Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 95.599
1.
Medicine (Baltimore) ; 103(18): e37933, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701300

BACKGROUND: Sepsis-induced myopathy (SIM) a complication of sepsis that results in prolonged mechanical ventilation, long-term functional disability, and increased patient mortality. This study was performed to identify potential key oxidative stress-related genes (OS-genes) as biomarkers for the diagnosis of SIM using bioinformatics. METHODS: The GSE13205 was obtained from the Gene Expression Omnibus (GEO) database, including 13 SIM samples and 8 healthy samples, and the differentially expressed genes (DEGs) were identified by limma package in R language. Simultaneously, we searched for the genes related to oxidative stress in the Gene Ontology (GO) database. The intersection of the genes selected from the GO database and the genes from the GSE13205 was considered as OS-genes of SIM, where the differential genes were regarded as OS-DEGs. OS-DEGs were analyzed using GO enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. Hub genes in OS-DEGs were selected based on degree, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve. Finally, a miRNA-gene network of diagnostic genes was constructed. RESULTS: A total of 1089 DEGs were screened from the GSE13205, and 453 OS-genes were identified from the GO database. The overlapping DEGs and OS-genes constituted 25 OS-DEGs, including 15 significantly upregulated and 10 significantly downregulated genes. The top 10 hub genes, including CD36, GPX3, NQO1, GSR, TP53, IDH1, BCL2, HMOX1, JAK2, and FOXO1, were screened. Furthermore, 5 diagnostic genes were identified: CD36, GPX3, NQO1, GSR, and TP53. The ROC analysis showed that the respective area under the curves (AUCs) of CD36, GPX3, NQO1, GSR, and TP53 were 0.990, 0.981, 0.971, 0.971, and 0.971, which meant these genes had very high diagnostic values of SIM. Finally, based on these 5 diagnostic genes, we found that miR-124-3p and miR-16-5p may be potential targets for the treatment of SIM. CONCLUSIONS: The results of this study suggest that OS-genes might play an important role in SIM. CD36, GPX3, NQO1, GSR, and TP53 have potential as specific biomarkers for the diagnosis of SIM.


Muscular Diseases , Oxidative Stress , Sepsis , Humans , Oxidative Stress/genetics , Sepsis/genetics , Muscular Diseases/genetics , Computational Biology , Protein Interaction Maps/genetics , MicroRNAs/genetics , ROC Curve , Biomarkers/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Gene Ontology , Databases, Genetic
2.
Cell Death Dis ; 15(5): 314, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702325

Ovarian cancer is one of the common tumors of the female reproductive organs. It has a high mortality rate, is highly heterogeneous, and early detection and primary prevention are very complex. Autophagy is a cellular process in which cytoplasmic substrates are targeted for degradation in lysosomes through membrane structures called autophagosomes. The periodic elimination of damaged, aged, and redundant cellular molecules or organelles through the sequential translation between amino acids and proteins by two biological processes, protein synthesis, and autophagic protein degradation, helps maintain cellular homeostasis. A growing number of studies have found that autophagy plays a key regulatory role in ovarian cancer. Interestingly, microRNAs regulate gene expression at the posttranscriptional level and thus can regulate the development and progression of ovarian cancer through the regulation of autophagy in ovarian cancer. Certain miRNAs have recently emerged as important regulators of autophagy-related gene expression in cancer cells. Moreover, miRNA analysis studies have now identified a sea of aberrantly expressed miRNAs in ovarian cancer tissues that can affect autophagy in ovarian cancer cells. In addition, miRNAs in plasma and stromal cells in tumor patients can affect the expression of autophagy-related genes and can be used as biomarkers of ovarian cancer progression. This review focuses on the potential significance of miRNA-regulated autophagy in the diagnosis and treatment of ovarian cancer.


Autophagy , MicroRNAs , Ovarian Neoplasms , Humans , Autophagy/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Animals , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
3.
Function (Oxf) ; 5(3): zqae012, 2024.
Article En | MEDLINE | ID: mdl-38706963

Acute kidney injury (AKI) is a heterogeneous syndrome, comprising diverse etiologies of kidney insults that result in high mortality and morbidity if not well managed. Although great efforts have been made to investigate underlying pathogenic mechanisms of AKI, there are limited therapeutic strategies available. Extracellular vesicles (EV) are membrane-bound vesicles secreted by various cell types, which can serve as cell-free therapy through transfer of bioactive molecules. In this review, we first overview the AKI syndrome and EV biology, with a particular focus on the technical aspects and therapeutic application of cell culture-derived EVs. Second, we illustrate how multi-omic approaches to EV miRNA, protein, and genomic cargo analysis can yield new insights into their mechanisms of action and address unresolved questions in the field. We then summarize major experimental evidence regarding the therapeutic potential of EVs in AKI, which we subdivide into stem cell and non-stem cell-derived EVs. Finally, we highlight the challenges and opportunities related to the clinical translation of animal studies into human patients.


Acute Kidney Injury , Extracellular Vesicles , Acute Kidney Injury/therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Humans , Extracellular Vesicles/transplantation , Extracellular Vesicles/metabolism , Animals , Cell Culture Techniques/methods , MicroRNAs/metabolism , MicroRNAs/genetics
4.
Glob Heart ; 19(1): 41, 2024.
Article En | MEDLINE | ID: mdl-38708403

Hypertension is a multifactorial, complex disease with high morbidity and mortality rates. Studies have found that micro-RNA 21 (miR-21) levels are significantly increased in patients with hypertension. However, other studies have reported opposite results. Therefore, the relationship between miR-21 expression and hypertension remains controversial. This meta-analysis was conducted to statistically evaluate the miR-21 levels of patients with hypertension. A literature research was conducted using Web of Science, Embase, PubMed, and CNKI. To search for titles or abstracts, 'hypertension' in combination with the terms 'miR-21,' 'microRNA-21,' or 'miRNA-21' were used as keywords. Standardized mean differences (SMD) with corresponding 95% confidence intervals (CIs) were determined from the results of the meta-analysis. In total, 12 articles were included in this meta-analysis, involving 546 cases and 436 controls. The results of the meta-analysis showed that miR-21 levels in patients with hypertension were significantly higher than those in the controls (SMD: 1.22; 95% CI [0.35, 2.09]). This meta-analysis is the first to evaluate miR-21 in patients with hypertension. MiR-21 may be a new target for the prediction and treatment of hypertension. Further high-quality studies are needed to better support the association between miR-21 and hypertension.


Hypertension , MicroRNAs , Humans , Hypertension/epidemiology , MicroRNAs/genetics , Global Health , Biomarkers/blood
5.
Clin Exp Pharmacol Physiol ; 51(6): e13861, 2024 Jun.
Article En | MEDLINE | ID: mdl-38724488

Relevant studies have indicated the association of HCG18 with tumour occurrence and progression. In this study, we observed that PM2.5 can enhance the growth of lung adenocarcinoma cells by modulating the expression of HCG18. Further investigations, including overexpression and knockout experiments, elucidated that HCG18 suppresses miR-195, which in turn upregulates the expression of ATG14, resulting in the upregulation of autophagy. Consequently, exposure to PM2.5 leads to elevated HCG18 expression in lung tissues, which in turn increases Atg14 expression and activates autophagy pathways through inhibition of miR-195, thereby contributing to oncogenesis.


Adenocarcinoma of Lung , Autophagy-Related Proteins , Autophagy , Disease Progression , Lung Neoplasms , MicroRNAs , Particulate Matter , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Particulate Matter/adverse effects , Autophagy/genetics , Gene Expression Regulation, Neoplastic , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Cell Proliferation/genetics , A549 Cells , Cell Line, Tumor , Adaptor Proteins, Vesicular Transport
6.
Mol Biol Rep ; 51(1): 632, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724827

BACKGROUND: MicroRNAs (miRNAs) play critical roles in the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs), but the mechanism by which miRNAs indirectly modulate osteogenesis remains unclear. Here, we explored the mechanism by which miRNAs indirectly modulate gene expression through histone demethylases to promote bone regeneration. METHODS AND RESULTS: Bioinformatics analysis was performed on hBMSCs after 7 days of osteogenic induction. The differentially expressed miRNAs were screened, and potential target mRNAs were identified. To determine the bioactivity and stemness of hBMSCs and their potential for bone repair, we performed wound healing, Cell Counting Kit-8 (CCK-8), real-time reverse transcription quantitative polymerase chain reaction (RT‒qPCR), alkaline phosphatase activity, alizarin red S (ARS) staining and radiological and histological analyses on SD rats with calvarial bone defects. Additionally, a dual-luciferase reporter assay was utilized to investigate the interaction between miR-26b-5p and ten-eleven translocation 3 (TET3) in human embryonic kidney 293T cells. The in vitro and in vivo results suggested that miR-26b-5p effectively promoted the migration, proliferation and osteogenic differentiation of hBMSCs, as well as the bone reconstruction of calvarial defects in SD rats. Mechanistically, miR-26b-5p bound to the 3' untranslated region of TET3 mRNA to mediate gene silencing. CONCLUSIONS: MiR-26b-5p downregulated the expression of TET3 to increase the osteogenic differentiation of hBMSCs and bone repair in rat calvarial defects. MiR-26b-5p/TET3 crosstalk might be useful in large-scale critical bone defects.


Bone Regeneration , Cell Differentiation , Dioxygenases , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Rats, Sprague-Dawley , Skull , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mesenchymal Stem Cells/metabolism , Humans , Osteogenesis/genetics , Cell Differentiation/genetics , Rats , Skull/pathology , Skull/metabolism , Female , Bone Regeneration/genetics , Dioxygenases/genetics , Dioxygenases/metabolism , Cell Proliferation/genetics , HEK293 Cells
8.
Mol Biol Rep ; 51(1): 636, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727863

BACKGROUND: Osteoporosis (OP), characterized by compromised bone integrity and increased fracture risk, poses a significant health challenge. Circular RNAs (circRNAs) have emerged as crucial regulators in various pathophysiological processes, prompting investigation into their role in osteoporosis. This study aimed to elucidate the involvement of circCOX6A1 in OP progression and understand its underlying molecular mechanisms. The primary objective was to explore the impact of circCOX6A1 on bone marrow-derived mesenchymal stem cells (BMSCs) and its potential interactions with miR-512-3p and DYRK2. METHODS: GSE161361 microarray analysis was employed to assess circCOX6A1 expression in OP patients. We utilized in vitro and in vivo models, including BMSC cultures, osteogenic differentiation assays, and an OVX-induced mouse model of OP. Molecular techniques such as quantitative RT-PCR, western blotting, and functional assays like alizarin red staining (ARS) were employed to evaluate circCOX6A1 effects on BMSC proliferation, apoptosis, and osteogenic differentiation. The interaction between circCOX6A1, miR-512-3p, and DYRK2 was investigated through dual luciferase reporter assays, RNA immunoprecipitation, and RNA pull-down assays. RESULTS: CircCOX6A1 was found to be upregulated in osteoporosis patients, and its expression inversely correlated with osteogenic differentiation of BMSCs. CircCOX6A1 knockdown enhanced osteogenic differentiation, as evidenced by increased mineralized nodule formation and upregulation of osteogenic markers. In vivo, circCOX6A1 knockdown ameliorated osteoporosis progression in OVX mice. Mechanistically, circCOX6A1 acted as a sponge for miR-512-3p, subsequently regulating DYRK2 expression. CONCLUSION: This study provides compelling evidence for the role of circCOX6A1 in osteoporosis pathogenesis. CircCOX6A1 negatively regulates BMSC osteogenic differentiation through the miR-512-3p/DYRK2 axis, suggesting its potential as a therapeutic target for mitigating OP progression.


Cell Differentiation , Dyrk Kinases , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Osteoporosis , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , RNA, Circular , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Osteogenesis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Cell Differentiation/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Humans , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Mice , Mesenchymal Stem Cells/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Female , Cell Proliferation/genetics , Disease Models, Animal , Apoptosis/genetics , Middle Aged
9.
Mol Biol Rep ; 51(1): 638, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727891

BACKGROUND: Treatment-resistant depression (TRD) is a condition in a subset of depressed patients characterized by resistance to antidepressant medications. The global prevalence of TRD has been steadily increasing, yet significant advancements in its diagnosis and treatment remain elusive despite extensive research efforts. The precise underlying pathogenic mechanisms are still not fully understood. Epigenetic mechanisms play a vital role in a wide range of diseases. In recent years, investigators have increasingly focused on the regulatory roles of miRNAs in the onset and progression of TRD. miRNAs are a class of noncoding RNA molecules that regulate the translation and degradation of their target mRNAs via interaction, making the exploration of their functions in TRD essential for elucidating their pathogenic mechanisms. METHODS AND RESULTS: A systematic search was conducted in four databases, namely PubMed, Web of Science, Cochrane Library, and Embase, focusing on studies related to treatment-resistant depression and miRNAs. The search was performed using terms individually or in combination, such as "treatment-resistant depression," "medication-resistant depression," and "miRNAs." The selected articles were reviewed and collated, covering the time period from the inception of each database to the end of February 2024. We found that miRNAs play a crucial role in the pathophysiology of TRD through three main aspects: 1) involvement in miRNA-mediated inflammatory responses (including miR-155, miR-345-5p, miR-146a, and miR-146a-5p); 2) influence on 5-HT transport processes (including miR-674,miR-708, and miR-133a); and 3) regulation of synaptic plasticity (including has-miR-335-5p,has-miR- 1292-3p, let-7b, and let-7c). Investigating the differential expression and interactions of these miRNAs could contribute to a deeper understanding of the molecular mechanisms underlying TRD. CONCLUSIONS: miRNAs might play a pivotal role in the pathogenesis of TRD. Gaining a deeper understanding of the roles and interrelations of miRNAs in TRD will contribute to elucidating disease pathogenesis and potentially provide avenues for the development of novel diagnostic and therapeutic strategies.


Depressive Disorder, Treatment-Resistant , MicroRNAs , Humans , MicroRNAs/genetics , Depressive Disorder, Treatment-Resistant/genetics , Depressive Disorder, Treatment-Resistant/therapy , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology , Gene Expression Regulation , Epigenesis, Genetic
10.
Mol Biol Rep ; 51(1): 644, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727958

BACKGROUND: MicroRNAs are differentially expressed in periodontitis tissues. They are involved in cellular responses to inflammation and can be used as markers for diagnosing periodontitis. Microarray analysis showed that the expression level of microRNA-671-5p in periodontal tissues of patients with periodontitis was increased. In this study, we investigated the mechanism of action of microRNA-671-5p in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. METHODS AND RESULTS: HPDLSCs were treated with lipopolysaccharide (LPS) to establish an inflammation model. The cell survival rate was determined using the cell counting kit-8 (CCK8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of microRNA-671-5p and dual-specificity phosphatase (DUSP) 8 proteins, respectively, Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were detected using qRT-PCR and Enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter system was employed to determine the relationship between micoRNA-671-5p and DUSP8 expression. Activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway was confirmed using western blot analysis. Following the treatment of hPDLSCs with LPS, the expression levels of microRNA-671-5p in hPDLSCs were increased, cell viability decreased, and the expression of inflammatory factors displayed an increasing trend. MicroRNA-671-5p targets and binds to DUSP8. Silencing microRNA-671-5p or overexpressing DUSP8 can improve cell survival rate and reduce inflammatory responses. When DUSP8 was overexpressed, the expression of p-p38 was reduced. CONCLUSIONS: microRNA-671-5p targets DUSP8/p38 MAPK pathway to regulate LPS-induced proliferation and inflammation in hPDLSCs.


Dual-Specificity Phosphatases , Inflammation , Lipopolysaccharides , MicroRNAs , Periodontal Ligament , Stem Cells , p38 Mitogen-Activated Protein Kinases , Periodontal Ligament/metabolism , Periodontal Ligament/cytology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Stem Cells/metabolism , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/drug effects , Periodontitis/genetics , Periodontitis/metabolism , Periodontitis/pathology , Cell Survival/genetics , Cell Survival/drug effects , Signal Transduction/genetics , Cells, Cultured
11.
Pediatr Surg Int ; 40(1): 126, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717494

BACKGROUND: Neonatal necrotizing enterocolitis (NEC) is a common gastrointestinal emergency in neonates. MiRNA-192-5p was found associated with ulcerative colitis (UC) progression, also with aberrant expression in intestinal cancer tissue. However, the effects of miRNA-192-5p on NEC have not been reported. METHODS: Based on the bioinformatics analysis of the GEO dataset, miR-192-5p was identified as the differentially expressed miRNA in NEC, and activated leukocyte cell adhesion molecule (ALCAM) was predicted as its target. After that, in vitro, rat intestinal epithelial cell-6 (IEC-6) were stimulated with LPS to construct a cell model of NEC. IEC-6 cells were transfected with miRNA-192-5p mimics, miRNA-192-5p inhibitors, or miRNA-192-5p inhibitors + sh-ALCAM, and relevant negative control. In vivo, SD rats were treated with artificial feeding, hypoxic reoxygenation, cold stimulation, and LPS gavage to induce NEC, followed by injection of agomiR-NC or agomiRNA-192-5p. Then effects of miRNA-192-5p on NEC model IEC-6 cell viability, apoptosis, ALCAM expression, Interleukin (IL)-1ß and IL-6 levels, intestinal injury, intestinal permeability were detected. RESULTS: MiRNA-192-5p expression was downregulated in NEC IEC-6 cells, whose overexpression increased IEC-6 cell viability. MiRNA-192-5p inhibitors increased IL-1ß, IL-6 levels and promoted IEC-6 cell apoptosis. MiRNA-192-5p targeting of ALCAM decreased ALCAM expression, IL-1ß, and IL-6 levels. AgomiRNA-192-5p decreased ALCAM, IL-1ß, and IL-6 levels in intestinal tissue and pathological damage and increased miRNA-192-5p levels. CONCLUSION: MiR-192-5p protects against intestinal injury by inhibiting ALCAM-mediated inflammation and intestinal epithelial cells, which would provide a new idea for NEC treatment.


Disease Models, Animal , Enterocolitis, Necrotizing , MicroRNAs , Rats, Sprague-Dawley , Enterocolitis, Necrotizing/genetics , Enterocolitis, Necrotizing/metabolism , MicroRNAs/genetics , Animals , Rats , Humans , Infant, Newborn , Animals, Newborn , Apoptosis/genetics , Inflammation
12.
Mol Biol Rep ; 51(1): 627, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717532

MicroRNAs (miRNAs) are short, non-coding single-stranded RNA molecules approximately 22 nucleotides in length, intricately involved in post-transcriptional gene expression regulation. Over recent years, researchers have focused keenly on miRNAs, delving into their mechanisms in various diseases such as cancers. Among these, miR-26a emerges as a pivotal player in respiratory ailments such as pneumonia, idiopathic pulmonary fibrosis, lung cancer, asthma, and chronic obstructive pulmonary disease. Studies have underscored the significance of miR-26a in the pathogenesis and progression of respiratory diseases, positioning it as a promising therapeutic target. Nevertheless, several challenges persist in devising medical strategies for clinical trials involving miR-26a. In this review, we summarize the regulatory role and significance of miR-26a in respiratory diseases, and we analyze and elucidate the challenges related to miR-26a druggability, encompassing issues such as the efficiency of miR-26a, delivery, RNA modification, off-target effects, and the envisioned therapeutic potential of miR-26a in clinical settings.


Gene Expression Regulation , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Animals , Respiratory Tract Diseases/genetics , Respiratory Tract Diseases/therapy , Respiratory Tract Diseases/metabolism , Asthma/genetics , Asthma/therapy , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/therapy , Idiopathic Pulmonary Fibrosis/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/therapy
13.
Rev Assoc Med Bras (1992) ; 70(4): e20231521, 2024.
Article En | MEDLINE | ID: mdl-38716952

OBJECTIVE: This study aimed to investigate the value of miR-29a-3p, miR-27a, miR126-3p, miR-146a-5p, miR-625-3p, miR-130a, miR-32, miR-218, miR-131, and miR5196 in the diagnosis of axial spondyloarthritis and to determine whether there is a difference in miRNA expression levels between radiographic axial spondyloarthritis and non-radiographic axial spondyloarthritis, as well as the relationship between miRNA expression levels, disease activity, and uveitis history. METHODS: This study included 50 patients with axial spondyloarthritis (25 with radiographic axial spondyloarthritis and 25 with non-radiographic axial spondyloarthritis) and 25 healthy individuals. The fold change of miRNA expression for each miRNA was calculated using the 2-ΔΔCt method. RESULTS: The expression of all miRNAs except miR-130a was downregulated in axial spondyloarthritis patients (miR-27a: fold regulation: -11.21, p<0.001; miR-29a-3p: fold regulation: -2.63, p<0.001; miR-32: fold regulation: -2.94, p=0.002; miR-126-3p: fold regulation -10.94, p<0.001; miR-132: fold regulation: -2.18, p<0.001; miR-146-5p: fold regulation: -9.78, p<0.001; miR-218: fold regulation: -2.65, p<0.001; miR-625-3p: fold regulation: -2.01, p=0.001; miR-5196-3p: fold regulation: -7.04, p<0.001). The expression levels of these miRNAs did not differ significantly between non-radiographic axial spondyloarthritis and radiographic axial spondyloarthritis patients (p>0.05 for all). CONCLUSION: Particularly, miR-27a, miR-126-3p, miR-146-5p, and miR-5196-3p were found to be substantially downregulated in both non-radiographic axial spondyloarthritis and radiographic axial spondyloarthritis patients, suggesting their potential as diagnostic biomarkers for axial spondyloarthritis.


Axial Spondyloarthritis , Biomarkers , Down-Regulation , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/analysis , Adult , Female , Male , Axial Spondyloarthritis/genetics , Axial Spondyloarthritis/diagnostic imaging , Biomarkers/analysis , Case-Control Studies , Middle Aged , Young Adult , Spondylarthritis/genetics , Spondylarthritis/diagnostic imaging
14.
Nat Commun ; 15(1): 3873, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719882

Human glial progenitor cells (hGPCs) exhibit diminished expansion competence with age, as well as after recurrent demyelination. Using RNA-sequencing to compare the gene expression of fetal and adult hGPCs, we identify age-related changes in transcription consistent with the repression of genes enabling mitotic expansion, concurrent with the onset of aging-associated transcriptional programs. Adult hGPCs develop a repressive transcription factor network centered on MYC, and regulated by ZNF274, MAX, IKZF3, and E2F6. Individual over-expression of these factors in iPSC-derived hGPCs lead to a loss of proliferative gene expression and an induction of mitotic senescence, replicating the transcriptional changes incurred during glial aging. miRNA profiling identifies the appearance of an adult-selective miRNA signature, imposing further constraints on the expansion competence of aged GPCs. hGPC aging is thus associated with acquisition of a MYC-repressive environment, suggesting that suppression of these repressors of glial expansion may permit the rejuvenation of aged hGPCs.


Aging , MicroRNAs , Neuroglia , Transcription Factors , Humans , Neuroglia/metabolism , Neuroglia/cytology , Aging/genetics , Aging/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cellular Senescence/genetics , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/cytology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Adult , Gene Regulatory Networks , Cell Proliferation/genetics , Gene Expression Regulation, Developmental , Gene Expression Profiling
15.
Sci Rep ; 14(1): 10595, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719908

Delayed diagnosis in patients with pulmonary tuberculosis (PTB) often leads to serious public health problems. High throughput sequencing was used to determine the expression levels of lncRNAs, mRNAs, and miRNAs in the lesions and adjacent health lung tissues of patients with PTB. Their differential expression profiles between the two groups were compared, and 146 DElncRs, 447 DEmRs, and 29 DEmiRs were obtained between lesions and adjacent health tissues in patients with PTB. Enrichment analysis for mRNAs showed that they were mainly involved in Th1, Th2, and Th17 cell differentiation. The lncRNAs, mRNAs with target relationship with miRNAs were predicted respectively, and correlation analysis was performed. The ceRNA regulatory network was obtained by comparing with the differentially expressed transcripts (DElncRs, DEmRs, DEmiRs), then 2 lncRNAs mediated ceRNA networks were established. The expression of genes within the network was verified by quantitative real-time PCR (qRT-PCR). Flow cytometric analysis revealed that the proportion of Th1 cells and Th17 cells was lower in PTB than in controls, while the proportion of Th2 cells increased. Our results provide rich transcriptome data for a deeper investigation of PTB. The ceRNA regulatory network we obtained may be instructive for the diagnosis and treatment of PTB.


Gene Regulatory Networks , MicroRNAs , RNA, Long Noncoding , RNA, Messenger , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/genetics , RNA, Long Noncoding/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , Transcriptome , Th17 Cells/immunology , Th17 Cells/metabolism , Female , Male , Adult , Middle Aged , Gene Expression Regulation , Lung/pathology , Lung/metabolism , RNA, Competitive Endogenous
16.
Clin Respir J ; 18(5): e13765, 2024 May.
Article En | MEDLINE | ID: mdl-38721812

LINC00857 is frequently dysregulated in varying cancers, which in turn exerts carcinogenic effects; however, its DNA methylation status in promoter region and molecular mechanisms underlying the progression of lung adenocarcinoma (LUAD) remain rarely understood. Through bioinformatics analysis, we examined the expression state and methylation site of LINC00857 in LUAD and further investigated the properties of LINC00857 as a competitive endogenous RNA in the cancer progression. The current study revealed that the overexpression of LINC00857 in LUAD tissue and cells was mainly caused by the hypomethylation of the promoter region. LINC00857 knockdown prominently reduced cell proliferation, impeded cell migration and invasion, and restrained lymph node metastasis, with enhancing radiosensitivity. The effects of LINC00857 on tumor growth were also investigated in nude mice models. Subsequently, the downstream factors, miR-486-5p and NEK2, were screened, and the putative regulatory axis was examined. Overall, the regulatory effect of methylation-mediated LINC00857 overexpression on miR-486-5p/NEK2 axis may be a new mechanism for LUAD progression.


Adenocarcinoma of Lung , Cell Proliferation , DNA Methylation , Disease Progression , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Up-Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Animals , Mice , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Proliferation/genetics , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , Cell Line, Tumor , Mice, Nude , Cell Movement/genetics , Male
17.
J Cell Mol Med ; 28(9): e18361, 2024 May.
Article En | MEDLINE | ID: mdl-38722283

Hypoxia and Ferroptosis are associated with the malignant behaviour of cervical cancer. Endothelial PAS domain-containing protein 1 (EPAS1) contributes to the progression of cervical cancer. EPAS1 plays important roles in hypoxia and ferroptosis. Using the GEO dataset, machine-learning algorithms were used to screen for hypoxia- and ferroptosis-related genes (HFRGs) in cervical cancer. EPAS1 was identified as the hub gene. qPCR and WB were used to investigate the expression of EPAS1 in normal and cervical cancer tissues. The proliferation, invasion and migration of EPAS1 cells in HeLa and SiHa cell lines were detected using CCK8, transwell and wound healing assays, respectively. Apoptosis was detected by flow cytometry. A dual-luciferase assay was used to analyse the MALAT1-miR-182-5P-EPAS1 mRNA axis and core promoter elements of the super-enhancer. EPAS1 was significantly overexpressed in cervical cancer tissues. EPAS1 could increase the proliferation, invasion, migration of HeLa and SiHa cells and reduce the apoptosis of HeLa and SiHa cell. According to the double-luciferase assay, EPAS1 expression was regulated by the MALAT1-Mir-182-5p-EPAS1 mRNA axis. EPAS1 is associated with super-enhancers. Double-luciferase assay showed that the core elements of the super-enhancer were E1 and E3. EPAS1, an HFRG, is significantly overexpressed in cervical cancer. EPAS1 promotes malignant behaviour of cervical cancer cells. EPAS1 expression is regulated by super-enhancers and the MALAT1-miR-182-5P- EPAS1 mRNA axis. EPAS1 may be a target for the diagnosis and treatment of cervical cancer.


Apoptosis , Basic Helix-Loop-Helix Transcription Factors , Cell Movement , Cell Proliferation , Ferroptosis , Gene Expression Regulation, Neoplastic , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Female , Ferroptosis/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Apoptosis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , HeLa Cells , RNA, Long Noncoding/genetics , RNA, Competitive Endogenous
18.
Int J Biol Sci ; 20(7): 2422-2439, 2024.
Article En | MEDLINE | ID: mdl-38725842

Background & Aims: Reactive oxygen species (ROS) act as modulators triggering cellular dysfunctions and organ damage including liver fibrosis in which hepatic stellate cell (HSC) activation plays a key role. Previous studies suggest that microRNA-144 (miR-144) acts as a pro-oxidant molecule; however, whether and how miR-144 affects HSC activation and liver fibrosis remain unknown. Methods: Carbon tetrachloride (CCl4) and bile duct ligation (BDL)-induced experimental liver fibrosis models were used. Hepatic miR-144 expression was analyzed by miRNA in situ hybridization with RNAscope probe. The in vivo effects of silencing or overexpressing miR-144 were examined with an adeno-associated virus 6 (AAV6) carrying miR-144 inhibitor or mimics in fibrotic mouse experimental models. Results: In this study, we demonstrated that ROS treatment significantly upregulated miR-144 in HSCs, which further promoted HSC activation in vitro. Interestingly, miR-144 was preferentially elevated in HSCs of experimental liver fibrosis in mice and in human liver fibrotic tissues. Furthermore, in vivo loss or gain-of-function experiments via AAV6 carrying miR-144 antagomir or agomir revealed that blockade of miR-144 in HSCs mitigated, while overexpression of miR-144 in HSCs accelerated the development of experimental liver fibrosis. Mechanistically, SIN3 transcription regulator family member A (SIN3A), a transcriptional repressor, was identified to be the target of miR-144 in HSCs. MiR-144 downregulated Sin3A, and in line with this result, specific knockdown of Sin3a in HSCs remarkedly activated p38 MAPK signaling pathway to promote HSC activation, eventually exacerbating liver fibrosis. Conclusions: Oxidative stress-driven miR-144 fuels HSC activation and liver fibrogenesis by limiting the SIN3A-p38 axis. Thus, a specific inhibition of miR-144 in HSCs could be a novel therapeutic strategy for the treatment of liver fibrosis.


Hepatic Stellate Cells , Liver Cirrhosis , MicroRNAs , Oxidative Stress , Reactive Oxygen Species , Sin3 Histone Deacetylase and Corepressor Complex , p38 Mitogen-Activated Protein Kinases , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Mice , Humans , p38 Mitogen-Activated Protein Kinases/metabolism , Sin3 Histone Deacetylase and Corepressor Complex/metabolism , Reactive Oxygen Species/metabolism , Male , Mice, Inbred C57BL , Repressor Proteins/metabolism , Repressor Proteins/genetics , Carbon Tetrachloride
19.
Front Immunol ; 15: 1388769, 2024.
Article En | MEDLINE | ID: mdl-38726003

Background: Newer 3D culturing approaches are a promising way to better mimic the in vivo tumor microenvironment and to study the interactions between the heterogeneous cell populations of glioblastoma multiforme. Like many other tumors, glioblastoma uses extracellular vesicles as an intercellular communication system to prepare surrounding tissue for invasive tumor growth. However, little is known about the effects of 3D culture on extracellular vesicles. The aim of this study was to comprehensively characterize extracellular vesicles in 3D organoid models and compare them to conventional 2D cell culture systems. Methods: Primary glioblastoma cells were cultured as 2D and 3D organoid models. Extracellular vesicles were obtained by precipitation and immunoaffinity, with the latter allowing targeted isolation of the CD9/CD63/CD81 vesicle subpopulation. Comprehensive vesicle characterization was performed and miRNA expression profiles were generated by smallRNA-sequencing. In silico analysis of differentially regulated miRNAs was performed to identify mRNA targets and corresponding signaling pathways. The tumor cell media and extracellular vesicle proteome were analyzed by high-resolution mass spectrometry. Results: We observed an increased concentration of extracellular vesicles in 3D organoid cultures. Differential gene expression analysis further revealed the regulation of twelve miRNAs in 3D tumor organoid cultures (with nine miRNAs down and three miRNAs upregulated). MiR-23a-3p, known to be involved in glioblastoma invasion, was significantly increased in 3D. MiR-7-5p, which counteracts glioblastoma malignancy, was significantly decreased. Moreover, we identified four miRNAs (miR-323a-3p, miR-382-5p, miR-370-3p, miR-134-5p) located within the DLK1-DIO3 domain, a cancer-associated genomic region, suggesting a possible importance of this region in glioblastoma progression. Overrepresentation analysis identified alterations of extracellular vesicle cargo in 3D organoids, including representation of several miRNA targets and proteins primarily implicated in the immune response. Conclusion: Our results show that 3D glioblastoma organoid models secrete extracellular vesicles with an altered cargo compared to corresponding conventional 2D cultures. Extracellular vesicles from 3D cultures were found to contain signaling molecules associated with the immune regulatory signaling pathways and as such could potentially change the surrounding microenvironment towards tumor progression and immunosuppressive conditions. These findings suggest the use of 3D glioblastoma models for further clinical biomarker studies as well as investigation of new therapeutic options.


Extracellular Vesicles , Glioblastoma , MicroRNAs , Organoids , Tumor Microenvironment , Humans , Glioblastoma/immunology , Glioblastoma/pathology , Glioblastoma/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Organoids/immunology , MicroRNAs/genetics , Tumor Microenvironment/immunology , Signal Transduction , Tumor Cells, Cultured , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Culture Techniques, Three Dimensional/methods
20.
Biomed Eng Online ; 23(1): 44, 2024 May 05.
Article En | MEDLINE | ID: mdl-38705993

BACKGROUND: Osteocytes are critical mechanosensory cells in bone, and mechanically stimulated osteocytes produce exosomes that can induce osteogenesis. MicroRNAs (miRNAs) are important constituents of exosomes, and some miRNAs in osteocytes regulate osteogenic differentiation; previous studies have indicated that some differentially expressed miRNAs in mechanically strained osteocytes likely influence osteoblastic differentiation. Therefore, screening and selection of miRNAs that regulate osteogenic differentiation in exosomes of mechanically stimulated osteocytes are important. RESULTS: A mechanical tensile strain of 2500 µÎµ at 0.5 Hz 1 h per day for 3 days, elevated prostaglandin E2 (PGE2) and insulin-like growth factor-1 (IGF-1) levels and nitric oxide synthase (NOS) activity of MLO-Y4 osteocytes, and promoted osteogenic differentiation of MC3T3-E1 osteoblasts. Fourteen miRNAs differentially expressed only in MLO-Y4 osteocytes which were stimulated with mechanical tensile strain, were screened, and the miRNAs related to osteogenesis were identified. Four differentially expressed miRNAs (miR-1930-3p, miR-3110-5p, miR-3090-3p, and miR-3058-3p) were found only in mechanically strained osteocytes, and the four miRNAs, eight targeted mRNAs which were differentially expressed only in mechanically strained osteoblasts, were also identified. In addition, the mechanically strained osteocyte-derived exosomes promoted the osteoblastic differentiation of MC3T3-E1 cells in vitro, the exosomes were internalized by osteoblasts, and the up-regulated miR-3110-5p and miR-3058-3p in mechanically strained osteocytes, were both increased in the exosomes, which was verified via reverse transcription quantitative polymerase chain reaction (RT-qPCR). CONCLUSIONS: In osteocytes, a mechanical tensile strain of 2500 µÎµ at 0.5 Hz induced the fourteen differentially expressed miRNAs which probably were in exosomes of osteocytes and involved in osteogenesis. The mechanically strained osteocyte-derived exosomes which contained increased miR-3110-5p and miR-3058-3p (two of the 14 miRNAs), promoted osteoblastic differentiation.


Exosomes , MicroRNAs , Osteocytes , Osteogenesis , Stress, Mechanical , Animals , Mice , Cell Line , Exosomes/metabolism , Gene Expression Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Osteocytes/cytology , Osteocytes/metabolism , Osteogenesis/genetics
...