Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.665
Filter
1.
Int J Nanomedicine ; 19: 6519-6546, 2024.
Article in English | MEDLINE | ID: mdl-38957181

ABSTRACT

Background: Salidroside (SAL) is the most effective component of Rhodiola rosea, a traditional Chinese medicine. Cryptotanshinone (CT) is the main fat-soluble extract of Salvia miltiorrhiza, exhibiting considerable potential for application in osteogenesis. Herein, a polycaprolactone/gelatin nanofiber membrane loaded with CT and SAL (PSGC membrane) was successfully fabricated via coaxial electrospinning and characterized. Methods and Results: This membrane capable of sustained and controlled drug release was employed in this study. Co-culturing the membrane with bone marrow mesenchymal stem cells and human umbilical vein endothelial cells revealed excellent biocompatibility and demonstrated osteogenic and angiogenic capabilities. Furthermore, drug release from the PSGC membrane activated the Wnt/ß-catenin signaling pathway and promoted osteogenic differentiation and vascularization. Evaluation of the membrane's vascularization and osteogenic capacities involved transplantation onto a rat's subcutaneous area and assessing rat cranium defects for bone regeneration, respectively. Microcomputed tomography, histological tests, immunohistochemistry, and immunofluorescence staining confirmed the membrane's outstanding angiogenic capacity two weeks post-operation, with a higher incidence of osteogenesis observed in rat cranial defects eight weeks post-surgery. Conclusion: Overall, the SAL- and CT-loaded coaxial electrospun nanofiber membrane synergistically enhances bone repair and regeneration.


Subject(s)
Gelatin , Glucosides , Human Umbilical Vein Endothelial Cells , Mesenchymal Stem Cells , Nanofibers , Neovascularization, Physiologic , Osteogenesis , Phenanthrenes , Phenols , Polyesters , Rats, Sprague-Dawley , Osteogenesis/drug effects , Animals , Nanofibers/chemistry , Gelatin/chemistry , Polyesters/chemistry , Glucosides/chemistry , Glucosides/pharmacology , Phenols/chemistry , Phenols/pharmacology , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Phenanthrenes/pharmacokinetics , Phenanthrenes/administration & dosage , Humans , Neovascularization, Physiologic/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Rats , Male , Bone Regeneration/drug effects , Membranes, Artificial , Coculture Techniques , Drug Liberation , Cell Differentiation/drug effects
2.
Sci Rep ; 14(1): 15022, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951570

ABSTRACT

Cartilage tissue engineering aims to develop functional substitutes for treating cartilage defects and osteoarthritis. Traditional two-dimensional (2D) cell culture systems lack the complexity of native cartilage, leading to the development of 3D regenerative cartilage models. In this study, we developed a 3D model using Gelatin Methacryloyl (GelMA)-based hydrogels seeded with Y201 cells, a bone marrow mesenchymal stem cell line. The model investigated chondrogenic differentiation potential in response to Wnt3a stimulation within the GelMA scaffold and validated using known chondrogenic agonists. Y201 cells demonstrated suitability for the model, with increased proteoglycan content and upregulated chondrogenic marker expression under chondrogenic conditions. Wnt3a enhanced cell proliferation, indicating activation of the Wnt/ß-catenin pathway, which plays a role in cartilage development. GelMA hydrogels provided an optimal scaffold, supporting cell viability and proliferation. The 3D model exhibited consistent responses to chondrogenic agonists, with TGF-ß3 enhancing cartilage-specific extracellular matrix (ECM) production and chondrogenic differentiation. The combination of Wnt3a and TGF-ß3 showed synergistic effects, promoting chondrogenic differentiation and ECM production. This study presents a 3D regenerative cartilage model with potential for investigating cartilage biology, disease mechanisms, and drug screening. The model provides insights into complex cartilage regeneration mechanisms and offers a platform for developing therapeutic approaches for cartilage repair and osteoarthritis treatment.


Subject(s)
Cell Differentiation , Cell Proliferation , Chondrogenesis , Hydrogels , Mesenchymal Stem Cells , Tissue Engineering , Wnt3A Protein , Wnt3A Protein/metabolism , Chondrogenesis/drug effects , Tissue Engineering/methods , Cell Proliferation/drug effects , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Humans , Cartilage/metabolism , Gelatin/chemistry , Tissue Scaffolds/chemistry , Transforming Growth Factor beta3/metabolism , Transforming Growth Factor beta3/pharmacology , Cell Line , Extracellular Matrix/metabolism , Wnt Signaling Pathway/drug effects , Chondrocytes/metabolism , Chondrocytes/cytology , Animals
3.
Nagoya J Med Sci ; 86(2): 223-236, 2024 May.
Article in English | MEDLINE | ID: mdl-38962411

ABSTRACT

Cleft palate is the most common facial birth defect worldwide. It is caused by environmental factors or genetic mutations. Environmental factors such as pharmaceutical exposure in women are known to induce cleft palate. The aim of the present study was to investigate the protective effect of Sasa veitchii extract against medicine-induced inhibition of proliferation of human embryonic palatal mesenchymal cells. We demonstrated that all-trans-retinoic acid inhibited human embryonic palatal mesenchymal cell proliferation in a dose-dependent manner, whereas dexamethasone treatment had no effect on cell proliferation. Cotreatment with Sasa veitchii extract repressed all-trans-retinoic acid-induced toxicity in human embryonic palatal mesenchymal cells. We found that cotreatment with Sasa veitchii extract protected all-trans-retinoic acid-induced cyclin D1 downregulation in human embryonic palatal mesenchymal cells. Furthermore, Sasa veitchii extract suppressed all-trans-retinoic acid-induced miR-4680-3p expression. Additionally, the expression levels of the genes that function downstream of the target genes ( ERBB2 and JADE1 ) of miR-4680-3p in signaling pathways were enhanced by cotreatment with Sasa veitchii extract and all-trans-retinoic acid compared to all-trans-retinoic acid treatment. These results suggest that Sasa veitchii extract suppresses all-trans-retinoic acid-induced inhibition of cell proliferation via modulation of miR-4680-3p expression.


Subject(s)
Cell Proliferation , Cleft Palate , Palate , Plant Extracts , Tretinoin , Humans , Tretinoin/pharmacology , Cell Proliferation/drug effects , Palate/drug effects , Palate/embryology , Palate/cytology , Plant Extracts/pharmacology , MicroRNAs/metabolism , MicroRNAs/genetics , MicroRNAs/drug effects , Cyclin D1/metabolism , Cyclin D1/genetics , Cells, Cultured , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Signal Transduction/drug effects
4.
Sci Rep ; 14(1): 15340, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961142

ABSTRACT

Although stem cell-based regenerative medicine has been extensively studied, it remains difficult to reconstruct three dimensional tissues and organs in combination with vascular systems in vitro. One clinically successful therapy is transplantation of mesenchymal stem cells (MSC) into patients with graft versus host disease. However, transplanted cells are immediately damaged and destroyed because of innate immune reactions provoked by thrombogenic inflammation, and patients need to take immunosuppressive drugs for the immunological regulation of allogeneic cells. This reduces the benefits of stem cell transplantation. Therefore, alternative therapies are more realistic options for clinical use. In this study, we aimed to take advantage of the therapeutic efficacy of MSC and use multiple cytokines released from MSC, that is, stem cells from human exfoliated deciduous teeth (SHEDs). Here, we purified components from conditioned media of immortalized SHED (IM-SHED-CM) and evaluated the activities of intracellular dehydrogenase, cell migration, and antioxidative stress by studying the cells. The immortalization of SHED could make the stable supply of CM possible. We found that the fractionated component of 50-100 kD from IM-SHED-CM had higher efficacy than the original IM-SHED-CM in terms of intracellular dehydrogenase and cell migration in which intracellular signal transduction was activated via receptor tyrosine kinases, and the glutathione peroxidase and reductase system was highly active. Although antioxidative stress activities in the fractionated component of 50-100 kD had slightly lower than that of original IM-SHE-CM, the fraction still had the activity. Thus, the use of fractionated components of 50-100 kD from IM-SHED-CM could be an alternative choice for MSC transplantation because the purified components from CM could maintain the effect of cytokines from SHED.


Subject(s)
Cell Movement , Mesenchymal Stem Cells , Oxidative Stress , Tooth, Deciduous , Humans , Tooth, Deciduous/cytology , Tooth, Deciduous/metabolism , Cell Movement/drug effects , Oxidative Stress/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Culture Media, Conditioned/pharmacology , Cells, Cultured , Antioxidants/pharmacology , Antioxidants/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Signal Transduction/drug effects
5.
Cell Biochem Funct ; 42(5): e4090, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973147

ABSTRACT

Cellular therapy is considered a better option for the treatment of degenerative disorders. Different cell types are being used for tissue regeneration. Despite extensive research in this field, several issues remain to be addressed concerning cell transplantation. One of these issues is the survival and homing of administered cells in the injured tissue, which depends on the ability of these cells to adhere. To enhance cell adherence and survival, Rap1 GTPase was activated in mesenchymal stem cells (MSCs) as well as in cardiomyocytes (CMs) by using 8-pCPT-2'-O-Me-cAMP, and the effect on gene expression dynamics was determined through quantitative reverse transcriptase-polymerase chain reaction analysis. Pharmacological activation of MSCs and CMs resulted in the upregulation of connexin-43 and cell adhesion genes, which increased the cell adhesion ability of MSCs and CMs, and increased the fusion of MSCs with neonatal CMs. Treating stem cells with a pharmacological agent that activates Rap1a before transplantation can enhance their fusion with CMs and increase cellular regeneration.


Subject(s)
Mesenchymal Stem Cells , Myocytes, Cardiac , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Animals , Cell Adhesion/drug effects , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Cell Fusion , Cells, Cultured , Rats , Animals, Newborn , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics
6.
Mol Biol Rep ; 51(1): 785, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951450

ABSTRACT

BACKGROUND: Kaempferia parviflora Wall. ex. Baker (KP) has been reported to exhibit anti-obesity effects. However, the detailed mechanism of the anti-obesity effect of KP extract (KPE) is yet to be clarified. Here, we investigated the effect of KPE and its component polymethoxyflavones (PMFs) on the adipogenic differentiation of human mesenchymal stem cells (MSCs). METHODS AND RESULTS: KPE and PMFs fraction (2.5 µg/mL) significantly inhibited lipid and triacylglyceride accumulation in MSCs; lipid accumulation in MSCs was suppressed during the early stages of differentiation (days 0-3) but not during the mid (days 3-7) or late (days 7-14) stages. Treatment with KPE and PMFs fractions significantly suppressed peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), and various adipogenic metabolic factors. Treatment with KPE and PMFs fraction induced the activation of AMP-activated protein kinase (AMPK) signaling, and pretreatment with an AMPK signaling inhibitor significantly attenuated KPE- and PMFs fraction-induced suppression of lipid formation. CONCLUSIONS: Our findings demonstrate that KPE and PMFs fraction inhibit lipid formation by inhibiting the differentiation of undifferentiated MSCs into adipocyte lineages via AMPK signaling, and this may be the mechanism underlying the anti-obesity effects of KPE and PMFs. Our study lays the foundation for the elucidation of the anti-obesity mechanism of KPE and PMFs.


Subject(s)
AMP-Activated Protein Kinases , Adipogenesis , Cell Differentiation , Flavones , Mesenchymal Stem Cells , Plant Extracts , Signal Transduction , Zingiberaceae , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Adipogenesis/drug effects , Plant Extracts/pharmacology , Zingiberaceae/chemistry , AMP-Activated Protein Kinases/metabolism , Flavones/pharmacology , Cell Differentiation/drug effects , Signal Transduction/drug effects , PPAR gamma/metabolism , PPAR gamma/genetics , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/cytology , Cells, Cultured
7.
Biomolecules ; 14(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38927074

ABSTRACT

Diabetes imposes a huge burden worldwide. Islet transplantation is an alternative therapy for diabetes. However, tacrolimus, a kind of immunosuppressant after organ transplantation, is closely related to post-transplant diabetes mellitus. Mesenchymal stem cells (MSCs) have attracted interest for their potential to alleviate diabetes. In vivo experiments revealed that human menstrual blood-derived stem cells (MenSCs) treatment improved tacrolimus-induced blood glucose, body weight, and glucose tolerance disorders in mice. RNA sequencing was used to analyze the potential therapeutic targets of MenSCs. In this study, we illustrated that cystathionine ß-synthase (CBS) contributed to tacrolimus -induced islet dysfunction. Using ß-cell lines (MIN6, ß-TC-6), we demonstrated that MenSCs ameliorated tacrolimus-induced islet dysfunction in vitro. Moreover, MenSC reduced the tacrolimus-induced elevation of CBS levels and significantly enhanced the viability, anti-apoptotic ability, glucose-stimulated insulin secretion (GSIS), and glycolytic flux of ß-cells. We further revealed that MenSCs exerted their therapeutic effects by inhibiting CBS expression to activate the IL6/JAK2/STAT3 pathway. In conclusion, we showed that MenSCs may be a potential strategy to improve tacrolimus-induced islet dysfunction.


Subject(s)
Cystathionine beta-Synthase , Interleukin-6 , STAT3 Transcription Factor , Tacrolimus , Humans , STAT3 Transcription Factor/metabolism , Tacrolimus/pharmacology , Interleukin-6/metabolism , Animals , Mice , Female , Cystathionine beta-Synthase/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Janus Kinase 2/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Menstruation/blood , Menstruation/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Signal Transduction/drug effects , Insulin Secretion/drug effects , Cell Line
8.
J Nanobiotechnology ; 22(1): 370, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918856

ABSTRACT

Parkinson's disease (PD) is the second largest group of neurodegenerative diseases, and its existing drug treatments are not satisfactory. Natural cell membrane drugs are used for homologous targeting to enhance efficacy. In this study, microfluidic electroporation chip prepared mesenchymal stem cell-derived neuron-like cell membrane-coated curcumin PLGA nanoparticles (MM-Cur-NPs) was synthesized and explored therapeutic effect and mechanism in PD. MM-Cur-NPs can protect neuron from damage, restore mitochondrial membrane potential and reduce oxidative stress in vitro. In PD mice, it also can improve movement disorders and restore damaged TH neurons. MM-Cur-NPs was found to be distributed in the brain and metabolized with a delay within 24 h. After 1 h administration, MM-Cur-NPs were distributed in brain with a variety of neurotransmitters were significantly upregulated, such as dopamine. Differentially expressed genes of RNA-seq were enriched in the inflammation regulation, and it was found the up-expression of anti-inflammatory factors and inhibited pro-inflammatory factors in PD. Mechanically, MM-Cur-NPs can not only reduce neuronal apoptosis, inhibit the microglial marker IBA-1 and inflammation, but also upregulate expression of neuronal mitochondrial protein VDAC1 and restore mitochondrial membrane potential. This study proposes a therapeutic strategy provide neuroprotective effects through MM-Cur-NPs therapy for PD.


Subject(s)
Apoptosis , Cell Membrane , Inflammation , Mesenchymal Stem Cells , Nanoparticles , Neurons , Parkinson Disease , Animals , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Apoptosis/drug effects , Nanoparticles/chemistry , Neurons/drug effects , Neurons/metabolism , Parkinson Disease/drug therapy , Cell Membrane/metabolism , Cell Membrane/drug effects , Membrane Potential, Mitochondrial/drug effects , Curcumin/pharmacology , Curcumin/chemistry , Mice, Inbred C57BL , Microfluidics/methods , Male , Oxidative Stress/drug effects
9.
ACS Appl Mater Interfaces ; 16(26): 32930-32944, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38888932

ABSTRACT

Protein materials are versatile tools in diverse biomedical fields. Among them, artificial secretory granules (SGs), mimicking those from the endocrine system, act as mechanically stable reservoirs for the sustained release of proteins as oligomeric functional nanoparticles. Only validated in oncology, the physicochemical properties of SGs, along with their combined drug-releasing and scaffolding abilities, make them suitable as smart topographies in regenerative medicine for the prolonged delivery of growth factors (GFs). Thus, considering the need for novel, safe, and cost-effective materials to present GFs, in this study, we aimed to biofabricate a protein platform combining both endocrine-like and extracellular matrix fibronectin-derived (ECM-FN) systems. This approach is based on the sustained delivery of a nanostructured histidine-tagged version of human fibroblast growth factor 2. The GF is presented onto polymeric surfaces, interacting with FN to spontaneously generate nanonetworks that absorb and present the GF in the solid state, to modulate mesenchymal stromal cell (MSC) behavior. The results show that SGs-based topographies trigger high rates of MSCs proliferation while preventing differentiation. While this could be useful in cell therapy manufacture demanding large numbers of unspecialized MSCs, it fully validates the hybrid platform as a convenient setup for the design of biologically active hybrid surfaces and in tissue engineering for the controlled manipulation of mammalian cell growth.


Subject(s)
Extracellular Matrix , Fibronectins , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Fibronectins/chemistry , Fibroblast Growth Factor 2/chemistry , Fibroblast Growth Factor 2/pharmacology , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Nanostructures/chemistry
10.
ACS Appl Mater Interfaces ; 16(26): 33005-33020, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38900067

ABSTRACT

Inspired by the crucial role of matrix vesicles (MVs), a series of biomimetic vesicles (BVs) fabricated by calcium glycerophosphate (CaGP) modified polyurethane were designed to mediate the mineralization through in situ enzyme activation for bone therapy. In this study, alkaline phosphatase (ALP) was harbored in the porous BVs by adsorption (Ad-BVs) or entrapment (En-BVs). High encapsulation of ALP on En-BVs was effectively self-activating by calcium ions of CaGP-modified PU that specifically hydrolyzed the organophosphorus (CaGP) to inorganic phosphate, thus promoting the formation of the highly oriented bone-like apatite in vitro. Enzyme-catalyzed kinetics confirms the regulation of apatite crystallization by the synergistic action of self-activated ALP and the confined microcompartments of BVs. This leads to a supersaturated microenvironment, with the En-BVs group exhibiting inorganic phosphate (Pi) levels 4.19 times higher and Ca2+ levels 3.67 times higher than those of simulated body fluid (SBF). Of note, the En-BVs group exhibited excellent osteo-inducing differentiation of BMSCs in vitro and the highest maturity with reduced bone loss in rat femoral defect in vivo. This innovative strategy of biomimetic vesicles is expected to provide valuable insights into the enzyme-activated field of bone therapy.


Subject(s)
Alkaline Phosphatase , Biomimetic Materials , Calcification, Physiologic , Animals , Rats , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Calcification, Physiologic/drug effects , Osteogenesis/drug effects , Rats, Sprague-Dawley , Cell Differentiation/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Glycerophosphates/chemistry , Polyurethanes/chemistry , Polyurethanes/pharmacology
11.
ACS Biomater Sci Eng ; 10(7): 4463-4479, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38848471

ABSTRACT

Scaffold-free bone microtissues differentiated from mesenchymal stem cell (MSC) spheroids offer great potential for bottom-up bone tissue engineering as a direct supply of cells and osteogenic signals. Many biomaterials or biomolecules have been incorporated into bone microtissues to enhance their osteogenic abilities, but these materials are far from clinical approval. Here, we aimed to incorporate hydroxyapatite (HAP) nanoparticles, an essential component of bone matrix, into MSC spheroids to instruct their osteogenic differentiation into bone microtissues and further self-organization into bone organoids with a trabecular structure. Furthermore, the biological interaction between HAP nanoparticles and MSCs and the potential molecular mechanisms in the bone development of MSC spheroids were investigated by both in vitro and in vivo studies. As a result, improved cell viability and osteogenic abilities were observed for the MSC spheroids incorporated with HAP nanoparticles at a concentration of 30 µg/mL. HAP nanoparticles could promote the sequential expression of osteogenic markers (Runx2, Osterix, Sclerostin), promote the expression of bone matrix proteins (OPN, OCN, and Collagen I), promote the mineralization of the bone matrix, and thus promote the bone development of MSC spheroids. The differentiated bone microtissues could further self-organize into linear, lamellar, and spatial bone organoids with trabecular structures. More importantly, adding FAK or Akt inhibitors could decrease the level of HAP-induced osteogenic differentiation of bone microtissues. Finally, excellent new bone regeneration was achieved after injecting bone microtissues into cranial bone defect models, which could also be eliminated by the Akt inhibitor. In conclusion, HAP nanoparticles could promote the development of bone microtissues by promoting the osteogenic differentiation of MSCs and the formation and mineralization of the bone matrix via the FAK/Akt pathway. The bone microtissues could act as individual ossification centers and self-organize into macroscale bone organoids, and in this meaning, the bone microtissues could be called microscale bone organoids. Furthermore, the bone microtissues revealed excellent clinical perspectives for injectable cellular therapies for bone defects.


Subject(s)
Bone Regeneration , Cell Differentiation , Durapatite , Mesenchymal Stem Cells , Nanoparticles , Osteogenesis , Proto-Oncogene Proteins c-akt , Durapatite/chemistry , Durapatite/pharmacology , Bone Regeneration/drug effects , Nanoparticles/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Animals , Osteogenesis/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Cell Differentiation/drug effects , Humans , Signal Transduction/drug effects , Tissue Engineering/methods , Focal Adhesion Kinase 1/metabolism , Bone and Bones/drug effects , Mice , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism
12.
Int J Biol Macromol ; 273(Pt 1): 132828, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834125

ABSTRACT

Intervertebral disc degeneration arises from damage or degeneration of the nucleus pulposus (NP). In this study, we developed a photo-crosslinkable hydrogel incorporating FG4592 to support the growth and differentiation of bone-marrow-derived mesenchymal stem cells (BMSC). Initially, hyaluronic acid was modified with tyramine and combined with collagen to introduce riboflavin as a photo-crosslinker. This hydrogel transitioned from liquid to gel upon exposure to blue light in 3 min. The results showed that the hydrogel was biodegradable and had mechanical properties comparable to those of human NP tissues. Scanning electron microscopy after BMSC seeding in the hydrogel revealed an even distribution, and cells adhered to the collagen fibers in the hydrogel with minimal cell mortality. The effect of FG4592 on BMSC proliferation and differentiation was examined, revealing the capability of FG4592 to promote BMSC proliferation and direct differentiation resembling human NP cells. After cultivating BMSCs in the photo-crosslinked hydrogel, there was an upregulation in the expression of glycosaminoglycans, aggrecan, type II collagen, and keratin 19 proteins. Cross-species analyses of rat and human BMSCs revealed consistent results. For potential clinical applications, BMSC loaded with photo-crosslinked hydrogels can be injected into damaged intervertebral disc to facilitate NP regeneration.


Subject(s)
Cell Differentiation , Cell Proliferation , Collagen , Hyaluronic Acid , Hydrogels , Mesenchymal Stem Cells , Nucleus Pulposus , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Nucleus Pulposus/cytology , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Humans , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Collagen/chemistry , Rats , Cross-Linking Reagents/chemistry , Rats, Sprague-Dawley , Anilides , Phthalic Acids
13.
Int J Biol Macromol ; 273(Pt 1): 132924, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866282

ABSTRACT

The continuous stimulation of periodontitis leads to a decrease in the number of stem cells within the lesion area and significantly impairing their regenerative capacity. Therefore, it is crucial to promote stem cell homing and regulate the local immune microenvironment to suppress inflammation for the regeneration of periodontitis-related tissue defects. Here, we fabricated a novel multifunctional bilayer nanofibrous membrane using electrospinning technology. The dense poly(caprolactone) (PCL) nanofibers served as the barrier layer to resist epithelial invasion, while the polyvinyl alcohol/chitooligosaccharides (PVA/COS) composite nanofiber membrane loaded with calcium beta-hydroxy-beta-methylbutyrate (HMB-Ca) acted as the functional layer. Material characterization tests revealed that the bilayer nanofibrous membrane presented desirable mechanical strength, stability, and excellent cytocompatibility. In vitro, PCL@PVA/COS/HMB-Ca (P@PCH) can not only directly promote rBMSCs migration and differentiation, but also induce macrophage toward pro-healing (M2) phenotype-polarization with increasing the secretion of anti-inflammatory and pro-healing cytokines, thus providing a favorable osteoimmune environment for stem cells recruitment and osteogenic differentiation. In vivo, the P@PCH membrane effectively recruited host MSCs to the defect area, alleviated inflammatory infiltration, and accelerated bone defects repair. Collectively, our data indicated that the P@PCH nanocomposite membrane might be a promising biomaterial candidate for guided tissue regeneration in periodontal applications.


Subject(s)
Macrophages , Mesenchymal Stem Cells , Nanofibers , Nanofibers/chemistry , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Animals , Macrophages/drug effects , Macrophages/immunology , Cell Differentiation/drug effects , Polyesters/chemistry , Periodontitis/therapy , Periodontitis/drug therapy , Membranes, Artificial , Regeneration/drug effects , Osteogenesis/drug effects , Cell Movement/drug effects , Tissue Scaffolds/chemistry , Mice , Rats , Humans , Polyvinyl Alcohol/chemistry
14.
Platelets ; 35(1): 2359028, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832545

ABSTRACT

The purpose of this study is to investigate the molecular interactions and potential therapeutic uses of Eltrombopag (EPAG), a small molecule that activates the cMPL receptor. EPAG has been found to be effective in increasing platelet levels and alleviating thrombocytopenia. We utilized computational techniques to predict and confirm the complex formed by the ligand (EPAG) and the Thrombopoietin receptor (TPO-R) cMPL, elucidating the role of RAS, JAK-2, STAT-3, and other essential elements for downstream signaling. Molecular dynamics (MD) simulations were employed to evaluate the stability of the ligand across specific proteins, showing favorable characteristics. For the first time, we examined the presence of TPO-R in human umbilical cord mesenchymal stem cells (hUCMSC) and human gingival mesenchymal stem cells (hGMSC) proliferation. Furthermore, treatment with EPAG demonstrated angiogenesis and vasculature formation of endothelial lineage derived from both MSCs. It also indicated the activation of critical factors such as RUNX-1, GFI-1b, VEGF-A, MYB, GOF-1, and FLI-1. Additional experiments confirmed that EPAG could be an ideal molecule for protecting against UVB radiation damage, as gene expression (JAK-2, ERK-2, MCL-1, NFkB, and STAT-3) and protein CD90/cMPL analysis showed TPO-R activation in both hUCMSC and hGMSC. Overall, EPAG exhibits significant potential in treating radiation damage and mitigating the side effects of radiotherapy, warranting further clinical exploration.


What is the context?● Chemotherapy, radiation treatment, or immunological disorders can cause a decrease in platelet count (thrombocytopenia) or decrease all blood cell types (pancytopenia) in the bone marrow. This can make it challenging to choose the appropriate cancer treatment plan.● Eltrombopag (EPAG) is an oral non-peptide thrombopoietin (TPO) mimetic that activates the cMPL receptor in the body. This activation leads to cell differentiation and proliferation, stimulating platelet production and reducing thrombocytopenia. The cMPL receptor is present in liver cells, megakaryocytes, and hematopoietic cells. However, its effects on stem cell proliferation and differentiation are not entirely understood.What is the new?● This study delves into the molecular interactions and therapeutic applications of EPAG, a small molecule that activates cMPL (TPO-R).● The study offers a comprehensive analysis of the ligand-receptor complex formation, including an examination of downstream signaling elements. Furthermore, molecular dynamics simulations demonstrate the stability of the ligand when interacting with targeted proteins.● The research investigates the presence of TPO-R on stem cell-derived endothelial cells, shedding insight into the ability of EPAG TPO-mimetic to promote angiogenesis and vasculature formation.● The study revealed that EPAG has the potential to protect against UVB-induced radiation damage and stimulate stem cell growth.What is the implications?The study emphasizes the potential of EPAG as a promising option for addressing radiation injury and minimizing the adverse effects of radiotherapy. It could revolutionize treatments not only for thrombocytopenia but also for enhancing the growth of stem cells. Furthermore, the research deepens our understanding of EPAG's molecular mechanisms, providing valuable insights for developing future drugs and therapeutic approaches for cell therapy to treat radiation damage.


Subject(s)
Benzoates , Pyrazoles , Receptors, Thrombopoietin , Humans , Pyrazoles/pharmacology , Benzoates/pharmacology , Receptors, Thrombopoietin/metabolism , Hydrazones/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Hydrazines/pharmacology , Hydrazines/therapeutic use , Molecular Dynamics Simulation , Angiogenesis
15.
Article in English | MEDLINE | ID: mdl-38847145

ABSTRACT

BACKGROUND: Macrovascular lesions are the main cause of death and disability in diabetes mellitus, and excessive accumulation of cholesterol and lipids can lead to long-term and repeated damage of vascular endothelial cells. Umbilical cord mesenchymal stem cells (UCMSCs) can attenuate vascular endothelial damage in type 1 diabetic mice, while Fufang Xueshuantong capsule (FXC) has a protective effect on endothelial function; however, whether FXC in combination with UCMSCs can improve T2DM macrovascular lesions as well as its mechanism of action are not clear. Therefore, the aim of this study was to reveal the role of FXC + UCMSCs in T2DM vasculopathy and their potential mechanism in the treatment of T2DM. METHODS: The control and T2DM groups were intragastrically administered with equal amounts of saline, the UCMSCs group was injected with UCMSCs (1×106, resuspended cells with 0.5 mL PBS) in the tail vein, the FXC group was intragastrically administered with 0.58 g/kg FXC, and the UCMSCs + FXC group was injected with UCMSCs (1×106) in the tail vein, followed by FXC (0.58 g/kg), for 8 weeks. RESULTS: We found that FXC+UCMSCs effectively reduced lipid levels (TG, TC, and LDL-C) and ameliorated aortic lesions in T2DM rats. Meanwhile, Nrf2 and HO-1 expression were upregulated. We demonstrated that inhibition of Nrf-2 expression blocked the inhibitory effect of FXC+UCMSCs-CM on apoptosis and oxidative stress injury. CONCLUSION: Our data suggest that FXC+UCMSCs may attenuate oxidative stress injury and macroangiopathy in T2DM by activating the Nrf-2/HO-1 pathway.


Subject(s)
Diabetes Mellitus, Experimental , Drugs, Chinese Herbal , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , NF-E2-Related Factor 2 , Oxidative Stress , Rats, Sprague-Dawley , Signal Transduction , Animals , Oxidative Stress/drug effects , Oxidative Stress/physiology , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mesenchymal Stem Cell Transplantation/methods , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Male , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Umbilical Cord/cytology , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/prevention & control , Diabetic Angiopathies/drug therapy , Diabetic Angiopathies/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Heme Oxygenase (Decyclizing)/metabolism , Combined Modality Therapy/methods , Cells, Cultured
16.
Drug Des Devel Ther ; 18: 2103-2124, 2024.
Article in English | MEDLINE | ID: mdl-38882044

ABSTRACT

Introduction: Autologous stem cell transplantation has emerged as a promising strategy for bone repair. However, the osteogenic potential of mesenchymal stem cells derived from diabetic patients is compromised, possibly due to hyperglycemia-induced senescence. The objective of this study was to assess the preconditioning effects of extracellular vesicles derived from H2O2-stimulated adipose-derived stem cells (ADSCs) and non-modified ADSCs on the osteogenic potential of diabetic bone marrow mesenchymal stem cells (BMSCs). Methods: Sprague-Dawley (SD) rats were experimentally induced into a diabetic state through a high-fat diet followed by an injection of streptozotocin, and diabetic BMSCs were collected from the bone marrow of these rats. Extracellular vesicles (EVs) were isolated from the conditioned media of ADSCs, with or without hydrogen peroxide (H2O2) preconditioning, using density gradient centrifugation. The effects of H2O2 preconditioning on the morphology, marker expression, and particle size of the EVs were analyzed. Furthermore, the impact of EV-pretreatment on the viability, survivability, migration ability, osteogenesis, cellular senescence, and oxidative stress of diabetic BMSCs was examined. Moreover, the expression of the Nrf2/HO-1 pathway was also assessed to explore the underlying mechanism. Additionally, we transplanted EV-pretreated BMSCs into calvarial defects in diabetic rats to assess their in vivo bone formation and anti-senescence capabilities. Results: Our study demonstrated that pretreatment with EVs from ADSCs significantly improved the viability, senescence, and osteogenic differentiation potential of diabetic BMSCs. Moreover, in-vitro experiments revealed that diabetic BMSCs treated with H2O2-activated EVs exhibited increased viability, reduced senescence, and enhanced osteogenic differentiation compared to those treated with non-modified EVs. Furthermore, when transplanted into rat bone defects, diabetic BMSCs treated with H2O2-activated EVs showed improved bone regeneration potential and enhanced anti-senescence function t compared to those treated with non-modified EVs. Both H2O2-activated EVs and non-modified EVs upregulated the expression of the Nrf2/HO-1 pathway in diabetic BMSCs, however, the promoting effect of H2O2-activated EVs was more pronounced than that of non-modified EVs. Conclusion: Extracellular vesicles derived from H2O2-preconditioned ADSCs mitigated senescence in diabetic BMSCs and enhanced their bone regenerative functions via the activation of the Nrf2/HO-1 pathway.


Subject(s)
Cellular Senescence , Diabetes Mellitus, Experimental , Extracellular Vesicles , Hydrogen Peroxide , Mesenchymal Stem Cells , Osteogenesis , Rats, Sprague-Dawley , Animals , Hydrogen Peroxide/pharmacology , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Rats , Osteogenesis/drug effects , Diabetes Mellitus, Experimental/therapy , Cellular Senescence/drug effects , Male , Cells, Cultured , Adipose Tissue/cytology , Oxidative Stress/drug effects , Streptozocin
17.
ACS Appl Mater Interfaces ; 16(24): 30793-30809, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38833412

ABSTRACT

Both bone mesenchymal stem cells (BMSCs) and their exosomes suggest promising therapeutic tools for bone regeneration. Lithium has been reported to regulate BMSC function and engineer exosomes to improve bone regeneration in patients with glucocorticoid-induced osteonecrosis of the femoral head. However, the mechanisms by which lithium promotes osteogenesis have not been elucidated. Here, we demonstrated that lithium promotes the osteogenesis of BMSCs via lithium-induced increases in the secretion of exosomal Wnt10a to activate Wnt/ß-catenin signaling, whose secretion is correlated with enhanced MARK2 activation to increase the trafficking of the Rab11a and Rab11FIP1 complexes together with exosomal Wnt10a to the plasma membrane. Then, we compared the proosteogenic effects of exosomes derived from lithium-treated or untreated BMSCs (Li-Exo or Con-Exo) both in vitro and in vivo. We found that, compared with Con-Exo, Li-Exo had superior abilities to promote the uptake and osteogenic differentiation of BMSCs. To optimize the in vivo application of these hydrogels, we fabricated Li-Exo-functionalized gelatin methacrylate (GelMA) hydrogels, which are more effective at promoting osteogenesis and bone repair than Con-Exo. Collectively, these findings demonstrate the mechanism by which lithium promotes osteogenesis and the great promise of lithium for engineering BMSCs and their exosomes for bone regeneration, warranting further exploration in clinical practice.


Subject(s)
Exosomes , Lithium , Mesenchymal Stem Cells , Osteogenesis , beta Catenin , rab GTP-Binding Proteins , Osteogenesis/drug effects , Exosomes/metabolism , Exosomes/drug effects , Exosomes/chemistry , Animals , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , rab GTP-Binding Proteins/metabolism , beta Catenin/metabolism , Lithium/chemistry , Lithium/pharmacology , Wnt Proteins/metabolism , Mice , Cell Differentiation/drug effects , Rats , Hydrogels/chemistry , Hydrogels/pharmacology , Rats, Sprague-Dawley , Wnt Signaling Pathway/drug effects , Bone Regeneration/drug effects , Humans , Male
18.
J Nanobiotechnology ; 22(1): 325, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858695

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is an aging-related degenerative joint disorder marked by joint discomfort and rigidity. Senescent chondrocytes release pro-inflammatory cytokines and extracellular matrix-degrading proteins, creating an inflammatory microenvironment that hinders chondrogenesis and accelerates matrix degradation. Targeting of senescent chondrocytes may be a promising approach for the treatment of OA. Herein, we describe the engineering of an injectable peptide-hydrogel conjugating a stem cell-homing peptide PFSSTKT for carrying plasmid DNA-laden nanoparticles and Tanshinon IIA (pPNP + TIIA@PFS) that was designed to attenuate OA progression by improving the senescent microenvironment and fostering cartilage regeneration. RESULTS: Specifically, pPNP + TIIA@PFS elevates the concentration of the anti-aging protein Klotho and blocks the transmission of senescence signals to adjacent healthy chondrocytes, significantly mitigating chondrocyte senescence and enhancing cartilage integrity. Additionally, pPNP + TIIA@PFS recruit bone mesenchymal stem cells and directs their subsequent differentiation into chondrocytes, achieving satisfactory chondrogenesis. In surgically induced OA model rats, the application of pPNP + TIIA@PFS results in reduced osteophyte formation and attenuation of articular cartilage degeneration. CONCLUSIONS: Overall, this study introduces a novel approach for the alleviation of OA progression, offering a foundation for potential clinical translation in OA therapy.


Subject(s)
Chondrocytes , Chondrogenesis , Glucuronidase , Hydrogels , Klotho Proteins , Mesenchymal Stem Cells , Osteoarthritis , Plasmids , Rats, Sprague-Dawley , Animals , Osteoarthritis/therapy , Osteoarthritis/drug therapy , Hydrogels/chemistry , Rats , Chondrocytes/metabolism , Chondrocytes/drug effects , Glucuronidase/metabolism , Glucuronidase/pharmacology , Chondrogenesis/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Male , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Disease Progression , Nanoparticles/chemistry , Humans , DNA , Cellular Senescence/drug effects , Cell Differentiation/drug effects
19.
ACS Appl Mater Interfaces ; 16(24): 30685-30702, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38859670

ABSTRACT

Macrophages play a pivotal role in the crosstalk between the immune and skeletal systems, while Mg-based biomaterials demonstrate immunomodulatory capabilities in this procedure. However, the mechanism of how Mg2+ promotes osteogenesis through the interplay of bone marrow-derived mesenchymal stem cells (BMSCs) and macrophages remains undescribed. Here, we demonstrated that a Mg-cross-linked alginate hydrogel exerted a dual enhancement of BMSCs osteogenic differentiation through the ligand-receptor pairing of the OSM/miR-370-3p-gp130 axis. On the one hand, Mg2+, released from the Mg-cross-linked hydrogel, stimulates bone marrow-derived macrophages to produce and secrete more OSM. On the other hand, Mg2+ lowers the miR-370-3p level in BMSCs and in turn, reverses its suppression on gp130. Then, the OSM binds to the gp130 heterodimer receptor and activates intracellular osteogenic programs in BMSCs. Taken together, this study reveals a novel cross-talk pattern between the skeletal and immune systems under Mg2+ stimulation. This study not only brings new insights into the immunomodulatory properties of Mg-based biomaterials for orthopedic applications but also enriches the miRNA regulatory network and provides a promising target to facilitate bone regeneration in large bone defects.


Subject(s)
Alginates , Bone Regeneration , Hydrogels , Macrophages , Magnesium , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Signal Transduction , Hydrogels/chemistry , Hydrogels/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Bone Regeneration/drug effects , Alginates/chemistry , Signal Transduction/drug effects , Macrophages/metabolism , Macrophages/drug effects , Osteogenesis/drug effects , Magnesium/chemistry , Magnesium/pharmacology , Mice , Cytokine Receptor gp130/metabolism , Cytokine Receptor gp130/genetics , Cell Differentiation/drug effects
20.
Cells ; 13(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38891064

ABSTRACT

Periodontal disease is characterized by inflammation and bone loss. Central to its pathogenesis is the dysregulated inflammatory response, complicating regenerative therapies. Mesenchymal stem cells (MSCs) hold significant promise in tissue repair and regeneration. This study investigated the effects of specialized pro-resolving mediators (SPMs), Resolvin E1 (RvE1) and Maresin 1 (MaR1), on the osteogenic differentiation of human bone marrow-derived MSCs under inflammatory conditions. The stem cells were treated with SPMs in the presence of lipopolysaccharide (LPS) to simulate an inflammatory environment. Osteogenic differentiation was assessed through alkaline phosphatase activity and alizarin red staining. Proteomic analysis was conducted to characterize the protein expression profile changes, focusing on proteins related to osteogenesis and osteoclastogenesis. Treatment with RvE1 and MaR1, both individually and in combination, significantly enhanced calcified deposit formation. Proteomic analysis revealed the differential expression of proteins associated with osteogenesis and osteoclastogenesis, highlighting the modulatory impact of SPMs on bone metabolism. RvE1 and MaR1 promote osteogenic differentiation of hBMMSCs in an inflammatory environment, with their combined application yielding synergistic effects. This study provides insights into the therapeutic potential of SPMs in enhancing bone regeneration, suggesting a promising avenue for developing regenerative therapies for periodontal disease and other conditions characterized by inflammation-induced bone loss.


Subject(s)
Cell Differentiation , Docosahexaenoic Acids , Eicosapentaenoic Acid , Inflammation , Mesenchymal Stem Cells , Osteogenesis , Osteogenesis/drug effects , Humans , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/analogs & derivatives , Docosahexaenoic Acids/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Cell Differentiation/drug effects , Inflammation/pathology , Proteomics , Bone Marrow Cells/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/cytology , Lipopolysaccharides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...