Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.063
Filter
1.
Open Vet J ; 14(6): 1370-1383, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39055763

ABSTRACT

Background: Antibiotic resistance is a global health problem related to the transmission of bacteria and genes between humans and animals. The development of new drugs with antimicrobial activity research is an urgent task of modern science. Aim: The article presents data of in vitro and in vivo experiments on new pharmaceutical composition based on nisin. Methods: The antimicrobial activity was studied on the mastitis pathogens. To identify microorganisms the Matrix-Assisted Lazer Desorption/Ionization Time-of-Flight (MALDI-TOF) (mass spectrometry) method was performed using. To determine sensitivity, the serial dilution method and the diffusion method were used. On laboratory animals, biochemical, hematological, and histological research methods were used. Female nonlinear white laboratory rats were used, which were divided into one control group and three experimental ones. Results: "Duration" factor was statistically significant for the following indicators: hemoglobin, hematocrit, leukocytes, lymphocytes, erythrocyte sedimentation rate, and eosinophils. The "Dose" factor did not show significance for any indicator, which means that the effect was similar regardless of the dose chosen. When analyzing the biochemical indicators, significant differences were found in the "Duration" and "Dose" factors, in the direction of a decrease in the indicators of total protein, globulins, urea, and an increase in the concentration of alkaline phosphatase. When conducting histological studies in the first experimental group, it was established that there were no changes in the structural and functional units of the organs. In animals of the second experimental group, the presence of reversible pathological processes of a compensatory nature was noted. More profound changes in the structure of the studied organs were recorded in the third experimental group. Conclusion: An in vitro study on cell cultures showed that the pharmacological composition has high antimicrobial activity against isolates from the mammary gland secretion of cows with mastitis. An in vivo study on laboratory animals showed that the developed composition belongs to the IV class of substances "low-hazard substances". Histological examination made it possible to select the safest dose of the pharmacological composition of no more than 500 mg/kg.


Subject(s)
Anti-Bacterial Agents , Nisin , Animals , Female , Rats , Anti-Bacterial Agents/pharmacology , Nisin/pharmacology , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/drug therapy , Microbial Sensitivity Tests/veterinary , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/veterinary
2.
Br Poult Sci ; 65(4): 494-501, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38994872

ABSTRACT

1. The extensive use of antimicrobials in poultry production may contribute to the emergence of resistant bacteria. This study was conducted to determine the prevalence and resistance of different E. coli strains isolated from raw chicken meat and to investigate the possibility to use Lebanese native oregano essential oils as alternatives.2. In total, 250 chickens from Lebanese markets were examined for the presence of E. coli. Isolates were then screened for susceptibility using 19 antibiotics and two essential oils extracted from oregano plants.3. Of the 250 chickens tested, 80% were contaminated with E. coli. Main resistance was seen against amoxycillin, ampicillin, penicillin, tetracycline, tylosin, streptomycin and erythromycin. The highest rate of sensitivity was found in 86.1% of strains to Amoxycillin/Clavulanic acid, 80.09% to Tilmicosin. Both essential oils from Origanum syriacum (98%) and O. ehrenbergii (97.3%) showed promising potential in inhibiting the growth of the tested bacteria. Oil from O. syriacum exhibited superior efficacy against 200 E. coli strains, inhibiting 46.1% at 200 mg/l and all at 400 mg/l, while O. ehrenbergii oil showed slightly lower inhibition, affecting 41.6% at 200 mg/l and all at 400 mg/l.


Subject(s)
Anti-Bacterial Agents , Chickens , Escherichia coli , Microbial Sensitivity Tests , Oils, Volatile , Origanum , Animals , Chickens/microbiology , Escherichia coli/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Origanum/chemistry , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/veterinary , Food Safety , Drug Resistance, Bacterial , Lebanon/epidemiology , Prevalence , Meat/microbiology , Meat/analysis , Food Microbiology , Plant Oils/pharmacology
3.
Vet Med Sci ; 10(4): e1530, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979670

ABSTRACT

AIM: This study aimed to summarize the frequency and the antimicrobial susceptibility profiles of the Salmonella serotypes identified from the specimens of companion animals, livestock, avian, wildlife and exotic species within Atlantic Canada. MATERIALS AND METHODS: The retrospective electronic laboratory data of microbiological analyses of a selected subset of samples from 03 January 2012 to 29 December 2021 submitted from various animal species were retrieved. The frequency of Salmonella serotypes identified, and their antimicrobial susceptibility results obtained using the disk diffusion or broth method were analysed. The test results were interpreted according to the Clinical and Laboratory Standards Institute standard. The Salmonella serotypes were identified by slide agglutination (Kauffman-White-Le-Minor Scheme) and/or the Whole Genome Sequencing for the Salmonella in silico Serovar Typing Resource-based identification. RESULTS: Of the cases included in this study, 4.6% (n = 154) had at least one Salmonella isolate, corresponding to 55 different serovars. Salmonella isolation was highest from exotic animal species (n = 40, 1.20%), followed by porcine (n = 26, 0.78%), and canine (n = 23, 0.69%). Salmonella subsp. enterica serovar Typhimurium was predominant among exotic mammals, porcine and caprine samples, whereas S. Enteritidis was mostly identified in bovine and canine samples. S. Typhimurium of porcine origin was frequently resistant (>70.0%) to ampicillin. In contrast, S. Typhimurium isolates from porcine and caprine samples were susceptible (>70.0%) to florfenicol. S. Oranienburg from equine samples was susceptible to chloramphenicol, but frequently resistant (>90.0%) to azithromycin. In avian samples, S. Copenhagen was susceptible (>90.0%) to florfenicol, whereas Muenchen was frequently resistant (>90.0%) to florfenicol. S. subsp. diarizonae serovar IIIb:61:k:1,5 of ovine origin was resistant (50.0% isolates) to sulfadimethoxine. No significant changes were observed in the antibiotic resistance profiles across the study years. CONCLUSIONS: This report provides data for surveillance studies, distribution of Salmonella serotypes and their antimicrobial resistance among veterinary specimens of Atlantic Canada.


Subject(s)
Salmonella Infections, Animal , Salmonella , Serogroup , Animals , Retrospective Studies , Salmonella/drug effects , Salmonella/isolation & purification , Salmonella/genetics , Salmonella/classification , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology , Animals, Wild/microbiology , Canada/epidemiology , Livestock/microbiology , Anti-Bacterial Agents/pharmacology , Pets/microbiology , Birds/microbiology , Microbial Sensitivity Tests/veterinary
4.
Acta Vet Scand ; 66(1): 34, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020377

ABSTRACT

Monitoring the use of antimicrobials and the emergence of resistance in animals and people is important for the control of antimicrobial resistance, and for establishing sustainable and effective disease management practices. In this study, we used Enterococcus spp. and Escherichia coli as indicator species to investigate antimicrobial susceptibility patterns and how these change over time, on ten Swedish pig farms. Indoor environmental sock sampling was performed once a month during the entire production cycle of one batch of pigs on each farm, resulting in 60 samples collected in total. Selective culture for E. coli and Enterococcus spp. resulted in 122 isolates of E. coli, 74 isolates of E. faecium, but no isolates of E. faecalis. Microdilution was used to determine minimum inhibitory concentrations for twelve antimicrobial substances in E. coli and fifteen substances in E. faecium. The overall prevalence of resistance was low. Among the E. coli isolates, the proportions non-wild type (resistant, NWT) isolates were as follows: azithromycin and amikacin 1% (n = 1), trimethoprim and sulfamethoxazole 2% (n = 3), ampicillin 6% (n = 7) and tetracycline 9% (n = 11). Among the E. faecium isolates, the NWT proportions were: teicoplanin, linezolid and gentamicin 1% (n = 1), daptomycin 3% (n = 2), erythromycin 26% (n = 19), tetracycline 27% (n = 20), quinupristin/dalfopristin 58% (n = 42). The resistance patterns differed between the farms, likely due to different antimicrobial use, biosecurity measures and source of the animals. The NWT prevalence among E. coli decreased over time, whereas no similar trend could be observed in E. faecium. The results of the current study illustrate the complex factors affecting the antimicrobial resistance patterns observed on each farm, indicating that specific practices and risk factors have an impact on the prevalence and type of antimicrobial resistance. Further studies of the farm environments in combination with antimicrobial use and other risk factor data are needed to elucidate the multifaceted drivers of antimicrobial resistance development on livestock farms.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterococcus faecium , Escherichia coli , Microbial Sensitivity Tests , Swine Diseases , Animals , Enterococcus faecium/drug effects , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Swine , Anti-Bacterial Agents/pharmacology , Sweden/epidemiology , Microbial Sensitivity Tests/veterinary , Swine Diseases/microbiology , Swine Diseases/epidemiology , Farms , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Prevalence , Animal Husbandry/methods
5.
Vet Med Sci ; 10(5): e1479, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39042563

ABSTRACT

BACKGROUND: Many clinicians prescribe antifungal agents to treat canine otitis externa (OE). However, studies evaluating the antifungal effects of N-acetylcysteine (NAC) and its combinations are limited. HYPOTHESIS/OBJECTIVES: The aim of this study was to evaluate the antifungal effects of NAC alone and in combination with other antifungal agents against Malassezia pachydermatis isolated from canine OE. MATERIALS AND METHODS: M. pachydermatis samples were collected from 13 dogs with OE. The final concentration of the inoculum suspensions of M. pachydermatis was 1-5 × 106 colony forming units/mL. The concentrations of the test compounds ketoconazole (KTZ), terbinafine (TER), nystatin (NYS) and NAC were 0.02-300 µg/mL, 0.04-80 µg/mL, 0.16-40 µg/mL and 1.25-20 mg/mL, respectively. The minimum inhibitory concentration (MIC) was measured to evaluate the susceptibility of the M. pachydermatis to KTZ, TER, NYS and NAC. The checkerboard testing method and fractional inhibitory concentration index were used to evaluate the effect of NAC in combination with KTZ, TER and NYS against M. pachydermatis. RESULTS: The MIC90 values of M. pachydermatis were 4.6875-9.375 µg/mL, 1.25 µg/mL, 5-10 µg/mL and 10 mg/mL for KTZ, TER, NYS and NAC, respectively. The synergistic effects of KTZ, TER and NYS with NAC were identified in 0/13, 2/13 and 0/13 isolates, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: NAC had an antifungal effect against M. pachydermatis but did not exert synergistic effects when used with KTZ, TER and NYS. Thus, the use of NAC alone as a topical solution could be considered an effective treatment option for canine OE involving M. pachydermatis.


Subject(s)
Acetylcysteine , Antifungal Agents , Dog Diseases , Drug Therapy, Combination , Malassezia , Microbial Sensitivity Tests , Otitis Externa , Animals , Dogs , Malassezia/drug effects , Otitis Externa/veterinary , Otitis Externa/drug therapy , Otitis Externa/microbiology , Dog Diseases/drug therapy , Dog Diseases/microbiology , Antifungal Agents/pharmacology , Acetylcysteine/pharmacology , Drug Therapy, Combination/veterinary , Microbial Sensitivity Tests/veterinary , Male , Female
6.
BMC Vet Res ; 20(1): 300, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971814

ABSTRACT

BACKGROUND: Clostridium perfringens (C. perfringens) is an important zoonotic microorganism that can cause animal and human infections, however information about the prevalence status in wild birds of this pathogenic bacterium is currently limited. RESULT: In this study, 57 strains of C. perfringens were isolated from 328 fecal samples of wild birds. All the isolates were identified as type A and 70.18% of the isolates carried the cpb2 gene. Antimicrobial susceptibility testing showed that and 22.80% of the isolates were classified as multidrug-resistant strains. The MLST analysis of the 57 isolates from wild birds was categorized into 55 different sequence types (STs) and clustered into eight clonal complexes (CCs) with an average of 20.1 alleles and the Simpson Diversity index (Ds) of 0.9812, and revealed a high level of genetic diversity within the C. perfringens populations. Interestingly, the isolates from swan goose were clustered in the same CC while isolates from other bird species were more scattered suggesting that a potential difference in genetic diversity among the C. perfringens populations associated with different bird species. CONCLUSION: C. perfringens exhibits a wide range of host adaptations, varying degrees of antimicrobial resistance, and a high degree of genetic diversity in wild birds. Understanding the prevalence, toxin type, antimicrobial resistance, and genetic diversity of C. perfringens in wildlife populations is essential for developing effective strategies for disease control and management.


Subject(s)
Animals, Wild , Birds , Clostridium Infections , Clostridium perfringens , Drug Resistance, Multiple, Bacterial , Genetic Variation , Clostridium perfringens/genetics , Clostridium perfringens/isolation & purification , Clostridium perfringens/drug effects , Animals , Birds/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Clostridium Infections/veterinary , Clostridium Infections/microbiology , Clostridium Infections/epidemiology , Animals, Wild/microbiology , Feces/microbiology , Multilocus Sequence Typing/veterinary , Anti-Bacterial Agents/pharmacology , Bird Diseases/microbiology , Bird Diseases/epidemiology , Microbial Sensitivity Tests/veterinary
7.
BMC Vet Res ; 20(1): 274, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38918815

ABSTRACT

BACKGROUND: Acinetobacter lwoffii (A. lwoffii) is a Gram-negative bacteria common in the environment, and it is the normal flora in human respiratory and digestive tracts. The bacteria is a zoonotic and opportunistic pathogen that causes various infections, including nosocomial infections. The aim of this study was to identify A. lwoffii strains isolated from bovine milk with subclinical mastitis in China and get a better understanding of its antimicrobial susceptibility and resistance profile. This is the first study to analyze the drug resistance spectrum and corresponding mechanisms of A. lwoffii isolated in raw milk. RESULTS: Four A. lwoffii strains were isolated by PCR method. Genetic evolution analysis using the neighbor-joining method showed that the four strains had a high homology with Acinetobacter lwoffii. The strains were resistant to several antibiotics and carried 17 drug-resistance genes across them. Specifically, among 23 antibiotics, the strains were completely susceptible to 6 antibiotics, including doxycycline, erythromycin, polymyxin, clindamycin, imipenem, and meropenem. In addition, the strains showed variable resistance patterns. A total of 17 resistance genes, including plasmid-mediated resistance genes, were detected across the four strains. These genes mediated resistance to 5 classes of antimicrobials, including beta-lactam, aminoglycosides, fluoroquinolones, tetracycline, sulfonamides, and chloramphenicol. CONCLUSION: These findings indicated that multi-drug resistant Acinetobacter lwoffii strains exist in raw milk of bovine with subclinical mastitis. Acinetobacter lwoffii are widespread in natural environmental samples, including water, soil, bathtub, soap box, skin, pharynx, conjunctiva, saliva, gastrointestinal tract, and vaginal secretions. The strains carry resistance genes in mobile genetic elements to enhance the spread of these genes. Therefore, more attention should be paid to epidemiological surveillance and drug resistant A. lwoffii.


Subject(s)
Acinetobacter , Anti-Bacterial Agents , Mastitis, Bovine , Milk , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/epidemiology , Female , Acinetobacter/isolation & purification , Acinetobacter/genetics , Acinetobacter/drug effects , Milk/microbiology , China/epidemiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/veterinary , Acinetobacter Infections/veterinary , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics
8.
Open Vet J ; 14(5): 1117-1129, 2024 May.
Article in English | MEDLINE | ID: mdl-38938436

ABSTRACT

Background: Salmonella infections are considered the most common foodborne pathogens responsible for zoonotic infections and food poisoning in humans and animal species such as birds. Antimicrobial resistance is considered a global anxiety because it causes human public health repercussions, as well as leads to an increase in animal morbidity and death. Aim: The aims of this study are the isolation and identification of Salmonella enterica, as well as to investigate the antimicrobial susceptibility test (AST) and the molecular characteristics using polymerase chain reaction (PCR) and sequences for isolates from chicken products (eggs, livers, and minced meat) and human in the Wasit Governorate of Iraq. Methods: A total of 300 samples (150 chicken product samples including eggs, livers, and minced meat, and 150 human fecal samples) were collected from the Wasit governorate of Iraq from January to December 2022. The bacterial isolation was done according to recommendations of ISO 6579 standard and the Global Foodborne Infections Network laboratory protocol. Serotyping test and AST were done by using 19 antibiotic agents according to the recommendations of the Clinical and Laboratory Standards Institute, 2022 by using disc diffusion susceptibility test and Vitik 2 test. Finally, the suspected isolates were confirmed using the conventional PCR method and sequencing for a unique rRNA gene. Results: The results showed that the isolation percentage of S. enterica in chicken products was 8.66% (12% eggs, 6% livers, and 8% minced meat), while in humans it was 4.6%. Also, showed 100% of Salmonella typhi in humans. While, in chicken eggs S. typhi, Salmonella typhimurium, and Salmonella enteritidis were 50%, 33.33%, and 16.66%, respectively. Also, showed 100% of S. typhimurium in both livers and minced meat. The AST in human isolates showed resistance to Ampicillin, Cefotaxime, Ceftazidime, Cefepime, Amikacin, Gentamicin, Ciprofloxacin, Norfloxacin, and Ceftriaxone, while no resistance to Amoxicillin, Pipracillin, Ertapenem, Imipenem, Meropenem, Fosfomycin, Nitrofurantoin, Trimethoprim, Azithromycin, and Tetracycline. In chicken products, isolates were resistant with different percentages to Amikacin, Gentamicin, Tetracycline, Ciprofloxacin, Norfloxacin, Nitrofurantoin, Ampicillin, Cefotaxime, Ceftazidime, Cefepime, and Trimethoprim; while no resistance to Amoxicillin, Pipracillin, Ertapenem, Imipenem, Meropenem, Fosfomycin, Azithromycin, and Ceftriaxone. Sequencing by using rRNA gene was done for four PCR products. Conclusion: This study showed the presence of genetic mutations for S. enterica which led to variations in the molecular characteristics, and antimicrobial drug resistance of S. enterica isolated from chicken products and humans.


Subject(s)
Anti-Bacterial Agents , Chickens , Drug Resistance, Bacterial , Salmonella enterica , Animals , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , Salmonella enterica/genetics , Humans , Chickens/microbiology , Iraq/epidemiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/veterinary , Meat/microbiology , Feces/microbiology , Poultry Products/microbiology , Salmonella Infections/microbiology , Salmonella Infections/epidemiology
9.
Vet J ; 305: 106153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821205

ABSTRACT

Staphylococcus spp. are growing pathogens in humans and companion animals. The emergence of multidrug-resistant bacterial infections, such as methicillin-resistant Staphylococcus-associated infections, due to zoonotic transmission, is a major public health concern. Domestic animals, such as dogs and cats, are possible reservoirs of multi-resistant bacterial species, which makes it relevant to monitor them due to their proximity to humans. However, there is a lack of information on the real scenario in Europe, especially in Portugal, particularly for animal infections caused by Staphylococcus spp. Therefore, this study aimed to investigate the antimicrobial resistance profile of Staphylococcus spp. isolated from cats and dogs diagnosed with infection in Northern Portugal. During 2021-2023, 96 Staphylococcus isolates from dogs and cats with symptoms of bacterial infection, including animals being treated in veterinary clinics/hospitals and cadavers submitted for necropsy at INIAV were included in the study collection. Of the 96 isolates, 63 were from dogs and 33 were Staphylococcus spp. from cats, most of which were isolated from ear (57% and 18%, respectively), skin (19 % and 27 %, respectively) and respiratory tract infections (6 % and 27 %, respectively). Among all the isolates, 12 different Staphylococcus spp. were identified, with Staphylococcus pseudintermedius being the most identified (61 % from dogs and 30 % from cats). It is noteworthy that 36 % of the isolates were multi-drug resistant and 25 % of the isolates showed a methicillin-resistant phenotype, with the mecA gene having been identified in all these isolates. This study highlights a high occurrence of multidrug-resistant Staphylococcus spp. in companion animals in Northern Portugal. This underlines the potential for cats and dogs to act as reservoirs of antimicrobial resistance, that can be transmitted to humans, posing a serious threat to public health.


Subject(s)
Anti-Bacterial Agents , Cat Diseases , Dog Diseases , Pets , Staphylococcal Infections , Staphylococcus , Animals , Cats , Dogs , Portugal/epidemiology , Staphylococcus/drug effects , Staphylococcus/genetics , Staphylococcus/isolation & purification , Cat Diseases/microbiology , Cat Diseases/epidemiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Dog Diseases/microbiology , Dog Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Pets/microbiology , Microbial Sensitivity Tests/veterinary , Drug Resistance, Multiple, Bacterial , Drug Resistance, Bacterial
10.
BMC Vet Res ; 20(1): 230, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802876

ABSTRACT

BACKGROUND: Piggery production is highly constrained by diseases, with diarrhoea in piglets being a major cause of economic losses to smallholder farmers in Uganda. Enterotoxigenic Escherichia coli (ETEC) is thought to be one of the major etiologies of this diarrhoea. A cross-sectional study was carried out in two high pig-producing districts of Uganda with the aim of determining the significance of piglet diarrhoea and the pathogenic determinants of causative E. coli. METHODOLOGY: A total of 40 households with piglets were visited in each district for a questionnaire survey and faecal sample collection. The questionnaire-based data collected included; demographic data and pig management practices. E. coli were isolated from diarrheic (43) and non-diarrheic (172) piglets and were subjected to antimicrobial susceptibility testing against nine commonly used antimicrobial agents. The E. coli isolates were further screened for the presence of 11 enterotoxin and fimbrial virulence gene markers using multiplex polymerase chain reaction. Data entry, cleaning, verification and descriptive statistics were performed using Microsoft Excel. Statistical analysis to determine any association between the presence of virulence markers and diarrhea in piglets was done using SPSS software (Version 23), with a p value of less than 0.05 taken as a statistically significant association. RESULTS: Escherichia coli were recovered from 81.4% (175/215) of the faecal samples. All the isolates were resistant to erythromycin, and most showed high resistance to tetracycline (71%), ampicillin (49%), and trimethoprim sulfamethoxazole (45%). More than half of the isolates (58.3%) carried at least one of the 11 virulence gene markers tested. EAST1 was the most prevalent virulence marker detected (35.4%), followed by STb (14.8%). Expression of more than one virulence gene marker was observed in 6.2% of the isolates, with the EAST1/STa combination being the most prevalent. Three adhesins; F17 (0.6%), F18 (6.3%) and AIDA-I (0.6%) were detected, with F18 being the most encountered. There was a statistically significant association between the occurrence of piglet diarrhoea and the presence of the AIDA-1 (p value = 0.037) or EAST1 (p value = 0.011) gene marker among the isolates. CONCLUSION AND RECOMMENDATION: The level of antimicrobial resistance among E. coli isolates expressing virulence markers were high in the sampled districts. The study established a significant association between presence of EAST1 and AIDA-I virulence markers and piglet diarrhea. Further studies should be carried out to elucidate the main adhesins borne by these organisms in Uganda and the actual role played by EAST1 in the pathogenesis of the infection since most isolates expressed this gene.


Subject(s)
Diarrhea , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Swine Diseases , Animals , Uganda/epidemiology , Swine , Swine Diseases/microbiology , Swine Diseases/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Diarrhea/veterinary , Diarrhea/microbiology , Cross-Sectional Studies , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/isolation & purification , Virulence/genetics , Feces/microbiology , Animals, Newborn , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Weaning , Microbial Sensitivity Tests/veterinary
11.
Open Vet J ; 14(4): 973-979, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38808290

ABSTRACT

Background: Escherichia coli infection is one of the major diarrheal diseases resulting in the loss of pigs at a young age. Aim: This research investigated the antimicrobial activity of Caesalpinia sappan wood extract against E. coli infection as an antibiotic replacement. Methods: E. coli was cultured from diarrheal piglets and then used to find the minimal inhibition concentration (MIC). Caesalpinia sappan wood extract (500 mg/kg) was used for the treatment of diarrheal piglets compared to antibiotics (enrofloxacin 5 mg/kg) by oral administration. Another three groups of diarrheal piglets were used supplemented feed with 1% and 2% extract compared with commercial feed. Subsequently, E. coli enumeration, fecal shape, fecal color, and growth rate were recorded from day 1 to 7. Results: Based on the results, C. sappan wood extract could inhibit E. coli growth at a MIC of 16-34 mg/ml. The number of colonies did not significantly differ between C. sappan wood extract and enrofloxacin treatment groups. A supplemented feed with 1% and 2% C. sappan wood extract could improve the fecal shape and fecal score compared to the control group, albeit only in suckling pigs. There were significant differences from the control group on days 4, 5, 6, and 7 (p < 0.05). However, the average daily gain did not significantly differ among the three groups. Conclusion: The results indicate that C. sappan wood extract could improve diarrheal signs in suckling pigs and can be used as a replacement for antibiotics for organic pig production.


Subject(s)
Anti-Bacterial Agents , Caesalpinia , Escherichia coli Infections , Escherichia coli , Plant Extracts , Swine Diseases , Animals , Caesalpinia/chemistry , Swine Diseases/drug therapy , Swine Diseases/microbiology , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Swine , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Escherichia coli/drug effects , Microbial Sensitivity Tests/veterinary , Diarrhea/veterinary , Diarrhea/drug therapy , Diarrhea/microbiology , Wood/chemistry , Feces/microbiology
12.
Reprod Domest Anim ; 59(5): e14615, 2024 May.
Article in English | MEDLINE | ID: mdl-38798181

ABSTRACT

Present study was designed to evaluate the role of virulence factor genes (papG, cnf1 and hylA) in the pathogenesis of canine pyometra. Antimicrobial susceptibility test and detection of virulence genes were performed Escherichia coli (E. coli) detected in uterine swab samples. Animals were divided into two groups based on the presence (VF+, n:14) or absence (VF-, n:7) of the virulence factor genes papG, cnf1 and hylA. Blood and tissue glutathione peroxidase activity, uterine histopathologic analysis and AQP3, ESR1, PGR, OXTR gene expressions were determined in both groups. Statistical analyses were performed using Stata version 15.1. All E. coli isolates were susceptible to amikacin, whereas resistant to ampicillin, amoxicillin/clavulanic acid and lincomycin. None of the isolates were susceptible to cefotaxime. E. coli isolates had at least one virulence gene. The most prevalent gene was fimH (100%), followed by fyuA (95.8%), usp (83.3%), sfa (75%), cnf1 and hlyA (70.8%) genes. Blood GPx activity was greater in VF+ animals. On the other hand, uterine tissue GPx activity was lower in VF+ group compared to the control group. Expression levels of AQP3 were upregulated more than fivefold in VF-dogs compared to the control group. In addition, AQP3 expression levels were found approximately threefold higher in VF (-) than VF (+) group (p < .05). Varying degree of inflammation noted for all animals with pyometra, but the presence of bacteria noted only in VF+ animals. In conclusion, the presence of virulence factor genes does not play a role in the histopathological degree of inflammation, the presence of bacteria was found to vary. Serum GPx activity increased in VF+ animals. While the hormone receptor expressions were similar, AQP expression was upregulated in the absence of virulence factor genes.


Subject(s)
Aquaporin 3 , Dog Diseases , Escherichia coli , Glutathione Peroxidase , Pyometra , Uterus , Virulence Factors , Animals , Female , Virulence Factors/genetics , Virulence Factors/metabolism , Aquaporin 3/genetics , Aquaporin 3/metabolism , Dogs , Pyometra/veterinary , Pyometra/microbiology , Pyometra/pathology , Dog Diseases/microbiology , Uterus/pathology , Uterus/microbiology , Uterus/metabolism , Escherichia coli/genetics , Escherichia coli/pathogenicity , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Anti-Bacterial Agents/pharmacology , Down-Regulation , Microbial Sensitivity Tests/veterinary
13.
Trop Anim Health Prod ; 56(5): 165, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753181

ABSTRACT

In herds of dairy goats, mastitis represents a major health and economic problem due to the multiresistance of some microorganisms. In this context, the study aimed to determine the potential of antimicrobial action and antibiofilm of the crude ethanolic extract (CEE) of Hymenaea martiana (jatobá) leaves, as well its fractions, on Staphylococcus sp isolated from bacterial cultures of goat milk. In vitro assays were performed to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC), as well as tests of the effect of CEE on biofilm formation and quantification and the consolidated biofilm. The experimental infection was performed in two groups, each consisting of five goat. Experimental Group 1 (G1) consisted of five females treated with an intramammary ointment based on the CEE, at a concentration of 5%. Experimental Group 2 (G2) consisted of five females treated with a commercial intramammary ointment based on gentamicin, once a day, for six consecutive days. The diagnosis of mastitis was performed using a bacterial culture. The dichloromethane fraction of CEE was the one with the lowest concentrations of MBC, ranging from 195.3 to 781 µg / ml. Concerning to the biofilm, interference of the tested extract was observed for two isolates. In the present study, the ointment prepared from H. martiana extract (jatobá) was able to reduce bacterial infection in mammary glands experimentally infected with S. aureus. Antibacterial activity may be related to the classes of secondary metabolites found.


Subject(s)
Anti-Bacterial Agents , Biofilms , Goat Diseases , Goats , Mastitis , Microbial Sensitivity Tests , Plant Extracts , Staphylococcal Infections , Staphylococcus aureus , Animals , Female , Goat Diseases/drug therapy , Goat Diseases/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Mastitis/veterinary , Mastitis/drug therapy , Mastitis/microbiology , Microbial Sensitivity Tests/veterinary , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Biofilms/drug effects , Milk/microbiology , Plant Leaves/chemistry
14.
Br Poult Sci ; 65(4): 415-423, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38717314

ABSTRACT

1. Epidemiological surveillance of Salmonella spp. serves as a primary tool for maintaining the health of poultry flocks. Characterising circulating serotypes is crucial for implementing control and prevention measures. This study conducted phenotypic and molecular characterisation of S. enterica Pullorum, S. enterica Heidelberg, and S. enterica Corvalis isolated from broiler chickens during slaughtering.2. All strains were susceptible to gentamicin, neomycin and norfloxacin. However, resistance rates exceeded 50% for ciprofloxacin and tiamulin, irrespective of the serotype. Approximately 64% of strains were classified as multidrug-resistant, with S. enterica Heidelberg strains exhibiting significantly higher overall resistance. The isolates demonstrated the ability to adhere and produce biofilm at a minimum of three temperatures, with S. enterica Pullorum capable of biofilm production at all temperatures encountered during poultry rearing.3. Each strain possessed between two and seven different virulence-associated genes. Genetic similarity, as indicated by pulsed field gel electrophoresis, exceeded 90% for all three serotypes and strains were classified in the R5 ribotype by PCR, regardless of serotype. Sequencing revealed high similarity among all strains, with homology ranging from 99.61 to 100% and all were classified to a single cluster.4. The results suggested a clonal relationship among the strains, indicating the possible circulation of a unique clonal group of S. enterica Pullorum in the southern region of Brazil.


Subject(s)
Anti-Bacterial Agents , Chickens , Poultry Diseases , Salmonella Infections, Animal , Salmonella enterica , Animals , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/epidemiology , Chickens/microbiology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Salmonella enterica/genetics , Salmonella enterica/physiology , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Biofilms , Phenotype , Virulence , Salmonella/genetics , Salmonella/physiology , Salmonella/drug effects , Salmonella/isolation & purification , Microbial Sensitivity Tests/veterinary , Electrophoresis, Gel, Pulsed-Field/veterinary , Serogroup
15.
J Vet Diagn Invest ; 36(3): 393-399, 2024 May.
Article in English | MEDLINE | ID: mdl-38566327

ABSTRACT

Antimicrobial resistance (AMR) in pathogens important to aquatic animal health is of increasing concern but vastly understudied. Antimicrobial therapy is used to both treat and prevent bacterial disease in fish and is critical for a viable aquaculture industry and for maintenance of wild fish populations. Unfortunately, phenotypic antimicrobial susceptibility testing is technically difficult for bacteria recovered from aquatic animal hosts resulting in challenges in resistance monitoring using traditional methods. Whole-genome sequencing provides an appealing methodology for investigation of putative resistance. As part of the ongoing efforts of the FDA CVM Vet-LIRN to monitor AMR, source laboratories cultured and preliminarily identified pathogenic bacteria isolated from various fish species collected in 2019 from across the United States. Sixty-one bacterial isolates were evaluated using whole-genome sequencing. We present here the assembled draft genomes, AMR genes, predicted resistance phenotypes, and virulence factors of the 61 isolates and discuss concurrence of the identifications made by source laboratories using matrix-assisted laser desorption/time-of-flight mass spectrometry.


Subject(s)
Anti-Bacterial Agents , Bacteria , Drug Resistance, Bacterial , Fish Diseases , Genome, Bacterial , Animals , Drug Resistance, Bacterial/genetics , Fish Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Fishes/microbiology , Whole Genome Sequencing , Microbial Sensitivity Tests/veterinary
16.
J Vet Diagn Invest ; 36(4): 529-537, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38571400

ABSTRACT

The spread of antimicrobial-resistant bacteria is a significant concern, as it can lead to increased morbidity and mortality in both humans and animals. Whole-genome sequencing (WGS) is a powerful tool that can be used to conduct a comprehensive analysis of the genetic basis of antimicrobial resistance (AMR). We compared the phenotypic and genotypic AMR profiles of 97 Salmonella isolates derived from chicken and turkey diagnostic samples. We focused AMR analysis on 5 antimicrobial classes: aminoglycoside, beta-lactam, phenicol, tetracycline, and trimethoprim. The overall sensitivity and specificity of WGS in predicting phenotypic antimicrobial resistance in the Salmonella isolates were 93.4% and 99.8%, respectively. There were 16 disagreement instances, including 15 that were phenotypically resistant but genotypically susceptible; the other instance involved phenotypic susceptibility but genotypic resistance. Of the isolates examined, 67 of 97 (69%) carried at least 1 resistance gene, with 1 isolate carrying as many as 12 resistance genes. Of the 31 AMR genes analyzed, 16 were identified as aminoglycoside-resistance genes, followed by 4 beta-lactam-resistance, 3 tetracycline-resistance, 2 sulfonamide-resistance, and 1 each of fosfomycin-, quinolone-, phenicol-, trimethoprim-, bleomycin-, and colistin-resistance genes. Most of the resistance genes found were located on plasmids.


Subject(s)
Anti-Bacterial Agents , Chickens , Genotype , Poultry Diseases , Salmonella Infections, Animal , Salmonella enterica , Turkeys , Animals , Poultry Diseases/microbiology , Poultry Diseases/diagnosis , Anti-Bacterial Agents/pharmacology , Salmonella enterica/drug effects , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/diagnosis , Turkeys/microbiology , Chickens/microbiology , Drug Resistance, Bacterial/genetics , Whole Genome Sequencing/veterinary , Microbial Sensitivity Tests/veterinary , Phenotype
17.
Aust Vet J ; 102(7): 362-368, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38654674

ABSTRACT

Urinary tract infections are a common diagnosis in dogs presenting to veterinary practice. Veterinarians often treat suspected infections empirically, either in the absence of culture and susceptibility testing results or whilst waiting for them. This study aimed to identify the bacteria most frequently isolated from canine urinary samples and their antimicrobial susceptibility patterns in South East Queensland (SEQ) to help guide responsible empirical antimicrobial prescription by the veterinary community in this geographical location. Cumulative antibiograms were generated from the results of 1284 culture-positive urinary samples in SEQ, obtained from a commercial veterinary laboratory over a 5-year period. Escherichia coli was the most commonly isolated bacterial species (43%), followed by Staphylococcus spp. (23%), Proteus spp. (21%) and Enterococcus spp. (10%). Of the six most common isolates, 97% had susceptibility to at least one low-importance antimicrobial. Susceptibility to the low-importance and first-line antimicrobial recommendation, amoxicillin, was 81% for E. coli and 24% for Staphylococcus spp. Susceptibility of both E. coli and Staphylococcus spp. to medium-importance and commonly recommended empirical antimicrobials, trimethoprim sulphonamides and amoxicillin-clavulanic acid was ≥85% and >92% for high-importance antimicrobials enrofloxacin and ceftiofur. Of the E. coli and Staphylococcus spp. isolates, 8.8% and 4%, respectively, were considered multidrug resistant. There was no increase in resistance to antimicrobials detected over the study period. Susceptibilities suggest low- and medium-importance antimicrobials remain acceptable first-line empirical treatments. However, this should be continually assessed and updated using local surveillance data.


Subject(s)
Anti-Bacterial Agents , Bacteria, Aerobic , Dog Diseases , Microbial Sensitivity Tests , Urinary Tract Infections , Animals , Dogs , Queensland/epidemiology , Dog Diseases/microbiology , Dog Diseases/urine , Dog Diseases/drug therapy , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/veterinary , Urinary Tract Infections/veterinary , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Urinary Tract Infections/urine , Bacteria, Aerobic/drug effects , Bacteria, Aerobic/isolation & purification , Drug Resistance, Bacterial
18.
J Avian Med Surg ; 38(1): 15-20, 2024 04.
Article in English | MEDLINE | ID: mdl-38686884

ABSTRACT

Veterinary hospitals house patient populations with diverse infectious statuses, microbiota, and histories of prior antibiotic therapy. Choanal swabs are commonly used for assessing the upper respiratory tract of birds for bacterial disease, with the samples submitted for cytologic testing and/or culture and antimicrobial sensitivity testing. The aim of this retrospective study was to identify and quantify bacteria isolated from choanal swabs collected from psittacine patients at a veterinary teaching hospital in Mexico City, Mexico. Data regarding bacterial isolates from choanal swabs were obtained from the medical records of companion psittacines suspected of upper respiratory bacterial disease that presented between November 2015 and December 2022. A total of 47.8% (175 of 366) of the bacterial isolates were from specimens obtained from red-lored Amazons (Amazona autumnalis). Gram-negative bacteria predominated, with 27 different genera identified. Klebsiella, Staphylococcus, and Escherichia were the most frequently isolated genera. A total of 90.4% (331 of 366) of the isolates were resistant to at least 1 antibiotic tested in the sensitivity panel, and a single Klebsiella isolate was resistant to 13 different antibiotics. Gentamicin had a high percentage of efficacy (79.5%; 182 of 229) against the bacterial isolates, whereas isolates tested against sulfonamide-trimethoprim (46.7%, 98 of 210), streptomycin (43.8%; 88 of 201), and clindamycin (12.9%; 15 of 116) had susceptibilities <50%. This is the first study to report common bacterial isolates and their antimicrobial susceptibility patterns from choanal swab samples collected from companion psittacines suspected of upper respiratory disease in Mexico. Clinicians can use the information presented in this study as a guide for therapeutic decision-making when managing upper respiratory bacterial infections in companion psittacine patients.


Subject(s)
Anti-Bacterial Agents , Bird Diseases , Hospitals, Animal , Microbial Sensitivity Tests , Psittaciformes , Retrospective Studies , Animals , Anti-Bacterial Agents/pharmacology , Bird Diseases/microbiology , Bird Diseases/drug therapy , Microbial Sensitivity Tests/veterinary , Drug Resistance, Bacterial , Mexico , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/classification
19.
Acta Vet Hung ; 72(1): 11-20, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38578700

ABSTRACT

Proteus mirabilis is a common enteric bacterium in livestock and humans. The increase and spread of the antimicrobial resistant P. mirabilis is considered alarming worldwide. Transmission mainly occurs through consumption of contaminated poultry products. We investigated antimicrobial resistance (AMR) and virulence markers in broiler chicken-originated P. mirabilis isolates from 380 fecal samples. Phenotypic AMR test was performed against seventeen different antimicrobials. Genotypic AMR test was performed to detect sixteen different AMR genes. The samples were also tested for the presence of eight different virulence genes and biofilm formation. P. mirabilis was isolated in 11% of the samples, with significantly high multidrug-resistant (MDR) prevalence (63%). All isolates were resistant to tetracycline (100%). The combined disc method indicated that all isolates were of extended-spectrum beta-lactamase (ESBL) producers, which was compatible with the high blaTEM prevalence (95%). This was associated with blaTEM being responsible for more than 80% of ampicillin resistance in enteric pathogens. The absence of phenotypically carbapenem-resistant isolates was compatible with the very low prevalences of blaOXA (2%) and blaNDM (0%). All isolates were positive for pmfA, atfA, hpmA, and zapA (100%) virulence genes, while biofilm formation rate (85%) indicated high adherence abilities of the isolates.


Subject(s)
Anti-Bacterial Agents , Proteus mirabilis , Humans , Animals , Anti-Bacterial Agents/pharmacology , Virulence , Proteus mirabilis/genetics , Chickens , beta-Lactamases/genetics , Drug Resistance, Bacterial , Microbial Sensitivity Tests/veterinary
20.
Open Vet J ; 14(3): 759-768, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38682147

ABSTRACT

Background: Poultry is one of the most prominent sources of Campylobacter jejuni, which is also a major means of transmission to people. Campylobacter jejuni contamination in chicken meat comes from chicken feces because it naturally exists in the intestines of chickens. Aim: The purpose of this study is to identify the antibiotic resistance patterns and genes of C. jejuni, which was found in chickens in Pasuruan, Indonesia. Methods: The samples used in this study were 200 contents of the small intestine of broiler chickens from 40 farms in Pasuruan Regency. The enriched sample was streaked on the selective media of modified charcoal cefoperazone deoxycholate agar containing the CCDA selective supplement. Antimicrobial susceptibility test utilizing the Kirby-Bauer diffusion test method in accordance with Clinical and Laboratory Standards Institute standards. The polymerase chain reaction (PCR) method was used to detect the (hipO), which encodes the C. jejuni strain, fluoroquinolone resistance (gyrA), beta-lactam resistance (blaOXA-61), and tetracycline resistance (tetO) genes. Results: The findings revealed a 14% (28/200) prevalence of C. jejuni in the small intestine of broiler chickens. These isolates showed high resistance to enrofloxacin (92.9%). All isolates (100%) were susceptible to amoxicillin-clavulanate. The PCR results showed all C. jejuni isolates (100%) detected the gyrA gene, 96.4% detected the blaOXA-61 gene, and 50% detected the tetO gene. Conclusion: The findings of antimicrobial resistance at a high level from the small intestine of broiler chickens illustrate the potential threat to human health. To lessen the effects now and in the future, coordinated and suitable action is needed, as well as steps to guarantee the poultry industry's economic survival and public health insurance.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter jejuni , Chickens , Drug Resistance, Bacterial , Poultry Diseases , Animals , Campylobacter jejuni/drug effects , Campylobacter jejuni/genetics , Campylobacter jejuni/isolation & purification , Chickens/microbiology , Indonesia/epidemiology , Campylobacter Infections/veterinary , Campylobacter Infections/microbiology , Campylobacter Infections/epidemiology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL