setting. The ethyl acetate (EtOAc) layer was demonstrated to provoke peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ activities in renal mesangial cells by dual luciferase reporter assay. In a high glucose (HG)-cultured mesangial cell model, the EtOAc layer substantially inhibited HG-induced elevations of interleukin-1ß, transforming growth factor-ß1 (TGF-ß1), and fibronectin, whereas down-regulated PPAR-γ was restored. In addition, among the extracts of S. miltiorrhiza, the EtOAc layer effectively mitigated TGF-ß1-stimulated myofibroblast activation. The EtOAc layer also showed a potent ability to attenuate renal hypertrophy, proteinuria, and fibrotic severity by repressing diabetes-induced proinflammatory factor, extracellular matrix accumulation, and PPAR-γ reduction in the STZ-induced diabetes mouse model. Our findings, both in vitro and in vivo, indicate the potential of the EtOAc layer from S. miltiorrhiza for future drug development targeting diabetic nephropathy.


Subject(s)
Acetates , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Drugs, Chinese Herbal , Fibrosis , PPAR gamma , Salvia miltiorrhiza , Salvia miltiorrhiza/chemistry , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Mice , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , PPAR gamma/metabolism , Acetates/chemistry , Acetates/pharmacology , Male , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Transforming Growth Factor beta1/metabolism , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Fibronectins/metabolism , Mice, Inbred C57BL , PPAR alpha/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glucose/metabolism
5.
Life Sci ; 353: 122932, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39067659

ABSTRACT

Diabetes mellitus (DM) is a significant public health problem. Diabetic kidney disease (DKD) is the most common complication of DM, and its incidence has been increasing with the increasing prevalence of DM. Given the association between DKD and mortality in patients with DM, DKD is a significant burden on public health resources. Despite its significance in DM progression, the pathogenesis of DKD remains unclear. Aberrant glucose uptake by cells is an important pathophysiological mechanism underlying DKD renal injury. Glucose is transported across the bilayer cell membrane by a glucose transporter (GLUT) located on the cell membrane. Multiple GLUT proteins have been identified in the kidney, and GLUT1 is one of the most abundantly expressed isoforms. GLUT1 is a crucial regulator of intracellular glucose metabolism and plays a key pathological role in the phenotypic changes in DKD mesangial cells. In an attempt to understand the pathogenesis of DKD better, we here present a review of studies on the role of GLUT1 in the development and progression of DKD.


Subject(s)
Diabetic Nephropathies , Glucose Transporter Type 1 , Glucose , Humans , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Glucose Transporter Type 1/metabolism , Animals , Glucose/metabolism , Kidney/metabolism , Kidney/pathology , Mesangial Cells/metabolism , Mesangial Cells/pathology
6.
Function (Oxf) ; 5(5)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38984988

ABSTRACT

Mesangial cells offer structural support to the glomerular tuft and regulate glomerular capillary flow through their contractile capabilities. These cells undergo phenotypic changes, such as proliferation and mesangial expansion, resulting in abnormal glomerular tuft formation and reduced capillary loops. Such adaptation to the changing environment is commonly associated with various glomerular diseases, including diabetic nephropathy and glomerulonephritis. Thrombin-induced mesangial remodeling was found in diabetic patients, and expression of the corresponding protease-activated receptors (PARs) in the renal mesangium was reported. However, the functional PAR-mediated signaling in mesangial cells was not examined. This study investigated protease-activated mechanisms regulating mesangial cell calcium waves that may play an essential role in the mesangial proliferation or constriction of the arteriolar cells. Our results indicate that coagulation proteases such as thrombin induce synchronized oscillations in cytoplasmic Ca2+ concentration of mesangial cells. The oscillations required PAR1 G-protein coupled receptors-related activation, but not a PAR4, and were further mediated presumably through store-operated calcium entry and transient receptor potential canonical 3 (TRPC3) channel activity. Understanding thrombin signaling pathways and their relation to mesangial cells, contractile or synthetic (proliferative) phenotype may play a role in the development of chronic kidney disease and requires further investigation.


Subject(s)
Calcium Signaling , Mesangial Cells , Receptor, PAR-1 , Thrombin , Humans , Receptor, PAR-1/metabolism , Mesangial Cells/metabolism , Calcium Signaling/drug effects , Thrombin/metabolism , Thrombin/pharmacology , Calcium/metabolism , Cells, Cultured , Cell Proliferation , Receptors, Thrombin/metabolism
7.
Ren Fail ; 46(2): 2378999, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39011603

ABSTRACT

Objectives: Astaxanthin (ATX) is a strong antioxidant drug. This study aimed to investigate the effects of ATX on podocytes in diabetic nephropathy and the underlying renal protective mechanism of ATX, which leads to pathological crosstalk with mesangial cells.Methods: In this study, diabetic rats treated with ATX exhibited reduced 24-h urinary protein excretion and decreased blood glucose and lipid levels compared to vehicle-treated rats. Glomerular mesangial matrix expansion and renal tubular epithelial cell injury were also attenuated in ATX-treated diabetic rats compared to control rats.Results: ATX treatment markedly reduced the α-SMA and collagen IV levels in the kidneys of diabetic rats. Additionally, ATX downregulated autophagy levels. In vitro, compared with normal glucose, high glucose inhibited LC3-II expression and increased p62 expression, whereas ATX treatment reversed these changes. ATX treatment also inhibited α-SMA and collagen IV expression in cultured podocytes. Secreted factors (vascular endothelial growth factor B and transforming growth factor-ß) generated by high glucose-induced podocytes downregulated autophagy in human mesangial cells (HMCs); however, this downregulation was upregulated when podocytes were treated with ATX.Conclusions: The current study revealed that ATX attenuates diabetes-induced kidney injury likely through the upregulation of autophagic activity in podocytes and its antifibrotic effects. Crosstalk between podocytes and HMCs can cause renal injury in diabetes, but ATX treatment reversed this phenomenon.


Subject(s)
Autophagy , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Mesangial Cells , Podocytes , Up-Regulation , Xanthophylls , Podocytes/drug effects , Podocytes/metabolism , Podocytes/pathology , Autophagy/drug effects , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Animals , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Mesangial Cells/pathology , Xanthophylls/pharmacology , Xanthophylls/therapeutic use , Rats , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Male , Humans , Up-Regulation/drug effects , Rats, Sprague-Dawley , Actins/metabolism , Collagen Type IV/metabolism , Cells, Cultured , Antioxidants/pharmacology
8.
Ren Fail ; 46(2): 2371059, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38946402

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) have been shown to play critical roles in the initiation and progression of chronic glomerulonephritis (CGN), while their role from mesangial cells in contributing to the pathogenesis of CGN is rarely understood. Our study aims to explore the potential functions of mesangial cell-derived circRNAs using RNA sequencing (RNA-seq) and bioinformatics analysis. METHODS: Mouse mesangial cells (MMCs) were stimulated by lipopolysaccharide (LPS) to establish an in vitro model of CGN. Pro-inflammatory cytokines and cell cycle stages were detected by Enzyme-linked immunosorbent assay (ELISA) and Flow Cytometry experiment, respectively. Subsequently, differentially expressed circRNAs (DE-circRNAs) were identified by RNA-seq. GEO microarrays were used to identify differentially expressed mRNAs (DE-mRNAs) between CGN and healthy populations. Weighted co-expression network analysis (WGCNA) was utilized to explore clinically significant modules of CGN. CircRNA-associated CeRNA networks were constructed by bioinformatics analysis. The hub mRNAs from CeRNA network were identified using LASSO algorithms. Furthermore, utilizing protein-protein interaction (PPI), gene ontology (GO), pathway enrichment (KEGG), and GSEA analyses to explore the potential biological function of target genes from CeRNA network. In addition, we investigated the relationships between immune cells and hub mRNAs from CeRNA network using CIBERSORT. RESULTS: The expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α was drastically increased in LPS-induced MMCs. The number of cells decreased significantly in the G1 phase but increased significantly in the S/G2 phase. A total of 6 DE-mRNAs were determined by RNA-seq, including 4 up-regulated circRNAs and 2 down-regulated circRNAs. WGCNA analysis identified 1747 DE-mRNAs of the turquoise module from CGN people in the GEO database. Then, the CeRNA networks, including 6 circRNAs, 38 miRNAs, and 80 mRNAs, were successfully constructed. The results of GO and KEGG analyses revealed that the target mRNAs were mainly enriched in immune, infection, and inflammation-related pathways. Furthermore, three hub mRNAs (BOC, MLST8, and HMGCS2) from the CeRNA network were screened using LASSO algorithms. GSEA analysis revealed that hub mRNAs were implicated in a great deal of immune system responses and inflammatory pathways, including IL-5 production, MAPK signaling pathway, and JAK-STAT signaling pathway. Moreover, according to an evaluation of immune infiltration, hub mRNAs have statistical correlations with neutrophils, plasma cells, monocytes, and follicular helper T cells. CONCLUSIONS: Our findings provide fundamental and novel insights for further investigations into the role of mesangial cell-derived circRNAs in CGN pathogenesis.


Subject(s)
Computational Biology , Glomerulonephritis , Mesangial Cells , RNA, Circular , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , Mice , Mesangial Cells/metabolism , Glomerulonephritis/genetics , Glomerulonephritis/metabolism , Sequence Analysis, RNA , Gene Regulatory Networks , RNA, Messenger/metabolism , RNA, Messenger/genetics , Protein Interaction Maps/genetics , Chronic Disease , Cytokines/metabolism , Lipopolysaccharides/pharmacology , Gene Expression Profiling , Disease Models, Animal
9.
J Pharm Pharmacol ; 76(9): 1149-1159, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39002149

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is a major contributor to end-stage renal failure, and lacking effective treatment options. Shengqing Jiangzhuo capsule (SQJZJN), a traditional Chinese medicine prescription with known efficacy in chronic kidney disease, has not been thoroughly investigated for its potential in DN protection. METHODS: Eight-week-old male C57BLKS/J db/db, C57BLKS/J db/m mice, and human glomerular mesangial cell (HMC) cells cultured with high glucose were used as experimental models in this study. RESULTS: The in vivo investigation showed that SQJZJN can significantly ameliorate renal pathological damage, reduce serum creatinine, and lower urinary microalbumin levels in db/db mice. In vitro, SQJZJN treatment mitigated advanced glycation end products (AGEs) and reactive oxygen species (ROS), leading to a reduction in renal cell apoptosis. Mechanistically, SQJZJN activated the Keap1/Nrf2/ARE pathway by promoting nuclear factor erythroid-derived 2-related factor 2 (Nrf2), γ-glutamylcysteine synthetase heavy subunit (γ-GCS), and Heme oxygenase-1 (HO-1) expressions, while decreasing Kelch-like ECH-associated protein 1 (KEAP1) expressions. CONCLUSION: These findings suggest that SQJZJN exerts a protective effect on DN, potentially through the activation of the Keap1/Nrf2/ARE pathway.


Subject(s)
Diabetic Nephropathies , Drugs, Chinese Herbal , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Reactive Oxygen Species , Signal Transduction , Animals , Humans , Male , Mice , Apoptosis/drug effects , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Glycation End Products, Advanced/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
10.
Biochem Pharmacol ; 226: 116373, 2024 08.
Article in English | MEDLINE | ID: mdl-38885772

ABSTRACT

Diabetic nephropathy (DN) is a complication of diabetes and is mainly characterized by renal fibrosis, which could be attributed to chronic kidney inflammation. Stimulator of interferon genes (STING), a linker between immunity and metabolism, could ameliorate various metabolic and inflammatory diseases. However, the regulatory role of STING in DN remains largely unexplored. In this study, knockdown of STING decreased extracellular matrix (ECM), pro-inflammatory, and fibrotic factors in high glucose (HG)-induced glomerular mesangial cells (GMCs), whereas overexpression of STING triggered the inflammatory fibrosis process, suggesting that STING was a potential target for DN. Polydatin (PD) is a glucoside of resveratrol and has been reported to ameliorate DN by inhibiting inflammatory responses. Nevertheless, whether PD improved DN via STING remains unclear. Here, transcriptomic profiling implied that the STING/NF-κB pathway might be an important target for PD. We further found that PD decreased the protein expression of STING, and subsequently suppressed the activation of downstream targets including TBK1 phosphorylation and NF-κB nuclear translocation, and eventually inhibited the production of ECM, pro-inflammatory and fibrotic factors in HG-induced GMCs. Notably, results of molecular docking, molecular dynamic simulations, surface plasmon resonance, cellular thermal shift assay and Co-immunoprecipitation assay indicated that PD directly bound to STING and restored the declined proteasome-mediated degradation of STING induced by HG. In diabetic mice, PD also inhibited the STING pathway and improved the pathological changes of renal inflammatory fibrosis. Our study elucidated the regulatory role of STING in DN, and the novel mechanism of PD treating DN via inhibiting STING expression.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Fibrosis , Glucosides , Membrane Proteins , Mice, Inbred C57BL , Stilbenes , Glucosides/pharmacology , Glucosides/therapeutic use , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Fibrosis/drug therapy , Male , Stilbenes/pharmacology , Stilbenes/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Signal Transduction/drug effects , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Mesangial Cells/pathology , Humans
11.
J Nanobiotechnology ; 22(1): 339, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890734

ABSTRACT

Diabetic kidney disease (DKD), a chronic kidney disease, is characterized by progressive fibrosis caused due to persistent hyperglycemia. The development of fibrosis in DKD determines the patient prognosis, but no particularly effective treatment. Here, small extracellular vesicles derived from mesenchymal stem cells (MSC-sEV) have been used to treat DKD fibrosis. Single-cell RNA sequencing was used to analyze 27,424 cells of the kidney, we have found that a novel fibrosis-associated TGF-ß1+Arg1+ macrophage subpopulation, which expanded and polarized in DKD and was noted to be profibrogenic. Additionally, Actin+Col4a5+ mesangial cells in DKD differentiated into myofibroblasts. Multilineage ligand-receptor and cell-communication analysis showed that fibrosis-associated macrophages activated the TGF-ß1/Smad2/3/YAP signal axis, which promotes mesangial fibrosis-like change and accelerates renal fibrosis niche. Subsequently, the transcriptome sequencing and LC-MS/MS analysis indicated that MSC-sEV intervention could restore the levels of the kinase ubiquitin system in DKD and attenuate renal interstitial fibrosis via delivering CK1δ/ß-TRCP to mediate YAP ubiquitination degradation in mesangial cells. Our findings demonstrate the unique cellular and molecular mechanisms of MSC-sEV in treating the DKD fibrosis niche at a single-cell level and provide a novel therapeutic strategy for renal fibrosis.


Subject(s)
Diabetic Nephropathies , Extracellular Vesicles , Fibrosis , Mesenchymal Stem Cells , Single-Cell Analysis , Transcriptome , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Mice , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/therapy , Male , Mice, Inbred C57BL , Humans , Macrophages/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism , Mesangial Cells/metabolism , Kidney/pathology , Kidney/metabolism
12.
Am J Physiol Renal Physiol ; 327(2): F249-F264, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38867675

ABSTRACT

Positioned at the head of the nephron, the renal corpuscle generates a plasma ultrafiltrate to initiate urine formation. Three major cell types within the renal corpuscle, the glomerular mesangial cells, podocytes, and glomerular capillary endothelial cells, communicate via endocrine- and paracrine-signaling mechanisms to maintain the structure and function of the glomerular capillary network and filtration barrier. Ca2+ signaling mediated by several distinct plasma membrane Ca2+ channels impacts the functions of all three cell types. The past two decades have witnessed pivotal advances in understanding of non-voltage-gated Ca2+ channel function and regulation in the renal corpuscle in health and renal disease. This review summarizes the current knowledge of the physiological and pathological impact of non-voltage-gated Ca2+ channel signaling in mesangial cells, podocytes and glomerular capillary endothelium. The main focus is on transient receptor potential and store-operated Ca2+ channels, but ionotropic N-methyl-d-aspartate receptors and purinergic receptors also are discussed. This update of Ca2+ channel functions and their cellular signaling cascades in the renal corpuscle is intended to inform the development of therapeutic strategies targeting these channels to treat kidney diseases, particularly diabetic nephropathy.


Subject(s)
Calcium Signaling , Kidney Diseases , Humans , Animals , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Glomerulus/metabolism , Calcium Channels/metabolism , Podocytes/metabolism , Mesangial Cells/metabolism
13.
J Ethnopharmacol ; 333: 118441, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38851471

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Toona sinensis (A. Juss.) Roem. Is a deciduous woody plant native to Eastern and Southeastern Asia. Different parts of this plant have a long history of being applied as traditional medicines to treat various diseases. The fruits have been used for antidiabetic, antidiabetic nephropathy (anti-DN), antioxidant, anti-inflammatory, and other activities. AIM OF THE STUDY: The purpose of this study was to investigate the effects of EtOAc (PEAE) and n-BuOH extracts (PNBE) from T. sinensis pericarps (TSP) on kidney injury in high-fat and high-glucose diet (HFD)/streptozotocin (STZ)-induced DN mice by network pharmacology and pharmacological investigations, as well as to further discover active compounds that could ameliorate oxidative stress and inflammation, thereby delaying DN progression by regulating the Nrf2/NF-κB pathway in high glucose (HG)-induced glomerular mesangial cells (GMCs). MATERIALS AND METHODS: The targets of TSP 1-16 with DN were analyzed by network pharmacology. HFD/STZ-induced DN mouse models were established to evaluate the effects of PEAE and PNBE. Six groups were divided into normal, model, PEAE100, PEAE400, PNBE100, and PNBE400 groups. Fasting blood glucose (FBG) levels, organ indices, plasma MDA, SOD, TNF-α, and IL-6 levels, as well as renal tissue Nrf2, HO-1, NF-κB, TNF-α, and TGF-ß1 levels were determined, along with hematoxylin-eosin (H&E) and immunohistochemical (IHC) analysis of kidney sections. Furthermore, GMC activity screening combined with molecular docking was utilized to discover active compounds targeting HO-1, TNF-α, and IL-6. Moreover, western blotting assays were performed to validate the mechanism of Nrf2 and NF-κB in HG-induced GMCs. RESULTS: Network pharmacology predicted that the main targets of PEAE and PNBE in the treatment of DN include IL-6, INS, TNF, ALB, GAPDH, IL-1ß, TP53, EGFR, and CASP3. Additionally, major pathways include AGE-RAGE and IL-17. In vivo experiments, treatment with PEAE and PNBE effectively reduced FBG levels and organ indices, while plasma MDA, SOD, TNF-α, and IL-6 levels, renal tissue Nrf2, HO-1, NF-κB, TNF-α, and TGF-ß1 levels, and renal function were significantly improved. PEAE and PNBE significantly improved glomerular and tubule injury, and inhibited the development of DN by regulating the levels of oxidative stress and inflammation-related factors. In vitro experiments, compound 11 strongly activated HO-1 and inhibited TNF-α and IL-6. The molecular docking results revealed that compound 11 exhibited a high binding affinity towards the targets HO-1, TNF-α, and IL-6 (<-6 kcal/mol). Western blotting results showed compound 11 effectively regulated Nrf2 and NF-κB p65 protein levels, and significantly improved oxidative stress damage and inflammatory responses in HG-induced GMCs. CONCLUSION: PEAE, PNBE, and their compounds, especially compound 11, may have the potential to prevent and treat DN, and are promising natural nephroprotective agents.


Subject(s)
Diabetic Nephropathies , NF-E2-Related Factor 2 , Network Pharmacology , Plant Extracts , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Male , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , NF-E2-Related Factor 2/metabolism , Mice, Inbred C57BL , Diabetes Mellitus, Experimental/drug therapy , Meliaceae/chemistry , Oxidative Stress/drug effects , Mesangial Cells/drug effects , Mesangial Cells/metabolism , NF-kappa B/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Fruit/chemistry , Diet, High-Fat , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Streptozocin , Antioxidants/pharmacology , Antioxidants/isolation & purification
14.
Aging (Albany NY) ; 16(11): 9933-9943, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38850526

ABSTRACT

BACKGROUND: Ginsenoside Rg3 is an active saponin isolated from ginseng, which can reduce renal inflammation. However, the role and mechanism of Rg3 in diabetic kidney disease (DKD) are far from being studied. METHODS: The effects of Rg3 and miR-216a-5p on the proliferation, apoptosis, and MAPK pathway in high glucose (HG)-induced SV40 MES 13 were monitored by CCK-8, TUNEL staining, and western blot. RESULTS: Rg3 treatment could accelerate proliferation and suppress apoptosis in HG-induced SV40 MES. Moreover, miR-216a-5p inhibition also could alleviate renal injury, prevent apoptosis, and activate the MAPK pathway in kidney tissues of diabetic model mice. CONCLUSION: Rg3 could attenuate DKD progression by downregulating miR-216a-5p, suggesting Rg3 and miR-216a-5p might be the potential drug and molecular targets for DKD therapy.


Subject(s)
Apoptosis , Cell Proliferation , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Ginsenosides , MAP Kinase Signaling System , Mesangial Cells , MicroRNAs , Ginsenosides/pharmacology , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Diabetic Nephropathies/drug therapy , Apoptosis/drug effects , Cell Proliferation/drug effects , Mice , Mesangial Cells/drug effects , Mesangial Cells/metabolism , MAP Kinase Signaling System/drug effects , Diabetes Mellitus, Experimental/metabolism , Male , Cell Line
15.
Eur J Pharmacol ; 978: 176799, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38945289

ABSTRACT

Dihydromyricetin (DHM) is a flavonoid from vine tea with broad pharmacological benefits, which improve inflammation by blocking the NF-κB pathway. A growing body of research indicates that chronic kidney inflammation is vital to the pathogenesis of diabetic renal fibrosis. Sphingosine kinase-1 (SphK1) is a key regulator of diabetic renal inflammation, which triggers the NF-κB pathway. Hence, we evaluated whether DHM regulates diabetic renal inflammatory fibrosis by acting on SphK1. Here, we demonstrated that DHM effectively suppressed the synthesis of fibrotic and inflammatory adhesion factors like ICAM-1, and VCAM-1 in streptozotocin-treated high-fat diet-induced diabetic mice and HG-induced glomerular mesangial cells (GMCs). Moreover, DHM significantly suppressed NF-κB pathway activation and reduced SphK1 activity and protein expression under diabetic conditions. Mechanistically, the results of molecular docking, molecular dynamics simulation, and cellular thermal shift assay revealed that DHM stably bound to the binding pocket of SphK1, thereby reducing sphingosine-1-phosphate content and SphK1 enzymatic activity, which ultimately inhibited NF-κB DNA binding, transcriptional activity, and nuclear translocation. In conclusion, our data suggested that DHM inhibited SphK1 phosphorylation to prevent NF-κB activation thus ameliorating diabetic renal fibrosis. This supported the clinical use and further drug development of DHM as a potential candidate for treating diabetic renal fibrosis.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Fibrosis , Flavonols , NF-kappa B , Phosphotransferases (Alcohol Group Acceptor) , Signal Transduction , Animals , Flavonols/pharmacology , Flavonols/therapeutic use , NF-kappa B/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Mice , Male , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Signal Transduction/drug effects , Mice, Inbred C57BL , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Mesangial Cells/pathology , Molecular Docking Simulation , Intercellular Adhesion Molecule-1/metabolism , Phosphorylation/drug effects , Kidney/drug effects , Kidney/pathology , Kidney/metabolism
16.
Cell Death Dis ; 15(5): 344, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762508

ABSTRACT

Lupus nephritis (LN) occurs in 50% of cases of systemic lupus erythematosus (SLE) and is one of the most serious complications that can occur during lupus progression. Mesangial cells (MCs) are intrinsic cells in the kidney that can regulate capillary blood flow, phagocytose apoptotic cells, and secrete vasoactive substances and growth factors. Previous studies have shown that various types of inflammatory cells can activate MCs for hyperproliferation, leading to disruption of the filtration barrier and impairment of renal function in LN. Here, we characterized the heterogeneity of kidney cells of LN mice by single-nucleus RNA sequencing (snRNA-seq) and revealed the interaction between macrophages and MCs through the CXC motif chemokine ligand 12 (CXCL12)/dipeptidyl peptidase 4 (DPP4) axis. In culture, macrophages modulated the proliferation and migration of MCs through this ligand-receptor interaction. In LN mice, treatment with linagliptin, a DPP4 inhibitor, effectively inhibited MC proliferation and reduced urinary protein levels. Together, our findings indicated that targeting the CXCL12/DPP4 axis with linagliptin treatment may serve as a novel strategy for the treatment of LN via the CXCL12/DPP4 axis.


Subject(s)
Cell Proliferation , Chemokine CXCL12 , Dipeptidyl Peptidase 4 , Lupus Nephritis , Macrophages , Mesangial Cells , Lupus Nephritis/pathology , Lupus Nephritis/metabolism , Animals , Dipeptidyl Peptidase 4/metabolism , Chemokine CXCL12/metabolism , Mesangial Cells/metabolism , Mesangial Cells/pathology , Mesangial Cells/drug effects , Mice , Macrophages/metabolism , Cell Proliferation/drug effects , Humans , Female , Cell Movement/drug effects , Cell Communication/drug effects , Linagliptin/pharmacology , Signal Transduction , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Mice, Inbred C57BL
17.
Carbohydr Res ; 540: 109125, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703663

ABSTRACT

Di-d-psicose anhydride (DPA), derived from functional rare saccharide as d-psicose, is investigated for its strong chelating ability. Methylglyoxal (MGO), an important precursor of advanced glycation end-products (AGEs), promotes obesity, and causes complications such as diabetic nephropathy. On mesangial cells, DPA can substantially reduce the negative effects of MGO. DPA effectively trapping MGO in mesangial cells. The bonding properties of the DPA-MGO adduct were discussed by mass spectrometry and nuclear magnetic resonance (NMR). The NMR spectra of the DPA-MGO adduct provide evidence for chelation bonding. The inhibition of AGE formation and the mass spectrometry results of the DPA-MGO adduct indicate that DPA can scavenge MGO at a molar ratio of 1:1. DPA suppressed 330 % of the up-regulated receptor for an AGEs protein expression to a normal level and restored the suppressed glyoxalase 1 level to 86 % of the normal group. This research provides important evidence and theoretical basis for the development of AGE inhibitors derived from rare saccharide.


Subject(s)
Diabetic Nephropathies , Glycation End Products, Advanced , Pyruvaldehyde , Pyruvaldehyde/chemistry , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/antagonists & inhibitors , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Lactoylglutathione Lyase/antagonists & inhibitors , Lactoylglutathione Lyase/metabolism , Humans , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/antagonists & inhibitors , Anhydrides/chemistry , Chelating Agents/chemistry , Chelating Agents/pharmacology
18.
JCI Insight ; 9(9)2024 May 08.
Article in English | MEDLINE | ID: mdl-38716725

ABSTRACT

IgA nephropathy (IgAN) represents the main cause of renal failure, while the precise pathogenetic mechanisms have not been fully determined. Herein, we conducted a cross-species single-cell survey on human IgAN and mouse and rat IgAN models to explore the pathogenic programs. Cross-species single-cell RNA sequencing (scRNA-Seq) revealed that the IgAN mesangial cells (MCs) expressed high levels of inflammatory signatures CXCL12, CCL2, CSF1, and IL-34 and specifically interacted with IgAN macrophages via the CXCL12/CXCR4, CSF1/IL-34/CSF1 receptor, and integrin subunit alpha X/integrin subunit alpha M/complement C3 (C3) axes. IgAN macrophages expressed high levels of CXCR4, PDGFB, triggering receptor expressed on myeloid cells 2, TNF, and C3, and the trajectory analysis suggested that these cells derived from the differentiation of infiltrating blood monocytes. Additionally, protein profiling of 21 progression and 28 nonprogression IgAN samples revealed that proteins CXCL12, C3, mannose receptor C-type 1, and CD163 were negatively correlated with estimated glomerular filtration rate (eGFR) value and poor prognosis (30% eGFR as composite end point). Last, a functional experiment revealed that specific blockade of the Cxcl12/Cxcr4 pathway substantially attenuated the glomerulus and tubule inflammatory injury, fibrosis, and renal function decline in the mouse IgAN model. This study provides insights into IgAN progression and may aid in the refinement of IgAN diagnosis and the optimization of treatment strategies.


Subject(s)
Disease Progression , Glomerulonephritis, IGA , Macrophages , Single-Cell Analysis , Adult , Animals , Female , Humans , Male , Mice , Rats , Chemokine CXCL12/metabolism , Disease Models, Animal , Glomerular Filtration Rate , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/pathology , Interleukins , Macrophages/immunology , Macrophages/metabolism , Mesangial Cells/pathology , Mesangial Cells/metabolism , Mesangial Cells/immunology , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Rats, Wistar
19.
Phytomedicine ; 130: 155556, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38810552

ABSTRACT

BACKGROUND: Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease that affects multiple organs and cause a wide range of severe clinical manifestations, including lupus nephritis (LN), which is a major risk factor for morbidity and mortality in individual with SLE. Ursolic acid (UA) is a natural compound with favorable anti-inflammatory properties and has been employed to treat multiple disease, including inflammatory diseases, diabetes, and Parkinson's disease. However, its therapeutic potential on LN and the underlying mechanisms remains unclear. PURPOSE: This aim of this study was to investigate the impact of UA on LN and its underlying mechanism. METHODS: MRL/lpr lupus-prone mouse model was used and UA was administered orally for 8 weeks. Dexamethasone was used as a positive control. After 8 weeks of administration, the spleen-to-body-weight ratio, renal function, urine albumin excretion, cytokines levels, and the deposition of immune complex were measured. The primary mouse glomerular mesangial cells (GMCs) and SV40-MES-13 were stimulated by lipopolysaccharide (LPS), either alone or in combination with nigericin, to establish an in vitro model. The activation of NLRP3 inflammasome were investigated both in vivo and in vitro using qRT-PCR, immunoblotting, and immunofluorescence. RESULTS: Our results revealed that UA prominently alleviated LN in MRL/lpr lupus-prone mice, leading to a significant reduction in proteinuria production, infiltration of immune cells infiltration, and histopathological damage in the renal tissue. In addition, UA exerted inhibitory effects on the secretion of IL-1ß, IL-18, and caspase-1, pyroptosis, and ASC speck formation in primary mouse GMCs and SV40-MES-13 cells. Furthermore, UA facilitated the degradation of NLRP3 by suppressing SUMO1-mediated SUMOylation of NLRP3. CONCLUSION: UA possess a therapeutical effect on LN in MRL/lpr mice by enhancing the degradation of NLRP3 through inhibition of SUMO1-mediated SUMOylation of NLRP3. Our findings provide a basis for proposing UA as a potential candidate for the treatment of LN.


Subject(s)
Inflammasomes , Lupus Nephritis , Mice, Inbred MRL lpr , NLR Family, Pyrin Domain-Containing 3 Protein , Triterpenes , Ursolic Acid , Animals , Triterpenes/pharmacology , Lupus Nephritis/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , Inflammasomes/metabolism , Inflammasomes/drug effects , Disease Models, Animal , Female , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Anti-Inflammatory Agents/pharmacology , Sumoylation/drug effects
20.
J Diabetes ; 16(6): e13565, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751373

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is a diabetic complication. LncRNAs are reported to participate in the pathophysiology of DN. Here, the function and mechanism of lncRNA small nucleolar RNA host gene 14 (SNHG14) in DN were explored. METHODS: Streptozotocin (STZ)-induced DN mouse models and high glucose (HG)-treated human mesangial cells (MCs) were used to detect SNHG14 expression. SNHG14 silencing plasmids were applied to examine the function of SNHG14 on proliferation and fibrosis in HG-treated MCs. Potential targets of SNHG14 were predicted using bioinformatics tools and verified by luciferase reporter, RNA pulldown, and northern blotting assays. The functional role of SNHG14 in DN in vivo was detected by injection with adenoviral vector carrying sh-SNHG14 into DN mice. Serum creatinine, blood urea nitrogen, blood glucose, 24-h proteinuria, relative kidney weight, and renal pathological changes were examined in DN mice. RESULTS: SNHG14 expression was elevated in the kidneys of DN mice and HG-treated MCs. SNHG14 silencing inhibited proliferation and fibrosis of HG-stimulated MCs. SNHG14 bound to miR-30e-5p to upregulate SOX4 expression. In rescue assays, SOX4 elevation diminished the effects of SNHG14 silencing in HG-treated MCs, and SOX4 silencing reversed the effects of SNHG14 overexpression. In in vivo studies, SNHG14 downregulation significantly ameliorated renal injuries and renal interstitial fibrosis in DN mice. CONCLUSIONS: SNHG14 silencing attenuates kidney injury in DN mice and reduces proliferation and fibrotic phenotype of HG-stimulated MCs via the miR-30e-5p/SOX4 axis.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Disease Progression , MicroRNAs , RNA, Long Noncoding , SOXC Transcription Factors , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , RNA, Long Noncoding/genetics , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Mice , MicroRNAs/genetics , Humans , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Male , Gene Silencing , Fibrosis , Cell Proliferation , Mesangial Cells/metabolism , Mesangial Cells/pathology , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL