Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 529
Filter
1.
Nat Commun ; 15(1): 6927, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138175

ABSTRACT

Autophagy is a key lysosomal degradative mechanism allowing a prosurvival response to stresses, especially nutrient starvation. Here we investigate the mechanism of autophagy induction in response to sulfur starvation in Saccharomyces cerevisiae. We found that sulfur deprivation leads to rapid and widespread transcriptional induction of autophagy-related (ATG) genes in ways not seen under nitrogen starvation. This distinctive response depends mainly on the transcription activator of sulfur metabolism Met4. Consistently, Met4 is essential for autophagy under sulfur starvation. Depletion of either cysteine, methionine or SAM induces autophagy flux. However, only SAM depletion can trigger strong transcriptional induction of ATG genes and a fully functional autophagic response. Furthermore, combined inactivation of Met4 and Atg1 causes a dramatic decrease in cell survival under sulfur starvation, highlighting the interplay between sulfur metabolism and autophagy to maintain cell viability. Thus, we describe a pathway of sulfur starvation-induced autophagy depending on Met4 and involving SAM as signaling sulfur metabolite.


Subject(s)
Autophagy , S-Adenosylmethionine , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Signal Transduction , Sulfur , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Autophagy/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Sulfur/metabolism , S-Adenosylmethionine/metabolism , Gene Expression Regulation, Fungal , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Methionine/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Protein Kinases , Basic-Leucine Zipper Transcription Factors
2.
Food Res Int ; 192: 114749, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147554

ABSTRACT

This research aims to assess the effect of amino acids as lipid antioxidants in reducing the formation of volatile aldehydes in frying oil. Methionine, histidine, and glycine at concentrations of 2.5, 5, and 10 mM were added to high oleic sunflower oil (HOSO) to investigate their effects on the distribution and formation of saturated, monounsaturated, and polyunsaturated volatile aldehydes. The results showed that the proportion of saturated volatile aldehydes was greater than that of unsaturated ones; Methionine exhibited the best inhibitory effect, after 12 h of frying, 10 mM methionine reduced the content of saturated volatile aldehydes by 24.21 %, monounsaturated by 52.4 %, and polyunsaturated by 54.73 % compared to the control. Methionine's sulfur-containing side chain was also proven to have strong antioxidant activity. Combined with the results of this study, this can also provide insights for using amino acids as lipid antioxidants.


Subject(s)
Aldehydes , Amino Acids , Antioxidants , Cooking , Hot Temperature , Sunflower Oil , Sunflower Oil/chemistry , Aldehydes/analysis , Antioxidants/analysis , Amino Acids/analysis , Methionine/chemistry , Plant Oils/chemistry , Volatile Organic Compounds/analysis , Histidine/analysis , Histidine/chemistry , Oleic Acid/analysis , Glycine/chemistry
3.
Article in English | MEDLINE | ID: mdl-39089063

ABSTRACT

Homocysteine, methionine, methylmalonic acid and 2-methylcitric acid are clinically relevant markers in the methionine, propionate, and cobalamin metabolism. This study aimed to develop and validate an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for simultaneously determining total homocysteine, methionine, methylmalonic acid and 2-methylcitric acid in dried blood spots. Three 3.2 mm discs were punched from each calibrator, quality control, and sample dried blood spot into a 96-well U-plate. Each sample was spiked with internal standards and extracted. Then the supernatant was transferred to another 96-well U-plate. After nitrogen drying, the dried residues were reconstituted, centrifuged, and the resulting supernatant was transferred to another 96-well plate for analysis. The method was performed using UPLC-MS/MS within 3 min, validated according to guidance documents, and applied to 72 samples from confirmed patients with methionine, propionate, and cobalamin metabolism disorders. The UPLC-MS/MS method provided satisfactory separation of the four analytes. The R2 values were ≥ 0.9937 for all analytes. The recoveries ranged from 94.17 to 114.29 %, and the coefficients of variation for intraday and interday precision were 0.19 % to 5.23 % and 1.02 % to 6.89 %, respectively. No significant carry-over was detected for the four analytes, and most of confirmed samples exhibited biomarker patterns characteristic of the relevant disorders. A simple and fast UPLC-MS/MS method was successfully developed, validated, and applied to clinical samples for the simultaneous determination of total homocysteine, methionine, methylmalonic acid, and 2-methylcitric acid in dried blood spots.


Subject(s)
Citrates , Dried Blood Spot Testing , Homocysteine , Limit of Detection , Methionine , Methylmalonic Acid , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Homocysteine/blood , Homocysteine/analogs & derivatives , Methylmalonic Acid/blood , Methylmalonic Acid/analogs & derivatives , Dried Blood Spot Testing/methods , Reproducibility of Results , Methionine/blood , Methionine/analogs & derivatives , Methionine/chemistry , Linear Models , Citrates/blood , Citrates/chemistry , Male , Female , Child, Preschool
4.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125900

ABSTRACT

The effects of exposure to environmental pollutants on neurological processes are of increasing concern due to their potential to induce oxidative stress and neurotoxicity. Considering that many industries are currently using different types of plastics as raw materials, packaging, or distribution pipes, microplastics (MPs) have become one of the biggest threats to the environment and human health. These consequences have led to the need to raise the awareness regarding MPs negative neurological effects and implication in neuropsychiatric pathologies, such as schizophrenia. The study aims to use three zebrafish models of schizophrenia obtained by exposure to ketamine (Ket), methionine (Met), and their combination to investigate the effects of MP exposure on various nervous system structures and the possible interactions with oxidative stress. The results showed that MPs can interact with ketamine and methionine, increasing the severity and frequency of optic tectum lesions, while co-exposure (MP+Met+Ket) resulted in attenuated effects. Regarding oxidative status, we found that all exposure formulations led to oxidative stress, changes in antioxidant defense mechanisms, or compensatory responses to oxidative damage. Met exposure induced structural changes such as necrosis and edema, while paradoxically activating periventricular cell proliferation. Taken together, these findings highlight the complex interplay between environmental pollutants and neurotoxicants in modulating neurotoxicity.


Subject(s)
Brain , Disease Models, Animal , Microplastics , Oxidative Stress , Schizophrenia , Zebrafish , Zebrafish/metabolism , Animals , Oxidative Stress/drug effects , Microplastics/toxicity , Schizophrenia/metabolism , Schizophrenia/chemically induced , Schizophrenia/pathology , Schizophrenia/etiology , Brain/metabolism , Brain/drug effects , Brain/pathology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/pathology , Ketamine/adverse effects , Ketamine/toxicity , Methionine/metabolism , Immunohistochemistry
5.
Curr Genet ; 70(1): 9, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951203

ABSTRACT

The ability to regulate the expression of genes is a central tool for the characterization of fungal genes. This is of particular interest to study genes required for specific processes or the effect of genes expressed only under specific conditions. Saccharomycopsis species show a unique property of necrotrophic mycoparasitism that is activated upon starvation. Here we describe the use of the MET17 promoter of S. schoenii as a tool to regulate gene expression based on the availability of methionine. Conditional expression was tested using lacZ and GFP reporter genes. Gene expression could be strongly down-regulated by the addition of methionine or cysteine to the growth medium and upregulated by starvation for methionine. We used X-gal (5-bromo-4-chloro-3-indolyl-ß-d-galactopyranoside) to detect lacZ-expression in plate assays and ONPG (ortho-nitrophenyl-ß-galactopyranoside) as a substrate for ß-galactosidase in liquid-phase assays. For in vivo expression analyses we used fluorescence microscopy for the detection and localization of a MET17-driven histone H4-GFP reporter gene. With these assays we demonstrated the usefulness of the MET17 promoter to regulate expression of genes based on methionine availability. In silico analyses revealed similar promoter motifs as found in MET3 genes of Saccharomyces cerevisiae and Ashbya gossypii. This suggests a regulation of the MET17 promoter by CBF1 and MET31/MET32 in conjunction with the transcriptional activator MET4, which were also identified in the S. schoenii genome.


This article describes the characterization of the S. schoenii MET17 promoter for regulated gene expression.


Subject(s)
Gene Expression Regulation, Fungal , Genes, Reporter , Methionine , Promoter Regions, Genetic , Methionine/metabolism , Methionine/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , beta-Galactosidase/genetics , beta-Galactosidase/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism
6.
J Agric Food Chem ; 72(28): 15662-15671, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38976570

ABSTRACT

This study determined the effects of two methionine (Met) sources at three total sulfur amino acids (TSAA) to lysine ratios (TSAA/Lys) on gut pH, digestive enzyme activity, amino acid transporter expression, and Met metabolism of broilers. The birds were randomly assigned to a 2 × 3 factorial arrangement with Met sources (dl-Met and dl-2-hydroxy-4-(methylthio)-butanoic acid (OH-Met)) and TSAA/Lys (0.58, 0.73, and 0.88) from 1 to 21 days. The results demonstrated that dl-Met and OH-Met supported the same growth performance, but high TSAA/Lys ratio reduced the feed intake and body weight (P < 0.05). OH-Met reduced the crop chyme pH and enhanced the jejunal lipase activity (P < 0.05). ATB0,+ expression decreased with increased dl-Met levels in the duodenum; the low TSAA/Lys ratio induced a stronger mRNA expression of basolateral Met transporters. OH-Met resulted in an increase of cystathionine ß-synthase expression in the liver and a decrease in serum homocysteine levels at middle TSAA/Lys ratio compared with dl-Met treatment (P < 0.05). In conclusion, two Met sources support the same growth, but OH-Met acidified the crop chyme. The investigated transporter transcripts differed significantly along the small intestine. At the middle TSAA/Lys ratio, OH-Met showed a higher metabolic tendency of the trans-sulfuration pathway compared with dl-Met.


Subject(s)
Amino Acid Transport Systems , Animal Feed , Chickens , Methionine , Animals , Methionine/metabolism , Chickens/genetics , Chickens/metabolism , Animal Feed/analysis , Hydrogen-Ion Concentration , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems/metabolism , Male , Liver/metabolism
7.
Food Funct ; 15(15): 8053-8069, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38989659

ABSTRACT

Methionine is an important sulfur-containing amino acid. Health effects of both methionine restriction (MR) and methionine supplementation (MS) have been studied. This study aimed to investigate the impact of a high-methionine diet (HMD) (1.64% methionine) on both the gut and liver functions in mice through multi-omic analyses. Hepatic steatosis and compromised gut barrier function were observed in mice fed the HMD. RNA-sequencing (RNA-seq) analysis of liver gene expression patterns revealed the upregulation of lipid synthesis and degradation pathways, cholesterol metabolism and inflammation-related nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway. Metagenomic sequencing of cecal content demonstrated a shift in gut microbial composition with an increased abundance of opportunistic pathogens and gut microbial functions with up-regulated lipopolysaccharide (LPS) biosynthesis in mice fed HMD. Metabolomic study of cecal content showed an altered gut lipid profile and the level of bioactive lipids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), palmitoylethanolamide (PEA), linoleoyl ethanolamide (LEA) and arachidonoyl ethanolamide (AEA), that carry anti-inflammatory effects significantly reduced in the gut of mice fed the HMD. Correlation analysis demonstrated that gut microbiota was highly associated with liver and gut functions and gut bioactive lipid content. In conclusion, this study suggested that the HMD exerted negative impacts on both the gut and liver, and an adequate amount of methionine intake should be carefully determined to ensure normal physiological function without causing adverse effects.


Subject(s)
Gastrointestinal Microbiome , Liver , Methionine , Mice, Inbred C57BL , Animals , Methionine/metabolism , Methionine/pharmacology , Gastrointestinal Microbiome/drug effects , Mice , Male , Liver/metabolism , Fatty Liver/metabolism , Lipid Metabolism/drug effects , Lipids
8.
Genes (Basel) ; 15(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39062651

ABSTRACT

Congenital heart disease is one of the most common congenital malformations and thus represents a considerable public health burden. Hence, the identification of individuals and families with an increased genetic predisposition to congenital heart disease (CHD) and its possible prevention is important. Even though CHD is associated with the lack of folate during early pregnancy, the genetic background of folate and methionine metabolism perturbations and their influence on CHD risk is not clear. While some genes, such as those coding for cytosolic enzymes of folate/methionine cycles, have been extensively studied, genetic studies of folate transporters (de)glutamation enzymes and mitochondrial enzymes of the folate cycle are lacking. Among genes coding for cytoplasmic enzymes of the folate cycle, MTHFR, MTHFD1, MTR, and MTRR have the strongest association with CHD, while among genes for enzymes of the methionine cycle BHMT and BHMT2 are the most prominent. Among mitochondrial folate cycle enzymes, MTHFD2 plays the most important role in CHD formation, while FPGS was identified as important in the group of (de)glutamation enzymes. Among transporters, the strongest association with CHD was demonstrated for SLC19A1.


Subject(s)
Folic Acid , Heart Defects, Congenital , Methionine , Methylenetetrahydrofolate Dehydrogenase (NADP) , Humans , Folic Acid/metabolism , Heart Defects, Congenital/genetics , Methionine/metabolism , Methionine/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Ferredoxin-NADP Reductase/genetics , Ferredoxin-NADP Reductase/metabolism , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Genetic Predisposition to Disease , Betaine-Homocysteine S-Methyltransferase/genetics , Betaine-Homocysteine S-Methyltransferase/metabolism , Aminohydrolases , Multifunctional Enzymes
9.
Nature ; 632(8024): 451-459, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39085604

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels1 are essential for pacemaking activity and neural signalling2,3. Drugs inhibiting HCN1 are promising candidates for management of neuropathic pain4 and epileptic seizures5. The general anaesthetic propofol (2,6-di-iso-propylphenol) is a known HCN1 allosteric inhibitor6 with unknown structural basis. Here, using single-particle cryo-electron microscopy and electrophysiology, we show that propofol inhibits HCN1 by binding to a mechanistic hotspot in a groove between the S5 and S6 transmembrane helices. We found that propofol restored voltage-dependent closing in two HCN1 epilepsy-associated polymorphisms that act by destabilizing the channel closed state: M305L, located in the propofol-binding site in S5, and D401H in S6 (refs. 7,8). To understand the mechanism of propofol inhibition and restoration of voltage-gating, we tracked voltage-sensor movement in spHCN channels and found that propofol inhibition is independent of voltage-sensor conformational changes. Mutations at the homologous methionine in spHCN and an adjacent conserved phenylalanine in S6 similarly destabilize closing without disrupting voltage-sensor movements, indicating that voltage-dependent closure requires this interface intact. We propose a model for voltage-dependent gating in which propofol stabilizes coupling between the voltage sensor and pore at this conserved methionine-phenylalanine interface in HCN channels. These findings unlock potential exploitation of this site to design specific drugs targeting HCN channelopathies.


Subject(s)
Epilepsy , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channel Gating , Mutation , Potassium Channels , Propofol , Humans , Binding Sites , Cryoelectron Microscopy , Electrophysiology , Epilepsy/drug therapy , Epilepsy/genetics , Epilepsy/metabolism , HEK293 Cells , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/ultrastructure , Ion Channel Gating/drug effects , Ion Channel Gating/genetics , Methionine/genetics , Methionine/metabolism , Models, Molecular , Movement/drug effects , Phenylalanine/genetics , Phenylalanine/metabolism , Polymorphism, Genetic , Potassium Channels/chemistry , Potassium Channels/genetics , Potassium Channels/metabolism , Potassium Channels/ultrastructure , Propofol/pharmacology , Propofol/chemistry
10.
Nat Microbiol ; 9(8): 2006-2021, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969820

ABSTRACT

The lag phase is key in resuming bacterial growth, but it remains underexplored particularly in environmental bacteria. Here we use transcriptomics and 13C-labelled metabolomics to show that the lag phase of the model marine bacterium Phaeobacter inhibens is shortened by methylated compounds produced by the microalgal partner, Emiliania huxleyi. Methylated compounds are abundantly produced and released by microalgae, and we show that their methyl groups can be collected by bacteria and assimilated through the methionine cycle. Our findings underscore the significance of methyl groups as a limiting factor during the lag phase and highlight the adjustability of this growth phase. In addition, we show that methylated compounds, typical of photosynthetic organisms, prompt diverse reductions in lag times in bacteria associated with algae and plants, potentially favouring early growth in some bacteria. These findings suggest ways to accelerate bacterial growth and underscore the significance of studying bacteria within an environmental context.


Subject(s)
Haptophyta , Microalgae , Haptophyta/metabolism , Haptophyta/growth & development , Haptophyta/genetics , Microalgae/metabolism , Microalgae/growth & development , Microalgae/genetics , Methylation , Metabolomics , Bacteroidetes/genetics , Bacteroidetes/growth & development , Bacteroidetes/metabolism , Methionine/metabolism , Photosynthesis , Rhodobacteraceae
11.
Mol Nutr Food Res ; 68(14): e2400227, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031898

ABSTRACT

SCOPE: Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease worldwide that can progress to liver fibrosis (LF). Probiotics have beneficial roles in reducing intestinal inflammation and gut-associated diseases, but their effects and mechanisms beyond the gut in attenuating the progression of LF are remained unclear. METHODS AND RESULTS: In a mouse model of NASH/LF induced by a methionine-choline deficient (MCD) diet, immunobiotics are administered to investigate their therapeutic effects. Results show that the MCD diet leads to liver inflammation, steatosis, and fibrosis, which are alleviated by immunobiotics. Immunobiotics reduces serum endotoxin and inflammatory markers while increasing regulatory cytokines and liver weight. They also suppress Th17 cells, known for producing inflammatory cytokines. Furthermore, immunobiotics mitigate collagen deposition and fibrogenic signaling in the liver, while restoring gut-barrier integrity and microbiota composition. Additionally, immunobiotics enhance the activation of the aryl hydrocarbon receptor (AhR) pathway in both colonic and liver tissues. CONCLUSIONS: Overall, these results demonstrate a novel insight into the mechanisms through which immunobiotic administration improves the gut health which in turn increases the AhR pathway and inhibits HSCs activation and fibrosis progression beyond the gut in the liver tissue of NASH/LF mice.


Subject(s)
Gastrointestinal Microbiome , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease , Receptors, Aryl Hydrocarbon , Animals , Male , Mice , Cytokines/metabolism , Cytokines/blood , Disease Models, Animal , Gastrointestinal Microbiome/physiology , Liver/metabolism , Methionine/deficiency , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/therapy , Probiotics/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction , Th17 Cells
12.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-39028746

ABSTRACT

One-carbon metabolites (OCM) are metabolites and cofactors which include folate, vitamin B12, methionine, and choline that support methylation reactions. The objectives of this study were to investigate the effects of moderate changes in maternal body weight gain in combination with OCM supplementation during the first 63 d of gestation in beef cattle on (1) B12 and folate concentrations in maternal serum (2) folate cycle intermediates in maternal and fetal liver, allantoic fluid (ALF), and amniotic fluid (AMF) and (3) metabolites involved in one-carbon metabolism and related metabolic pathways in maternal and fetal liver. Heifers were either intake restricted (RES) and fed to lose 0.23 kg/d, or fed to gain 0.60 kg/d (CON). Supplemented (+ OCM) heifers were given B12 and folate injections weekly and fed rumen-protected methionine and choline daily, while non-supplemented (-OCM) heifers were given weekly saline injections. These two treatments were combined in a 2 × 2 factorial arrangement resulting in 4 treatments: CON-OCM, CON + OCM, RES-OCM, and RES + OCM. Samples of maternal serum, maternal and fetal liver, ALF, and AMF were collected at slaughter on day 63 of gestation. Restricted maternal nutrition most notably increased (./ ≤ 0.05) the concentration of vitamin B12 in maternal serum, 5,10-methylenetetrahydrofolate and 5,10-methenyltetrahydrofolate in maternal liver, and cystathionine in the fetal liver; conversely, maternal restriction decreased (P = 0.05) 5,10-methylenetetrahydrofolate concentration in fetal liver. Supplementing OCM increased (P ≤ 0.05) the concentrations of maternal serum B12, folate, and folate intermediates, ALF and AMF 5-methyltetrahydrofolate concentration, and altered (P ≤ 0.02) other maternal liver intermediates including S-adenosylmethionine, dimethylglycine, cystathionine Glutathione reduced, glutathione oxidized, taurine, serine, sarcosine, and pyridoxine. These data demonstrate that OCM supplementation was effective at increasing maternal OCM status. Furthermore, these data are similar to previously published literature where restricted maternal nutrition also affected maternal OCM status. Altering OCM status in both the dam and fetus could impact fetal developmental outcomes and production efficiencies. Lastly, these data demonstrate that fetal metabolite abundance is highly regulated, although the changes required to maintain homeostasis may program altered metabolism postnatally.


Maternal stresses that occur during pregnancy, such as restricted nutrition, can impact the developmental outcomes of the offspring in a process known as developmental programming. This programming can occur through epigenetics, which involves changes in fetal gene expression and can occur through the addition of methyl groups to DNA. These changes regulate gene transcription in the offspring and can alter offspring health, efficiency, and life-long outcomes. One-carbon metabolites (OCM), which are nutrients like the amino acid methionine and the vitamins B12, folate, and choline, act as intermediates or cofactors for the donation of methyl groups to DNA. This study investigated the effects of differing maternal rates of gain along with OCM supplementation during early gestation on OCM and related metabolite concentrations in the dam and fetus. We found that supplementing OCM to beef heifers increased maternal OCM and related metabolite concentrations and fetal fluid OCM concentrations. We also found that low maternal gain increased maternal serum and liver OCM concentrations. We can conclude from these findings that both maternal rate of gain and OCM supplementation can impact maternal OCM concentrations at day 63 of gestation and further research is needed to see if those maternal impacts will affect the developing fetus or calf later in its life.


Subject(s)
Dietary Supplements , Folic Acid , Liver , Methionine , Vitamin B 12 , Animals , Female , Methionine/administration & dosage , Methionine/metabolism , Cattle , Pregnancy , Folic Acid/administration & dosage , Folic Acid/metabolism , Folic Acid/blood , Vitamin B 12/administration & dosage , Vitamin B 12/blood , Vitamin B 12/metabolism , Liver/metabolism , Fetus/metabolism , Diet/veterinary , Choline/administration & dosage , Choline/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Amniotic Fluid/metabolism , Amniotic Fluid/chemistry
13.
Nat Aging ; 4(8): 1089-1101, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39060538

ABSTRACT

Lifespan-extending interventions are generally thought to result in reduced fecundity. The generality of this principle and how it may extend to nutrition and metabolism is not understood. We considered dietary methionine restriction (MR), a lifespan-extending intervention linked to Mediterranean and plant-based diets. Using a chemically defined diet that we developed for Drosophila melanogaster, we surveyed the nutritional landscape in the background of MR and found that folic acid, a vitamin linked to one-carbon metabolism, notably was the lone nutrient that restored reproductive capacity while maintaining lifespan extension. In vivo isotope tracing, metabolomics and flux analysis identified the tricarboxylic cycle and redox coupling as major determinants of the MR-folic acid benefits, in part, as they related to sperm function. Together these findings suggest that dietary interventions optimized for longevity may be separable from adverse effects such as reproductive decline.


Subject(s)
Drosophila melanogaster , Folic Acid , Longevity , Methionine , Reproduction , Methionine/metabolism , Methionine/administration & dosage , Animals , Drosophila melanogaster/physiology , Reproduction/physiology , Male , Folic Acid/metabolism , Folic Acid/administration & dosage , Female , Fertility/physiology , Diet , Citric Acid Cycle
14.
J Agric Food Chem ; 72(31): 17166-17175, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39074311

ABSTRACT

Methionine is the only nonpolar α-amino acid containing sulfur among the eight essential amino acids and is closely related to the metabolism of sulfur-containing compounds in the human body. Widely used in feed, medicine, food, and other fields, the market demand is increasing annually. However, low productivity and high cost largely limit the industrial production of methionine, and many novel production methods still have their own disadvantages. In this paper, the available methods for synthesizing methionine are reviewed and discussed. The latest strategies for improving methionine production are further introduced, including culture medium optimization, mutation technology, expression of key genes in the metabolic pathway, knockout and recombination, as well as the engineering of membrane transporters, the fermentation-enzymatic coupling route, and innovation of CO2 biotransformation.


Subject(s)
Metabolic Engineering , Methionine , Methionine/metabolism , Fermentation , Humans , Bacteria/metabolism , Bacteria/genetics
15.
Int J Mol Sci ; 25(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39062934

ABSTRACT

Serine ß-lactamase TEM-1 is the first ß-lactamase discovered and is still common in Gram-negative pathogens resistant to ß-lactam antibiotics. It hydrolyzes penicillins and cephalosporins of early generations. Some of the emerging TEM-1 variants with one or several amino acid substitutions have even broader substrate specificity and resistance to known covalent inhibitors. Key amino acid substitutions affect catalytic properties of the enzyme, and secondary mutations accompany them. The occurrence of the secondary mutation M182T, called a "global suppressor", has almost doubled over the last decade. Therefore, we performed saturating mutagenesis at position 182 of TEM-1 to determine the influence of this single amino acid substitution on the catalytic properties, thermal stability, and ability for thermoreactivation. Steady-state parameters for penicillin, cephalothin, and ceftazidime are similar for all TEM-1 M182X variants, whereas melting temperature and ability to reactivate after incubation at a higher temperature vary significantly. The effects are multidirectional and depend on the particular amino acid at position 182. The M182E variant of ß-lactamase TEM-1 demonstrates the highest residual enzymatic activity, which is 1.5 times higher than for the wild-type enzyme. The 3D structure of the side chain of residue 182 is of particular importance as observed from the comparison of the M182I and M182L variants of TEM-1. Both of these amino acid residues have hydrophobic side chains of similar size, but their residual activity differs by three-fold. Molecular dynamic simulations add a mechanistic explanation for this phenomenon. The important structural element is the V159-R65-E177 triad that exists due to both electrostatic and hydrophobic interactions. Amino acid substitutions that disturb this triad lead to a decrease in the ability of the ß-lactamase to be reactivated.


Subject(s)
Amino Acid Substitution , Enzyme Stability , beta-Lactamases , beta-Lactamases/chemistry , beta-Lactamases/genetics , beta-Lactamases/metabolism , Methionine/chemistry , Methionine/metabolism , Methionine/genetics , Models, Molecular , Mutagenesis , Kinetics , Molecular Dynamics Simulation , Penicillins/chemistry , Penicillins/metabolism
16.
Plant Physiol Biochem ; 214: 108951, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39047581

ABSTRACT

Black rots lead to great economic losses in winter jujube industry. The objective of this research was to delve into the underlying mechanisms of enhanced resistance of winter jujube fruit to black rot by L-Methionine (Met) treatment. The findings revealed that the application of Met significantly curtailed lesion diameter and decay incidence in winter jujube fruit. The peroxidase (POD) activity in the Met-treated jujubes was 3.06-fold that in the control jujubes after 4 d of treatment. By day 8, the activities of phenylalanine ammonia-lyase (PAL), chitinase (CHI) and ß-1,3-glucanase (GLU) in the Met-treated jujubes had surged to their zenith, being 1.39, 1.22, and 1.52 times in the control group, respectively. At the end of storage, the flavonoid and total phenol content remained 1.58 and 1.06 times than that of the control group. Based on metabolomics and transcriptomics analysis, Met treatment upregulated 6 key differentially expressed metabolites (DEMs) (succinic acid, trans-ferulic acid, salicylic acid, delphinium pigments, (S)-abscisic acid, and hesperidin-7-neohesperidin), 12 key differentially expressed genes (DEGs) (PAL, CYP73A, COMT, 4CL, CAD, POD, UGT72E, ANS, CHS, IAA, TCH4 and PR1), which were involved in phenylpropanoid biosynthesis pathway, flavonoid biosynthesis pathway and plant hormone signal transduction pathway. Further analysis revealed that the most of the enzymes, DEMs and DEGs in this study were associated with both antioxidant and disease resistance. Consequently, Met treatment enhanced disease resistance of winter jujube fruit by elevating antioxidant capacity and triggering defense response. This study might provide theoretical support for utilizing Met in the management and prevention of post-harvest black rot in winter jujube.


Subject(s)
Metabolomics , Methionine , Ziziphus , Ziziphus/genetics , Ziziphus/metabolism , Methionine/metabolism , Plant Diseases/genetics , Gene Expression Regulation, Plant , Transcriptome , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/metabolism , Fruit/genetics , Gene Expression Profiling , Chitinases/metabolism , Chitinases/genetics
17.
Yeast ; 41(8): 513-524, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38961653

ABSTRACT

Saccharomyces cerevisiae has long been used as a model organism to study genome instability. The SAM1 and SAM2 genes encode AdoMet synthetases, which generate S-AdenosylMethionine (AdoMet) from Methionine (Met) and ATP. Previous work from our group has shown that deletions of the SAM1 and SAM2 genes cause changes to AdoMet levels and impact genome instability in opposite manners. AdoMet is a key product of methionine metabolism and the major methyl donor for methylation events of proteins, RNAs, small molecules, and lipids. The methyl cycle is interrelated to the folate cycle which is involved in de novo synthesis of purine and pyrimidine deoxyribonucleotides (dATP, dTTP, dCTP, and dGTP). AdoMet also plays a role in polyamine production, essential for cell growth and used in detoxification of reactive oxygen species (ROS) and maintenance of the redox status in cells. This is also impacted by the methyl cycle's role in production of glutathione, another ROS scavenger and cellular protectant. We show here that sam2∆/sam2∆ cells, previously characterized with lower levels of AdoMet and higher genome instability, have a higher level of each dNTP (except dTTP), contributing to a higher overall dNTP pool level when compared to wildtype. Unchecked, these increased levels can lead to multiple types of DNA damage which could account for the genome instability increases in these cells.


Subject(s)
S-Adenosylmethionine , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , S-Adenosylmethionine/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Genomic Instability , Deoxyribonucleotides/metabolism , Nucleotides/metabolism , Methionine/metabolism
18.
PLoS One ; 19(7): e0305620, 2024.
Article in English | MEDLINE | ID: mdl-39078822

ABSTRACT

Although the standard method to evaluate skeletal muscle protein synthesis (MPS) is muscle biopsy, the method is invasive and problematic for multisite use. We conducted a small pilot study in volunteers to investigate changes in MPS according to skeletal muscle site using a noninvasive method in which 6 healthy young men were given yogurt (containing 20 g milk protein) or water, and 1 h later, l-[11C]methionine ([11C]Met) was administered intravenously. Dynamic PET/CT imaging of their thighs was performed for 60 min. The influx constant Ki of [11C]Met in skeletal muscle protein was calculated as an index of MPS using a Patlak plot, and found to be 0.6%-28% higher after ingesting yogurt than after water in 5 of the 6 volunteer participants, but it was 34% lower in the remaining participant. Overall, this indicated no significant increase in Ki after ingesting milk protein. However, when the quadriceps and hamstring muscles were analyzed separately, we found a significant difference in Ki. This demonstrates the potential of visualizing MPS by calculating the Ki for each voxel and reconstructing it as an image, which presents unique advantages of [11C]Met PET/CT for evaluating MPS, such as site-specificity and visualization.


Subject(s)
Methionine , Muscle Proteins , Muscle, Skeletal , Positron Emission Tomography Computed Tomography , Humans , Male , Methionine/metabolism , Positron Emission Tomography Computed Tomography/methods , Pilot Projects , Muscle, Skeletal/metabolism , Muscle, Skeletal/diagnostic imaging , Adult , Young Adult , Muscle Proteins/metabolism , Muscle Proteins/biosynthesis , Carbon Radioisotopes , Protein Biosynthesis
19.
Anim Sci J ; 95(1): e13980, 2024.
Article in English | MEDLINE | ID: mdl-39054255

ABSTRACT

This study evaluated the effects of supplementation of rumen-protected methionine (RPM) on body thermoregulation and conception rate of Nelore cows exposed to high temperature-humidity index (THI). On -31 days before the artificial insemination protocol, 562 lactating, multiparous cows were assigned to receive (MG) or not (CG) RPM supplementation (3 g/cow mixed into 100 g of mineral supplement). Both groups remained in tropical pastures and received supplementation for 77 days. A subset of cows (n = 142) remained with an intravaginal thermometer collecting intravaginal temperature (IT). The respective minimum, average, and maximum environmental THI were 72.8, 78.0, and 83.3. Effects of treatment × hour of the day were detected (P < 0.0001) for IT. From 1330 to 1730 h and 1830 to 1900 h, IT was higher (P < 0.05) for CG versus MG cows when exposed to moderate and high THI. The supplementation with RPM did not affect conception rate (CG = 64.4% vs. MG = 58.2%; P > 0.05). In conclusion, 3 g of RPM supplementation lowered internal body temperature and possibly altered critical THI threshold in Nelore cows with no impact on reproduction.


Subject(s)
Body Temperature , Dietary Supplements , Methionine , Rumen , Animals , Cattle/physiology , Methionine/administration & dosage , Methionine/pharmacology , Female , Rumen/metabolism , Body Temperature/drug effects , Hot Temperature/adverse effects , Time Factors , Heat Stress Disorders/veterinary , Heat Stress Disorders/prevention & control , Body Temperature Regulation/drug effects , Humidity , Heat-Shock Response/drug effects , Fertilization/drug effects , Animal Feed , Diet/veterinary , Insemination, Artificial/veterinary , Insemination, Artificial/methods
20.
Chem Commun (Camb) ; 60(61): 7942-7945, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38984863

ABSTRACT

We present a method for site-selective diversification of peptides via Pd-catalyzed ß-C(sp3)-H olefination/cyclization. In this protocol, the native methionine residue acts as a directing group, enabling site-specific olefination/cyclization of peptides. This chemistry demonstrates broad substrate scope, offering a versatile tool for peptide ligation.


Subject(s)
Alkenes , Methionine , Palladium , Peptides , Catalysis , Palladium/chemistry , Alkenes/chemistry , Methionine/chemistry , Cyclization , Peptides/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL