Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.691
Filter
1.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063196

ABSTRACT

Obesity and obesity-related complications, including various metabolic diseases and cancers, are significant health problems in developed and developing countries [...].


Subject(s)
Obesity , Humans , Obesity/complications , Obesity/metabolism , Metabolic Diseases/etiology , Metabolic Diseases/metabolism , Metabolic Diseases/complications , Neoplasms/etiology , Neoplasms/metabolism
3.
Nutrients ; 16(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38999756

ABSTRACT

Celiac disease (CD) is a chronic autoimmune disorder triggered by the ingestion of gluten-containing food by genetically predisposed individuals. Hence, treatment of CD consists of permanent avoidance of wheat, rye, barley, and other gluten-containing foods. Lifelong adherence to a gluten-free diet (GFD) improves the symptoms of CD, but recent evidence suggests it is also associated with a higher risk for hepatic steatosis and the coexistence or emergence of other cardiometabolic risk factors. Moreover, a higher risk for liver steatosis is also reported by some authors as a potential extraintestinal complication of the CD itself. Recent nomenclature changes designate the association between hepatic steatosis and at least one of five cardiometabolic risk factors as metabolic dysfunction-associated steatotic liver disease (MASLD). An extended network of potentially causative factors underlying the association between MAFLD and CD, before and after dietary therapy is implemented, was recently described. The individualized treatment of these patients is less supported by evidence, with most of the current recommendations relying on empiric clinical judgment. This review focuses on the causative associations between CD and hepatic injury, either as an extraintestinal manifestation of CD or a side effect of GFD, also referring to potential therapeutic strategies for these individuals.


Subject(s)
Celiac Disease , Diet, Gluten-Free , Humans , Celiac Disease/diet therapy , Celiac Disease/complications , Fatty Liver/diet therapy , Fatty Liver/etiology , Risk Factors , Metabolic Diseases/diet therapy , Metabolic Diseases/etiology
4.
In Vivo ; 38(4): 1917-1926, 2024.
Article in English | MEDLINE | ID: mdl-38936925

ABSTRACT

BACKGROUND/AIM: To examine the relationship between the body surface area (BSA) and body composition in patients with metabolic dysfunction-associated steatotic liver disease (MASLD, 2,141 men and 986 women). MATERIALS AND METHODS: BSA and body composition parameters were examined. RESULTS: The median body mass index (BMI) was 25.0 kg/m2 for both men and women (p=0.7754). The median body surface area (BSA) was 1.854 m2 for men and 1.618 m2 for women (p<0.0001). In men, the median fat mass was 17.7 kg, whereas in women, it was 22.1 kg (p<0.0001). Additionally, the median fat-free mass was 55.4 kg in men and 39.3 kg in women (p<0.0001).). In male cases, BSA significantly correlated with fat mass (r=0.82, p<0.0001) and fat-free mass (r=0.95, p<0.0001). In female cases, BSA significantly correlated with fat mass (r=0.87, p<0.0001) and fat-free mass (r=0.94, p<0.0001). CONCLUSION: BSA could be a useful marker for the estimation of body composition in patients with MASLD.


Subject(s)
Body Composition , Body Mass Index , Body Surface Area , Humans , Male , Female , Middle Aged , Aged , Adult , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/complications , Metabolic Diseases/metabolism , Metabolic Diseases/pathology , Metabolic Diseases/complications , Metabolic Diseases/etiology
5.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891828

ABSTRACT

The epidemiological burden of liver steatosis associated with metabolic diseases is continuously growing worldwide and in all age classes. This condition generates possible progression of liver damage (i.e., inflammation, fibrosis, cirrhosis, hepatocellular carcinoma) but also independently increases the risk of cardio-metabolic diseases and cancer. In recent years, the terminological evolution from "nonalcoholic fatty liver disease" (NAFLD) to "metabolic dysfunction-associated fatty liver disease" (MAFLD) and, finally, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been paralleled by increased knowledge of mechanisms linking local (i.e., hepatic) and systemic pathogenic pathways. As a consequence, the need for an appropriate classification of individual phenotypes has been oriented to the investigation of innovative therapeutic tools. Besides the well-known role for lifestyle change, a number of pharmacological approaches have been explored, ranging from antidiabetic drugs to agonists acting on the gut-liver axis and at a systemic level (mainly farnesoid X receptor (FXR) agonists, PPAR agonists, thyroid hormone receptor agonists), anti-fibrotic and anti-inflammatory agents. The intrinsically complex pathophysiological history of MASLD makes the selection of a single effective treatment a major challenge, so far. In this evolving scenario, the cooperation between different stakeholders (including subjects at risk, health professionals, and pharmaceutical industries) could significantly improve the management of disease and the implementation of primary and secondary prevention measures. The high healthcare burden associated with MASLD makes the search for new, effective, and safe drugs a major pressing need, together with an accurate characterization of individual phenotypes. Recent and promising advances indicate that we may soon enter the era of precise and personalized therapy for MASLD/MASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/etiology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Fatty Liver/metabolism , Fatty Liver/etiology , Fatty Liver/therapy , Fatty Liver/complications , Animals
6.
Zhonghua Gan Zang Bing Za Zhi ; 32(5): 418-434, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38858192

ABSTRACT

The Chinese Society of Hepatology of the Chinese Medical Association invited relevant experts to revise and update the Guideline of Prevention and Treatment of Nonalcoholic Fatty Liver Disease (2018Version) and renamed it as (Version 2024) Guideline for the Prevention and Treatment of Metabolic Dysfunction-associated (non-alcoholic) Fatty Liver Disease. Herein, the guiding recommendations on clinical issues such as screening and monitoring, diagnosis and evaluation, treatment and follow-up of metabolic dysfunction-associated fatty liver disease are put forward.


Subject(s)
Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/etiology , Humans , Metabolic Diseases/prevention & control , Metabolic Diseases/therapy , Metabolic Diseases/etiology , Risk Factors , China
7.
Clin Transl Sci ; 17(6): e13760, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847320

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is the severe form of non-alcoholic fatty liver disease which has a high potential to progress to cirrhosis and hepatocellular carcinoma, yet adequate effective therapies are lacking. Hypoadiponectinemia is causally involved in the pathogenesis of MASH. This study investigated the pharmacological effects of adiponectin replacement therapy with the adiponectin-derived peptide ALY688 (ALY688-SR) in a mouse model of MASH. Human induced pluripotent stem (iPS) cell-derived hepatocytes were used to test cytotoxicity and signaling of unmodified ALY688 in vitro. High-fat diet with low methionine and no added choline (CDAHF) was used to induce MASH and test the effects of ALY688-SR in vivo. Histological MASH activity score (NAS) and fibrosis score were determined to assess the effect of ALY688-SR. Transcriptional characterization of mice through RNA sequencing was performed to indicate potential molecular mechanisms involved. In cultured hepatocytes, ALY688 efficiently induced adiponectin-like signaling, including the AMP-activated protein kinase and p38 mitogen-activated protein kinase pathways, and did not elicit cytotoxicity. Administration of ALY688-SR in mice did not influence body weight but significantly ameliorated CDAHF-induced hepatic steatosis, inflammation, and fibrosis, therefore effectively preventing the development and progression of MASH. Mechanistically, ALY688-SR treatment markedly induced hepatic expression of genes involved in fatty acid oxidation, whereas it significantly suppressed the expression of pro-inflammatory and pro-fibrotic genes as demonstrated by transcriptomic analysis. ALY688-SR may represent an effective approach in MASH treatment. Its mode of action involves inhibition of hepatic steatosis, inflammation, and fibrosis, possibly via canonical adiponectin-mediated signaling.


Subject(s)
Adiponectin , Disease Models, Animal , Hepatocytes , Non-alcoholic Fatty Liver Disease , Animals , Adiponectin/metabolism , Adiponectin/pharmacology , Adiponectin/deficiency , Mice , Humans , Hepatocytes/metabolism , Hepatocytes/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Male , Mice, Inbred C57BL , Signal Transduction/drug effects , Diet, High-Fat/adverse effects , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/drug therapy , Metabolism, Inborn Errors/pathology , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Metabolic Diseases/prevention & control , Metabolic Diseases/etiology , Liver/metabolism , Liver/drug effects , Liver/pathology , Fatty Liver/prevention & control , Fatty Liver/metabolism , Fatty Liver/drug therapy , Fatty Liver/pathology
8.
Commun Biol ; 7(1): 749, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902371

ABSTRACT

Dietary emulsifiers are linked to various diseases. The recent discovery of the role of gut microbiota-host interactions on health and disease warrants the safety reassessment of dietary emulsifiers through the lens of gut microbiota. Lecithin, sucrose fatty acid esters, carboxymethylcellulose (CMC), and mono- and diglycerides (MDG) emulsifiers are common dietary emulsifiers with high exposure levels in the population. This study demonstrates that sucrose fatty acid esters and carboxymethylcellulose induce hyperglycemia and hyperinsulinemia in a mouse model. Lecithin, sucrose fatty acid esters, and CMC disrupt glucose homeostasis in the in vitro insulin-resistance model. MDG impairs circulating lipid and glucose metabolism. All emulsifiers change the intestinal microbiota diversity and induce gut microbiota dysbiosis. Lecithin, sucrose fatty acid esters, and CMC do not impact mucus-bacterial interactions, whereas MDG tends to cause bacterial encroachment into the inner mucus layer and enhance inflammation potential by raising circulating lipopolysaccharide. Our findings demonstrate the safety concerns associated with using dietary emulsifiers, suggesting that they could lead to metabolic syndromes.


Subject(s)
Dysbiosis , Emulsifying Agents , Gastrointestinal Microbiome , Metabolic Diseases , Animals , Dysbiosis/chemically induced , Dysbiosis/microbiology , Gastrointestinal Microbiome/drug effects , Mice , Male , Metabolic Diseases/chemically induced , Metabolic Diseases/microbiology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Mice, Inbred C57BL , Carboxymethylcellulose Sodium , Sucrose/adverse effects , Sucrose/administration & dosage , Sucrose/metabolism , Insulin Resistance , Lecithins
9.
Sci Rep ; 14(1): 14179, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898083

ABSTRACT

Exposures to social and environmental stressors arise individual behavioural response and thus indirectly affect cardiometabolic health. The aim of this study was to investigate several social and environmental stressors and the paths of their influence on cardiometabolic health. The data of 2154 participants (aged 25-64 years) from the cross-sectional population-based study were analysed. The composite score of metabolic disorders (MS score) was calculated based on 5 biomarkers: waist circumference, blood pressure, fasting blood glucose, HDL-cholesterol, triglycerides. The effects of social stressors (education level, income), environmental stressors (NO2, noise) and behavioural factors (unhealthy diet, smoking, alcohol consumption, sedentary behaviours) on MS score were assessed using a structural model. We observed a direct effect of education on MS score, as well as an indirect effect mediated via an unhealthy diet, smoking, and sedentary behaviours. We also observed a significant indirect effect of income via sedentary behaviours. The only environmental stressor predicting MS was noise, which also mediated the effect of education. In summary, the effect of social stressors on the development of cardiometabolic risk had a higher magnitude than the effect of the assessed environmental factors. Social stressors lead to an individual's unhealthy behaviour and might predispose individuals to higher levels of environmental stressors exposures.


Subject(s)
Sedentary Behavior , Humans , Male , Middle Aged , Adult , Female , Cross-Sectional Studies , Stress, Psychological , Blood Pressure , Triglycerides/blood , Waist Circumference , Blood Glucose/metabolism , Metabolic Diseases/etiology , Metabolic Diseases/epidemiology , Smoking/adverse effects , Environmental Exposure/adverse effects , Cardiovascular Diseases/etiology , Cardiovascular Diseases/epidemiology , Cholesterol, HDL/blood , Biomarkers/blood , Risk Factors
10.
Nat Metab ; 6(6): 1178-1196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867022

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD 'human proximity score' to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research.


Subject(s)
Disease Models, Animal , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Male , Liver/metabolism , Liver/pathology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Diet, Western/adverse effects , Retrospective Studies , Liver Cirrhosis/metabolism , Liver Cirrhosis/etiology
11.
Int J Biol Macromol ; 273(Pt 2): 133164, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878919

ABSTRACT

Obesity is a global health challenge that causes metabolic dysregulation and increases the risk of various chronic diseases. The gut microbiome is crucial in modulating host energy metabolism, immunity, and inflammation and is influenced by dietary factors. Gac fruit (Momordica cochinchinensis), widely consumed in Southeast Asia, has been proven to have various biological activities. However, the composition and effect of crude gac aril polysaccharides (GAP) on obesity and gut microbiota disturbed by high-fat diet (HFD) remain to be elucidated. Compositional analysis showed that GAP contains high oligosaccharides, with an average of 7-8 saccharide units. To mimic clinical obesity, mice were first made obese by feeding HFD for eight weeks. GAP intervention was performed from week 9 to week 20 in HFD-fed mice. Our results showed that GAP inhibited body weight gain, eWAT adipocyte hypertrophy, adipokine derangement, and hyperlipidemia in HFD-induced obese mice. GAP improved insulin sensitivity, impaired glucose tolerance, and hepatic steatosis. GAP modulated the gut microbiota composition and reversed the HFD-induced dysbiosis of at least 20 genera. Taken together, GAP improves metabolic health and modulates the gut microbiome to relieve obesity risk factors, demonstrating the potential of dietary GAP for treating obesity-associated disorders.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Obesity , Polysaccharides , Animals , Gastrointestinal Microbiome/drug effects , Obesity/drug therapy , Obesity/etiology , Obesity/microbiology , Diet, High-Fat/adverse effects , Polysaccharides/pharmacology , Mice , Male , Metabolic Diseases/drug therapy , Metabolic Diseases/etiology , Dysbiosis , Mice, Inbred C57BL , Insulin Resistance
12.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891759

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as nonalcoholic fatty liver disease, is a steatotic liver disease associated with metabolic syndrome (MetS), especially obesity, hypertension, diabetes, hyperlipidemia, and hypertriglyceridemia. MASLD in 43-44% of patients can progress to metabolic dysfunction-associated steatohepatitis (MASH), and 7-30% of these cases will progress to liver scarring (cirrhosis). To date, the mechanism of MASLD and its progression is not completely understood and there were no therapeutic strategies specifically tailored for MASLD/MASH until March 2024. The conventional antiobesity and antidiabetic pharmacological approaches used to reduce the progression of MASLD demonstrated favorable peripheral outcomes but insignificant effects on liver histology. Alternatively, phyto-synthesized metal-based nanoparticles (MNPs) are now being explored in the treatment of various liver diseases due to their unique bioactivities and reduced bystander effects. Although phytonanotherapy has not been explored in the clinical treatment of MASLD/MASH, MNPs such as gold NPs (AuNPs) and silver NPs (AgNPs) have been reported to improve metabolic processes by reducing blood glucose levels, body fat, and inflammation. Therefore, these actions suggest that MNPs can potentially be used in the treatment of MASLD/MASH and related metabolic diseases. Further studies are warranted to investigate the feasibility and efficacy of phytonanomedicine before clinical application.


Subject(s)
Non-alcoholic Fatty Liver Disease , Phytotherapy , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Phytotherapy/methods , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Animals , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Metabolic Syndrome/complications , Metabolic Diseases/drug therapy , Metabolic Diseases/etiology , Metabolic Diseases/metabolism
13.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891865

ABSTRACT

The prevalence of metabolic diseases, including type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD), is steadily increasing. Although many risk factors, such as obesity, insulin resistance, or hyperlipidemia, as well as several metabolic gene programs that contribute to the development of metabolic diseases are known, the underlying molecular mechanisms of these processes are still not fully understood. In recent years, it has become evident that not only protein-coding genes, but also noncoding genes, including a class of noncoding transcripts referred to as long noncoding RNAs (lncRNAs), play key roles in diet-induced metabolic disorders. Here, we provide an overview of selected lncRNA genes whose direct involvement in the development of diet-induced metabolic dysfunctions has been experimentally demonstrated in suitable in vivo mouse models. We further summarize and discuss the associated molecular modes of action for each lncRNA in the respective metabolic disease context. This overview provides examples of lncRNAs with well-established functions in diet-induced metabolic diseases, highlighting the need for appropriate in vivo models and rigorous molecular analyses to assign clear biological functions to lncRNAs.


Subject(s)
Metabolic Diseases , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Humans , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Diet/adverse effects , Disease Models, Animal , Gene Expression Regulation
14.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892029

ABSTRACT

Cardiometabolic diseases (CMDs) encompass a range of prevalent, often preventable, non-communicable illnesses, including myocardial infarction, stroke, cardiac insufficiency, arterial hypertension, obesity, type 2 diabetes mellitus, insulin resistance, chronic renal dysfunction, non-alcoholic fatty liver disease, and rare metabolic disorders [...].


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/etiology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/etiology , Animals , Insulin Resistance , Obesity/metabolism
15.
Front Endocrinol (Lausanne) ; 15: 1392280, 2024.
Article in English | MEDLINE | ID: mdl-38779448

ABSTRACT

Introduction: The incidence of steatotic liver disease has increased in recent years. Thus, steatotic liver disease is a major public health issue in Japan. This study investigated the association between weight reduction and the remission of metabolic dysfunction-associated steatotic liver disease (MASLD)/Metabolic and alcohol related/associated liver disease (MetALD) in Japanese individuals undergoing health checkups. Methods: This retrospective observational study included 8,707 Japanese patients with MASLD/MetALD who underwent health checkups from May 2015 to March 2023. The participants were monitored for its remission at their subsequent visit. MASLD was diagnosed on abdominal ultrasonography and based on the presence of at least one of five metabolic abnormalities. The impact of body mass index (BMI) reduction on MASLD/MetALD remission was assessed via logistic regression analysis and using receiver operating characteristic curves. Results: Logistic regression analysis revealed that weight loss was significantly associated with MASLD/MetALD remission. Other factors including exercise habits and reduced alcohol consumption were significant predictors of MASLD/MetALD remission in the overall cohort and in male patients. The optimal BMI reduction cutoff values for MASLD/MetALD remission were 0.9 kg/m2 and 4.0% decrease in the overall cohort, 0.85 kg/m2 and 3.9% decrease in males, and 1.2 kg/m2 and 4.5% decrease in females. In participants with a BMI of 23 kg/m2, the cutoff values were 0.75 kg/m2 and 2.7% BMI reduction. Discussion: Weight reduction plays an important role in both MASLD and MetALD remission among Japanese individuals. That is, targeting specific BMI reduction is effective. This underscores the importance of targeted weight management strategies in preventing and managing MASLD/MetALD in the Japanese population.


Subject(s)
Body Mass Index , Weight Loss , Humans , Male , Female , Middle Aged , Retrospective Studies , Japan/epidemiology , Adult , Fatty Liver/epidemiology , Aged , Metabolic Diseases/epidemiology , Metabolic Diseases/etiology , East Asian People
16.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732118

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly prevalent condition characterized by abnormal fat accumulation in the liver, often associated with metabolic disorders. Emerging evidence suggests a potential link between vitamin D deficiency and the development and progression of MASLD. The current review provides a concise overview of recent studies uncovering novel mechanistic insights into the interplay between vitamin D and MASLD. Several epidemiological studies have highlighted a significant association between low vitamin D levels and an increased risk of MASLD. Vitamin D, traditionally known for its role in bone health, has now been recognized as a key player in various physiological processes, including immune regulation and inflammation. Experimental studies using animal models have demonstrated that vitamin D deficiency exacerbates liver steatosis and inflammation, suggesting a potential protective role against MASLD. Mechanistically, vitamin D appears to modulate MASLD through multiple pathways. Firstly, the vitamin D receptor (VDR) is abundantly expressed in liver cells, indicating a direct regulatory role in hepatic function. Activation of the VDR has been shown to suppress hepatic lipid accumulation and inflammation, providing a mechanistic basis for the observed protective effects. Additionally, vitamin D influences insulin sensitivity, a critical factor in MASLD pathogenesis. Improved insulin sensitivity may mitigate the excessive accumulation of fat in the liver, thus attenuating MASLD progression. In parallel, vitamin D exhibits anti-inflammatory properties by inhibiting pro-inflammatory cytokines implicated in MASLD pathophysiology. Experimental evidence suggests that the immunomodulatory effects of vitamin D extend to the liver, reducing inflammation and oxidative stress, key drivers of MASLD, and the likelihood of hepatocyte injury and fibrosis. Understanding the complex interplay between vitamin D and MASLD provides a basis for exploring targeted therapeutic strategies and preventive interventions. As vitamin D deficiency is a modifiable risk factor, addressing this nutritional concern may prove beneficial in mitigating the burden of MASLD and associated metabolic disorders.


Subject(s)
Fatty Liver , Receptors, Calcitriol , Vitamin D Deficiency , Vitamin D , Humans , Vitamin D/metabolism , Animals , Vitamin D Deficiency/complications , Vitamin D Deficiency/metabolism , Receptors, Calcitriol/metabolism , Fatty Liver/metabolism , Fatty Liver/etiology , Insulin Resistance , Liver/metabolism , Liver/pathology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology
17.
Front Endocrinol (Lausanne) ; 15: 1328139, 2024.
Article in English | MEDLINE | ID: mdl-38742195

ABSTRACT

The topic of human circadian rhythms is not only attracting the attention of clinical researchers from various fields but also sparking a growing public interest. The circadian system comprises the central clock, located in the suprachiasmatic nucleus of the hypothalamus, and the peripheral clocks in various tissues that are interconnected; together they coordinate many daily activities, including sleep and wakefulness, physical activity, food intake, glucose sensitivity and cardiovascular functions. Disruption of circadian regulation seems to be associated with metabolic disorders (particularly impaired glucose tolerance) and cardiovascular disease. Previous clinical trials revealed that disturbance of the circadian system, specifically due to shift work, is associated with an increased risk of type 2 diabetes mellitus. This review is intended to provide clinicians who wish to implement knowledge of circadian disruption in diagnosis and strategies to avoid cardio-metabolic disease with a general overview of this topic.


Subject(s)
Cardiovascular Diseases , Circadian Rhythm , Metabolic Diseases , Humans , Circadian Rhythm/physiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/physiopathology , Metabolic Diseases/physiopathology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/metabolism , Chronobiology Disorders/physiopathology , Chronobiology Disorders/complications
18.
Nutrients ; 16(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732576

ABSTRACT

As women age, their nutritional needs change, governed by changes in hormones, level of physical activity, and dietary intake [...].


Subject(s)
Diet , Metabolic Diseases , Postmenopause , Humans , Female , Metabolic Diseases/diet therapy , Metabolic Diseases/etiology , Chronic Disease , Middle Aged , Exercise
20.
Physiol Int ; 111(2): 175-185, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38819928

ABSTRACT

This study explored the effects of fructose-induced obesity and metabolic disorders on peripheral inflammatory hyperalgesia, employing quantitative sensory testing with the von Frey test and measuring paw edema to assess inflammatory responses. Wistar rats were administered water or 10% fructose solution ad libitum over a period of 5 weeks. After intraplantar administration of inflammatory agents such as carrageenan (1 mg/paw), lipopolysaccharide (LPS; 100 µg/paw), or prostaglandin E2 (PGE2, 100 ng/paw), we conducted mechanical hyperalgesia tests and paw edema evaluations. The fructose diet resulted in dyslipidemia, elevated insulin and leptin plasma levels, insulin resistance, and increased epididymal and retroperitoneal adiposity compared to control animals. In response to inflammatory agents, the fructose group displayed significantly enhanced peripheral hyperalgesia and more pronounced paw edema. Our results demonstrate that fructose not only contributes to the development of obesity and metabolic disorder but also exacerbates peripheral inflammatory pain responses by enhancing prostaglandin sensitivity.


Subject(s)
Fructose , Hyperalgesia , Rats, Wistar , Animals , Fructose/adverse effects , Fructose/administration & dosage , Male , Hyperalgesia/metabolism , Rats , Inflammation/metabolism , Inflammation/chemically induced , Metabolic Diseases/etiology , Metabolic Diseases/metabolism , Obesity/complications , Obesity/metabolism , Carrageenan , Dinoprostone/metabolism , Dinoprostone/blood , Edema/chemically induced , Insulin Resistance/physiology , Lipopolysaccharides/toxicity , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL