Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.301
Filter
1.
Nanotheranostics ; 8(4): 427-441, 2024.
Article in English | MEDLINE | ID: mdl-38961889

ABSTRACT

Background: The blood-brain barrier (BBB) is a major bottleneck in delivering therapeutics to the brain. Treatment strategies to transiently open this barrier include focused ultrasound combined with intravenously injected microbubbles (FUS+MB) and targeting of molecules that regulate BBB permeability. Methods: Here, we investigated BBB opening mediated by the claudin-5 binder cCPEm (a microorganismal toxin in a truncated form) and FUS+MB at a centre frequency of 1 MHz, assessing dextran uptake, broadband emission, and endogenous immunoglobulin G (IgG) extravasation. Results: FUS+MB-induced BBB opening was detectable at a pressure ≥0.35 MPa when assessed for leakage of 10 and 70 kDa dextran, and at ≥0.2 MPa for uptake of endogenous IgG. Treating mice with 20 mg/kg cCPEm failed to open the BBB, and pre-treatment with cCPEm followed by FUS+MB at 0.2 and 0.3 MPa did not overtly increase BBB opening compared to FUS+MB alone. Using passive cavitation detection (PCD), we found that broadband emission correlated with the peak negative pressure (PNP) and dextran leakage, indicating the possibility of using broadband emission for developing a feedback controller to monitor BBB opening. Conclusions: Together, our study highlights the challenges in developing combinatorial approaches to open the BBB and presents an additional IgG-based histological detection method for BBB opening.


Subject(s)
Blood-Brain Barrier , Claudin-5 , Microbubbles , Animals , Blood-Brain Barrier/metabolism , Mice , Claudin-5/metabolism , Immunoglobulin G/metabolism , Ultrasonic Waves , Mice, Inbred C57BL , Dextrans/chemistry , Dextrans/pharmacokinetics
2.
Phys Med Biol ; 69(14)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38914104

ABSTRACT

Objective.Pulsed focused ultrasound (FUS) can deliver therapeutics to the brain by using intravenous microbubbles (MBs) to open the blood-brain barrier (BBB). MB emissions indicate treatment outcomes, like BBB opening (harmonics) and damage (broadband). Typically, a pulse repetition frequency (PRF) of 1 Hz is used, but the effect of PRF on MBs is not fully understood. We investigated the effect of PRF on MB activity and tracer delivery.Approach.The effect of PRF (0.125, 0.25, 0.5, 1, and 2 Hz) on MB activity was monitored through harmonic and wideband emissions during FUS sonications of the rat brain at 274.3 kHz. BBB opening was quantified through fluorescence imaging to estimate the concentration of Trypan Blue (TB) dye following a 75-pulse FUS exposure for PRFs of 1 and 0.25 Hz.Main results.At a fixed acoustic pressure, the percentage change in maximum harmonic amplitude compared to the control (PRF = 1 Hz) decreased with increasing PRF, with a median change of 73.8% at 0.125 Hz and -38.3% at 2 Hz. There was no difference in the pressure threshold for broadband emissions between PRFs of 0.25 and 1 Hz. PRF = 0.25 Hz, led to a 68.2% increase in the mean concentration of TB measured after FUS, with a 53.9% increase in the mean harmonic sum, compared with PRF = 1 Hz. Harmonic emissions-based control at PRF = 0.25 Hz yielded similar TB delivery, with less damage at histology, compared with 1 Hz.Significance.For a fixed number of FUS pulses, reducing the PRF was shown to increase the magnitude of harmonic emissions and TB delivery, but not the threshold for broadband emissions. While further research is necessary to understand the mechanisms involved, these results may be useful to improve clinical safety margins and sensitivity to detecting small harmonic signals from cavitating MBs.


Subject(s)
Blood-Brain Barrier , Drug Delivery Systems , Microbubbles , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/radiation effects , Animals , Rats , Ultrasonic Waves , Rats, Sprague-Dawley , Male , Sonication/methods
3.
ACS Appl Mater Interfaces ; 16(24): 30755-30765, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38847111

ABSTRACT

In recent years, enveloped micro-nanobubbles have garnered significant attention in research due to their commendable stability, biocompatibility, and other notable properties. Currently, the preparation methods of enveloped micro-nanobubbles have limitations such as complicated preparation process, large bubble size, wide distribution range, low yield, etc. There exists an urgent demand to devise a simple and efficient method for the preparation of enveloped micro-nanobubbles, ensuring both high concentration and a uniform particle size distribution. Magnetic lipid bubbles (MLBs) are a multifunctional type of enveloped micro-nanobubble combining magnetic nanoparticles with lipid-coated bubbles. In this study, MLBs are prepared simply and efficiently by a magneto internal heat bubble generation process based on the interfacial self-assembly of iron oxide nanoparticles induced by the thermogenic effect in an alternating magnetic field. The mean hydrodynamic diameter of the MLBs obtained was 384.9 ± 8.5 nm, with a polydispersity index (PDI) of 0.248 ± 0.021, a zeta potential of -30.5 ± 1.0 mV, and a concentration of (7.92 ± 0.46) × 109 bubbles/mL. Electron microscopy results show that the MLBs have a regular spherical stable core-shell structure. The superparamagnetic iron oxide nanoparticles (SPIONs) and phospholipid layers adsorbed around the spherical gas nuclei of the MLBs, leading the particles to demonstrate commendable superparamagnetic and magnetic properties. In addition, the effects of process parameters on the morphology of MLBs, including phospholipid concentration, phospholipid proportiona, current intensity, magnetothermal time, and SPION concentration, were investigated and discussed to achieve controlled preparation of MLBs. In vitro imaging results reveal that the higher the concentration of MLBs loaded with iron oxide nanoparticles, the better the in vitro ultrasound (US) imaging and magnetic resonance imaging (MRI) results. This study proves that the magneto internal heat bubble generation process is a simple and efficient technique for preparing MLBs with high concentration, regular structure, and commendable properties. These findings lay a robust foundation for the mass production and application of enveloped micro-nanobubbles, particularly in biomedical fields and other related domains.


Subject(s)
Phospholipids , Phospholipids/chemistry , Particle Size , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetite Nanoparticles/chemistry , Gases/chemistry , Microbubbles , Magnetic Fields
4.
Ultrasound Med Biol ; 50(8): 1099-1107, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851940

ABSTRACT

OBJECTIVE: Ultrasound-triggered bubble-mediated local drug delivery has shown potential to increase therapeutic efficacy and reduce systemic side effects, by loading drugs into the microbubble shell and triggering delivery of the payload on demand using ultrasound. Understanding the behavior of the microbubbles in response to ultrasound is crucial for efficient and controlled release. METHODS: In this work, the response of microbubbles with a coating consisting of poly(2-ethyl-butyl cyanoacrylate) (PEBCA) nanoparticles and denatured casein was characterized. High-speed recordings were taken of single microbubbles, in both bright field and fluorescence. RESULTS: The nanoparticle-loaded microbubbles show resonance behavior, but with a large variation in response, revealing a substantial interbubble variation in mechanical shell properties. The probability of shell rupture and the probability of nanoparticle release were found to strongly depend on microbubble size, and the most effective size was inversely proportional to the driving frequency. The probabilities of both rupture and release increased with increasing driving pressure amplitude. Rupture of the microbubble shell occurred after fewer cycles of ultrasound as the driving pressure amplitude or driving frequency was increased. CONCLUSION: The results highlight the importance of careful selection of the driving frequency, driving pressure amplitude and duration of ultrasound to achieve the most efficient ultrasound-triggered shell rupture and nanoparticle release of protein-and-nanoparticle-stabilized microbubbles.


Subject(s)
Drug Delivery Systems , Microbubbles , Nanoparticles , Nanoparticles/chemistry , Drug Delivery Systems/methods , Drug Liberation , Enbucrilate/chemistry , Caseins/chemistry , Proteins/chemistry
5.
Echocardiography ; 41(6): e15860, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38889076

ABSTRACT

PURPOSE: Persistent microvascular obstruction (MVO) after successful percutaneous coronary intervention (PCI) in acute ST segment elevation myocardial infarction (STEMI) has been well-described. MVO predicts lack of recovery of left ventricular function and increased mortality. Sonothrombolysis utilizing diagnostic ultrasound induced cavitation of commercially available microbubble contrast has been effective at reducing infarct size and improving left ventricular ejection fraction (LVEF) when performed both pre- and post-PCI. However, the effectiveness of post-PCI sonothrombolysis alone after successful PCI has not been demonstrated. METHODS: A prospective randomized controlled trial was performed in 50 consecutive consenting patients with anterior STEMI who underwent a continuous microbubble infusion immediately following successful PCI. Intermittent high mechanical index (MI) impulses were applied only in the sonthrombolysis group. Delayed enhancement magnetic resonance imaging (MRI) was performed at 48 h and again at 6-8 weeks to assess for differences in infarct size, LVEF, and MVO. RESULTS: There were no differences between groups in age, gender, and cardiovascular risk factors. Significant (> 2 segments) MVO following successful PCI was observed in 66% of patients. Although sonothrombolysis reduced the extent of MVO acutely, there were no differences in infarct size, LVEF, or extent of MVO by MRI at 48 h. Twenty-eight patients returned for a follow up MRI at 6-8 weeks. LVEF improved only in the sonothrombolysis group (∆LVEF 7.81 ± 4.57% with sonothrombolysis vs. 1.77 ± 7.02% for low MI only, p = .011). CONCLUSION: Post-PCI sonothrombolysis had minimal effect on reducing myocardial infarct size but improved left ventricular systolic function in patients with acute anterior wall STEMI.


Subject(s)
Percutaneous Coronary Intervention , Humans , Female , Male , Percutaneous Coronary Intervention/methods , Middle Aged , Prospective Studies , Treatment Outcome , ST Elevation Myocardial Infarction/physiopathology , ST Elevation Myocardial Infarction/surgery , Recovery of Function , Myocardial Infarction/physiopathology , Microbubbles , Echocardiography/methods , Microcirculation/physiology , Contrast Media , Aged
6.
Phys Med Biol ; 69(13)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38843808

ABSTRACT

Objective.Super-resolution ultrasonography offers the advantage of visualization of intricate microvasculature, which is crucial for disease diagnosis. Mapping of microvessels is possible by localizing microbubbles (MBs) that act as contrast agents and tracking their location. However, there are limitations such as the low detectability of MBs and the utilization of a diluted concentration of MBs, leading to the extension of the acquisition time. We aim to enhance the detectability of MBs to reduce the acquisition time of acoustic data necessary for mapping the microvessels.Approach.We propose utilizing phase patterned waves (PPWs) characterized by spatially patterned phase distributions in the incident beam to achieve this. In contrast to conventional ultrasound irradiation methods, this irradiation method alters bubble interactions, enhancing the oscillation response of MBs and generating more significant scattered waves from specific MBs. This enhances the detectability of MBs, thereby enabling the detection of MBs that were undetectable by the conventional method. The objective is to maximize the overall detection of bubbles by utilizing ultrasound imaging with additional PPWs, including the conventional method. In this paper, we apply PPWs to ultrasound imaging simulations considering bubble-bubble interactions to elucidate the characteristics of PPWs and demonstrate their efficacy by employing PPWs on MBs fixed in a phantom by the experiment.Main results.By utilizing two types of PPWs in addition to the conventional ultrasound irradiation method, we confirmed the detection of up to 93.3% more MBs compared to those detected using the conventional method alone.Significance.Ultrasound imaging using additional PPWs made it possible to increase the number of detected MBs, which is expected to improve the efficiency of bubble detection.


Subject(s)
Microbubbles , Phantoms, Imaging , Ultrasonography , Ultrasonography/methods , Contrast Media/chemistry
7.
Microb Cell Fact ; 23(1): 165, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840167

ABSTRACT

The increased use of biofuels in place of fossil fuels is one strategy to support the transition to net-zero carbon emissions, particularly in transport applications. However, expansion of the use of 1st generation crops as feedstocks is unsustainable due to the conflict with food use. The use of the lignocellulosic fractions from plants and/or co-products from food production including food wastes could satisfy the demand for biofuels without affecting the use of land and the availability of food, but organisms which can readily ferment all the carbohydrates present in these feedstocks often suffer from more severe bioethanol inhibition effects than yeast. This paper demonstrates the potential of hot gas microbubbles to strip ethanol from a thermophilic fermentation process using Parageobacillus thermoglucosidasius TM333, thereby reducing product inhibition and allowing production to continue beyond the nominal toxic ethanol concentrations of ≤ 2% v/v. Using an experimental rig in which cells were grown in fed-batch cultures on sugars derived from waste bread, and the broth continuously cycled through a purpose-built microbubble stripping unit, it was shown that non/low-inhibitory dissolved ethanol concentrations could be maintained throughout, despite reaching productivities equivalent to 4.7% v/v dissolved ethanol. Ethanol recovered in the condensate was at a concentration appropriate for dewatering to be cost effective and not prohibitively energy intensive. This suggests that hot microbubble stripping could be a valuable technology for the continuous production of bioethanol from fermentation processes which suffer from product inhibition before reaching economically viable titres, which is typical of most thermophilic ethanologenic bacteria.


Subject(s)
Biofuels , Ethanol , Fermentation , Ethanol/metabolism , Hot Temperature , Microbubbles , Gases/metabolism , Bacillaceae/metabolism
8.
Sci Rep ; 14(1): 8532, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830912

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) poses challenges due to late-stage diagnosis and limited treatment response, often attributed to the hypoxic tumor microenvironment (TME). Sonoporation, combining ultrasound and microbubbles, holds promise for enhancing therapy. However, additional preclinical research utilizing commercially available ultrasound equipment for PDAC treatment while delving into the TME's intricacies is necessary. This study investigated the potential of using a clinically available ultrasound system and phase 2-proven microbubbles to relieve tumor hypoxia and enhance the efficacy of chemotherapy and immunotherapy in a murine PDAC model. This approach enables early PDAC detection and blood-flow-sensitive Power-Doppler sonoporation in combination with chemotherapy. It significantly extended treated mice's median survival compared to chemotherapy alone. Mechanistically, this combination therapy enhanced tumor perfusion and substantially reduced tumor hypoxia (77% and 67%, 1- and 3-days post-treatment). Additionally, cluster of differentiation 8 (CD8) T-cell infiltration increased four-fold afterward. The combined treatment demonstrated a strengthening of the anti-programmed death-ligand 1(αPDL1) therapy against PDAC. Our study illustrates the feasibility of using a clinically available ultrasound system with NH-002 microbubbles for early tumor detection, alleviating hypoxic TME, and improving chemotherapy and immunotherapy. It suggests the development of an adjuvant theragnostic protocol incorporating Power-Doppler sonoporation for pancreatic tumor treatment.


Subject(s)
Carcinoma, Pancreatic Ductal , Immunotherapy , Microbubbles , Pancreatic Neoplasms , Tumor Microenvironment , Animals , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Mice , Immunotherapy/methods , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Tumor Microenvironment/drug effects , Cell Line, Tumor , Tumor Hypoxia/drug effects , Combined Modality Therapy , Humans , Female
9.
Nat Commun ; 15(1): 4698, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844770

ABSTRACT

Given the marginal penetration of most drugs across the blood-brain barrier, the efficacy of various agents remains limited for glioblastoma (GBM). Here we employ low-intensity pulsed ultrasound (LIPU) and intravenously administered microbubbles (MB) to open the blood-brain barrier and increase the concentration of liposomal doxorubicin and PD-1 blocking antibodies (aPD-1). We report results on a cohort of 4 GBM patients and preclinical models treated with this approach. LIPU/MB increases the concentration of doxorubicin by 2-fold and 3.9-fold in the human and murine brains two days after sonication, respectively. Similarly, LIPU/MB-mediated blood-brain barrier disruption leads to a 6-fold and a 2-fold increase in aPD-1 concentrations in murine brains and peritumoral brain regions from GBM patients treated with pembrolizumab, respectively. Doxorubicin and aPD-1 delivered with LIPU/MB upregulate major histocompatibility complex (MHC) class I and II in tumor cells. Increased brain concentrations of doxorubicin achieved by LIPU/MB elicit IFN-γ and MHC class I expression in microglia and macrophages. Doxorubicin and aPD-1 delivered with LIPU/MB results in the long-term survival of most glioma-bearing mice, which rely on myeloid cells and lymphocytes for their efficacy. Overall, this translational study supports the utility of LIPU/MB to potentiate the antitumoral activities of doxorubicin and aPD-1 for GBM.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Doxorubicin , Microbubbles , Programmed Cell Death 1 Receptor , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/therapeutic use , Doxorubicin/analogs & derivatives , Animals , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Mice , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Line, Tumor , Glioma/drug therapy , Glioma/immunology , Glioma/pathology , Brain/metabolism , Brain/drug effects , Female , Drug Delivery Systems , Ultrasonic Waves , Glioblastoma/drug therapy , Glioblastoma/immunology , Glioblastoma/pathology , Male , Microglia/drug effects , Microglia/metabolism , Mice, Inbred C57BL , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/administration & dosage , Polyethylene Glycols
10.
ACS Sens ; 9(6): 2826-2835, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38787788

ABSTRACT

Oxygen levels in tissues and organs are crucial for their normal functioning, and approaches to monitor them non-invasively have wide biological and clinical applications. In this study, we developed a method of acoustically detecting oxygenation using contrast-enhanced ultrasound (CEUS) imaging. Our approach involved the use of specially designed hemoglobin-based microbubbles (HbMBs) that reversibly bind to oxygen and alter the state-dependent acoustic response. We confirmed that the bioactivity of hemoglobin remained intact after the microbubble shell was formed, and we did not observe any significant loss of heme. We conducted passive cavitation detection (PCD) experiments to confirm whether the acoustic properties of HbMBs vary based on the level of oxygen present. The experiments involved driving the HbMBs with a 1.1 MHz focused ultrasound transducer. Through the PCD data collected, we observed significant differences in the subharmonic and harmonic responses of the HbMBs when exposed to an oxygen-rich environment versus an oxygen-depleted one. We used a programmable ultrasound system to capture high-frame rate B mode videos of HbMBs in both oxy and deoxy conditions at the same time in a two-chambered flow phantom and observed that the mean pixel intensity of deoxygenated HbMB was greater than in the oxygenated state using B-mode imaging. Finally, we demonstrated that HbMBs can circulate in vivo and are detectable by a clinical ultrasound scanner. To summarize, our results indicate that CEUS imaging with HbMB has the potential to detect changes in tissue oxygenation and could be a valuable tool for clinical purposes in monitoring regional blood oxygen levels.


Subject(s)
Hemoglobins , Microbubbles , Oxygen , Ultrasonography , Oxygen/chemistry , Oxygen/blood , Hemoglobins/chemistry , Ultrasonography/methods , Animals , Contrast Media/chemistry , Acoustics , Mice , Phantoms, Imaging , Humans
11.
Ultrasound Med Biol ; 50(8): 1232-1239, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38760280

ABSTRACT

BACKGROUND: Acoustically activated perfluoropropane droplets (PD) formulated from lipid encapsulated microbubble preparations produce a delayed myocardial contrast enhancement that preferentially highlights the infarct zones (IZ). Since activation of PDs may be temperature sensitive, it is unclear what effect body temperature (BT) has on acoustic activation (AA). OBJECTIVE: We sought to determine whether the microvascular retention and degree of myocardial contrast intensity (MCI) would be affected by BT at the time of intravenous injection. METHODS: We administered intravenous (IV) PD in nine rats following 60 min of ischemia followed by reperfusion. Injections in these rats were given at temperatures above and below 36.5°C, with high MI activation in both groups at 3 or 6 min following IV injection (IVI). In six additional rats (three in each group), IV PDs were given only at one temperature (<36.5°C or ≥36.5°C), permitting a total of 12 comparisons of different BT. Differences in background subtracted MCI at 3-6 min post-injection were compared in the infarct zone (IZ) and remote zone (RZ). Post-mortem lung hematoxylin and eosin (H&E) staining was performed to assess the effect potential thermal activation on lung tissue. RESULTS: Selective MCI within the IZ was observed in 8 of 12 rats who received IVI of PDs at <36.5°C, but none of the 12 rats who had IVI at the higher temperature (p < 0.0001). Absolute MCI following droplet activation was significantly higher in both the IZ and RZ when given at the lower BT. H&E indicated significant red blood extravasation in 5/7 rats who had had IV injections at higher BT, and 0/7 rats who had IV PDs at <36.5°C. CONCLUSIONS: Selective IZ enhancement with AA of intravenous PDs is possible, but temperature sensitive. Thermal activation appears to occur when PDs are given at higher temperatures, preventing AA, and increasing unwanted bioeffects.


Subject(s)
Contrast Media , Fluorocarbons , Myocardial Infarction , Rats, Sprague-Dawley , Animals , Rats , Myocardial Infarction/physiopathology , Male , Microbubbles , Body Temperature , Acoustics
13.
Eur J Pharm Sci ; 199: 106804, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38763448

ABSTRACT

Lung cancer is one of the most common cancers and a leading cause of death, with poor prognosis and high unmet clinical need. Chemotherapy is a common part of the treatment, either alone or in combination with other treatment modalities, but with limited efficacy and severe side effects. Encapsulation of drugs into nanoparticles can enable a more targeted delivery with reduced off-target toxicity. Delivery to the lungs is however often insufficient due to various biological barriers in the body and in the tumor microenvironment. Here we demonstrate that by incorporating drug-loaded nanoparticles into air-filled microbubbles, a more effective targeting to the lungs can be achieved. Fluorescence imaging and mass spectrometry revealed that the microbubbles could significantly improve accumulation of drug in the lungs of mice, compared to injecting either the free drug by itself or only the drug-loaded nanoparticles. Therapeutic efficacy was verified in a preclinical mouse model with non-small cell lung cancer, monitoring tumor growth by luminescence.


Subject(s)
Lung Neoplasms , Microbubbles , Nanoparticles , Animals , Lung Neoplasms/drug therapy , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Humans , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Delivery Systems/methods , Female , Lung/drug effects , Lung/metabolism , Lung/pathology , A549 Cells
14.
ACS Sens ; 9(5): 2356-2363, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38752383

ABSTRACT

Activatable microbubble contrast agents for contrast-enhanced ultrasound have a potential role for measuring physiologic and pathologic states in deep tissues, including tumor acidosis. In this study, we describe a novel observation of increased harmonic oscillation of phosphatidylcholine microbubbles (PC-MBs) in response to lower ambient pH using a clinical ultrasound scanner. MB echogenicity and nonlinear echoes were monitored at neutral and acidic pH using B-mode and Cadence contrast pulse sequencing (CPS), a harmonic imaging technique at 7.0 and 1.5 MHz. A 3-fold increase in harmonic signal intensity was observed when the pH of PC-MB suspensions was decreased from 7.4 to 5.5 to mimic normal and pathophysiological levels that can be encountered in vivo. This pH-mediated activation is tunable based on the chemical structure and length of phospholipids composing the MB shell. It is also reliant on the presence of phosphate groups, as the use of lipids without phosphate instead of phospholipids completely abrogated this phenomenon. The increased harmonic signal likely is the result of increased MB oscillation caused by a decrease of the interfacial tension induced at a lower pH, altering the lipid conformation. While relative signal changes are interpreted clinically as mostly related to blood flow, pH effects could be significant contributors, particularly when imaging tumors. While our observation can be used clinically, it requires further research to isolate the effect of pH from other variables. These findings could pave the way toward for the development of new smart ultrasound contrast agents that expand the clinical utility of contrast-enhanced ultrasound.


Subject(s)
Contrast Media , Microbubbles , Phospholipids , Ultrasonography , Hydrogen-Ion Concentration , Ultrasonography/methods , Phospholipids/chemistry , Contrast Media/chemistry , Acoustics , Humans
15.
Food Chem ; 454: 139813, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38810460

ABSTRACT

Microbubbles (MBs) were incorporated into calcium chloride solution as a novel freezing medium for immersion freezing of grape tomato. The effects of MB size (39, 43, 48 µm mean diameter), entrapped gas (air, N2, CO2) and freezing temperature (-10, -15, -20 °C) on the freezing behavior and quality attributes of tomato were investigated. MBs increased the nucleation temperature from -7.4 to -3.5 °C and reduced the onset time of nucleation from 5.8 to 2.9 min at freezing temperature of -20 °C, which facilitated the formation of small ice crystals within tomato. MB-assisted freezing reduced the drip loss by 13.7-17.0% and improved the firmness of tomato, particularly when MB size and freezing temperature decreased. Freezing tomato with air-MBs did not compromise its nutritional quality, using N2- and CO2-MBs even increased its lycopene content, by 31% and 23%, respectively. The results proved the preservation effect of MBs on fruit during immersion freezing. This study can benefit the fruit and vegetable industry by providing an efficient freezing technology for producing frozen products with high sensory and nutritional quality.


Subject(s)
Food Preservation , Freezing , Fruit , Microbubbles , Solanum lycopersicum , Solanum lycopersicum/chemistry , Fruit/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Food Handling/instrumentation , Lycopene/chemistry , Nutritive Value
16.
PLoS Med ; 21(5): e1004408, 2024 May.
Article in English | MEDLINE | ID: mdl-38758967

ABSTRACT

BACKGROUND: Preclinical studies have demonstrated that tumour cell death can be enhanced 10- to 40-fold when radiotherapy is combined with focussed ultrasound-stimulated microbubble (FUS-MB) treatment. The acoustic exposure of microbubbles (intravascular gas microspheres) within the target volume causes bubble cavitation, which induces perturbation of tumour vasculature and activates endothelial cell apoptotic pathways responsible for the ablative effect of stereotactic body radiotherapy. Subsequent irradiation of a microbubble-sensitised tumour causes rapid increased tumour death. The study here presents the mature safety and efficacy outcomes of magnetic resonance (MR)-guided FUS-MB (MRgFUS-MB) treatment, a radioenhancement therapy for breast cancer. METHODS AND FINDINGS: This prospective, single-center, single-arm Phase 1 clinical trial included patients with stages I-IV breast cancer with in situ tumours for whom breast or chest wall radiotherapy was deemed adequate by a multidisciplinary team (clinicaltrials.gov identifier: NCT04431674). Patients were excluded if they had contraindications for contrast-enhanced MR or microbubble administration. Patients underwent 2 to 3 MRgFUS-MB treatments throughout radiotherapy. An MR-coupled focussed ultrasound device operating at 800 kHz and 570 kPa peak negative pressure was used to sonicate intravenously administrated microbubbles within the MR-guided target volume. The primary outcome was acute toxicity per Common Terminology Criteria for Adverse Events (CTCAE) v5.0. Secondary outcomes were tumour response at 3 months and local control (LC). A total of 21 female patients presenting with 23 primary breast tumours were enrolled and allocated to intervention between August/2020 and November/2022. Three patients subsequently withdrew consent and, therefore, 18 patients with 20 tumours were included in the safety and LC analyses. Two patients died due to progressive metastatic disease before 3 months following treatment completion and were excluded from the tumour response analysis. The prescribed radiation doses were 20 Gy/5 fractions (40%, n = 8/20), 30 to 35 Gy/5 fractions (35%, n = 7/20), 30 to 40 Gy/10 fractions (15%, n = 3/20), and 66 Gy/33 fractions (10%, n = 2/20). The median follow-up was 9 months (range, 0.3 to 29). Radiation dermatitis was the most common acute toxicity (Grade 1 in 16/20, Grade 2 in 1/20, and Grade 3 in 2/20). One patient developed grade 1 allergic reaction possibly related to microbubbles administration. At 3 months, 18 tumours were evaluated for response: 9 exhibited complete response (50%, n = 9/18), 6 partial response (33%, n = 6/18), 2 stable disease (11%, n = 2/18), and 1 progressive disease (6%, n = 1/18). Further follow-up of responses indicated that the 6-, 12-, and 24-month LC rates were 94% (95% confidence interval [CI] [84%, 100%]), 88% (95% CI [75%, 100%]), and 76% (95% CI [54%, 100%]), respectively. The study's limitations include variable tumour sizes and dose fractionation regimens and the anticipated small sample size typical for a Phase 1 clinical trial. CONCLUSIONS: MRgFUS-MB is an innovative radioenhancement therapy associated with a safe profile, potentially promising responses, and durable LC. These results warrant validation in Phase 2 clinical trials. TRIAL REGISTRATION: clinicaltrials.gov, identifier NCT04431674.


Subject(s)
Breast Neoplasms , Microbubbles , Humans , Breast Neoplasms/radiotherapy , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Microbubbles/therapeutic use , Middle Aged , Aged , Prospective Studies , Adult , Treatment Outcome , Magnetic Resonance Imaging , Aged, 80 and over
17.
Sci Rep ; 14(1): 10499, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714740

ABSTRACT

Improving the efficacy of chemotherapy remains a key challenge in cancer treatment, considering the low bioavailability, high cytotoxicity, and undesirable side effects of some clinical drugs. Targeted delivery and sustained release of therapeutic drugs to cancer cells can reduce the whole-body cytotoxicity of the agent and deliver a safe localized treatment to the patient. There is growing interest in herbal drugs, such as curcumin, which is highly noted as a promising anti-tumor drug, considering its wide range of bioactivities and therapeutic properties against various tumors. Conversely, the clinical efficacy of curcumin is limited because of poor oral bioavailability, low water solubility, instability in gastrointestinal fluids, and unsuitable pH stability. Drug-delivery colloid vehicles like liposomes and nanoparticles combined with microbubbles and ultrasound-mediated sustained release are currently being explored as effective delivery modes in such cases. This study aimed to synthesize and study the properties of curcumin liposomes (CLs) and optimize the high-frequency ultrasound release and uptake by a human breast cancer cell line (HCC 1954) through in vitro studies of culture viability and cytotoxicity. CLs were effectively prepared with particles sized at 81 ± 2 nm, demonstrating stability and controlled release of curcumin under ultrasound exposure. In vitro studies using HCC1954 cells, the combination of CLs, ultrasound, and Definity microbubbles significantly improved curcumin's anti-tumor effects, particularly under specific conditions: 15 s of continuous ultrasound at 0.12 W/cm2 power density with 0.6 × 107 microbubbles/mL. Furthermore, the study delved into curcumin liposomes' cytotoxic effects using an Annexin V/PI-based apoptosis assay. The treatment with CLs, particularly in conjunction with ultrasound and microbubbles, amplified cell apoptosis, mainly in the late apoptosis stage, which was attributed to heightened cellular uptake within cancer cells.


Subject(s)
Curcumin , Drug Delivery Systems , Liposomes , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/administration & dosage , Humans , Liposomes/chemistry , Cell Line, Tumor , Drug Delivery Systems/methods , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Microbubbles , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Ultrasonic Waves , Drug Liberation , Apoptosis/drug effects
18.
Neuroimage ; 294: 120630, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38740226

ABSTRACT

OBJECTIVE: To evaluate the synergistic potential of Focused Ultrasound (FUS) in conjunction with microbubbles (MB) and recombinant adeno-associated virus serotype 9 (rAAV9) vectors for targeted gene delivery to neuronal cells in rats, optimizing gene expression conditions and assessing any adverse effects. METHODS: The parameters for permeability enhancement of the rat's blood-brain barrier (BBB) were established using FUS+MB, with MRI scans and Evans Blue (EB) dye assisting in the evaluation. Rats underwent FUS-mediated transfection using rAAV9-Syn-EGFP vectors produced via a triple-transfection in HEK293T cells. Following this, the uptake and expression of GFP in targeted brain regions were evaluated using confocal fluorescence microscopy at various time intervals. Inflammatory responses post-FUS treatment were tracked by observing levels of GFAP, a marker for astrocytic activation, and TNF-α, a pro-inflammatory cytokine. Motor behavior effects post-intervention were gauged using the Rotarod test across multiple groups over a span of four weeks. RESULTS: FUS+MB affected BBB permeability, with optimal results at 4 W for 200 s showing 85 % permeability and evident Gd-DTPA leakage. Settings beyond these resulted in tissue damage. Control groups exhibited a basal GFP expression of 2 % ± 0.5 %, whereas FUS+MB with rAAV-EGFP injections substantially increased GFP expression to about 67 % ± 6 % in targeted neurons. This GFP expression peaked at three weeks post-treatment and remained evident six months later. Following FUS treatment, both GFAP and TNF-α levels underwent fluctuations before eventually nearing their baseline values. The Rotarod test revealed no significant behavioral differences post-treatments among the groups. CONCLUSIONS: Combining FUS+MB with rAAV offers an innovative approach to enhance therapeutic delivery to the central nervous system (CNS) by transiently adjusting BBB permeability.


Subject(s)
Blood-Brain Barrier , Dependovirus , Gene Transfer Techniques , Genetic Vectors , Green Fluorescent Proteins , Microbubbles , Neurons , Animals , Rats , Blood-Brain Barrier/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Dependovirus/genetics , Humans , Genetic Vectors/administration & dosage , Neurons/metabolism , Rats, Sprague-Dawley , HEK293 Cells , Male , Ultrasonic Waves
20.
Biomater Adv ; 161: 213886, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735200

ABSTRACT

Altering the route of uptake by the cells is an attractive strategy to overcome drug-receptor adaptation problems. Carbon nanoparticles (CNPs) with emission beyond tissue autofluorescence for imaging biological tissues were used to study the phenomenon of uptake by the cells. In this regard, red-emitting carbon nanoparticles (CNPs) were synthesized and incorporated onto lipid microbubbles (MBs). The CNPs showed red emissions in the range of 640 nm upon excitation with 480 nm wavelength of light. Atomic force microscopic and confocal microscopic images showed the successful loading of CNPs onto the MB. Carbon nanoparticle loaded microbubbles (CNP-MBs) were treated with NIH 3 T3 cells at different concentrations. Confocal microscopic imaging studies confirm the presence of CNPs inside the treated cells. Cytotoxicity studies revealed that the CNPs showed minimal toxicity towards cells after loading onto MBs. The CNPs are usually taken up by the cells through the clathrin-mediated (CME) pathway, but when loaded onto MBs, the mechanism of uptake of CNPs is altered, and the uptake by the cells was observed even in the presence of inhibitors for the CME pathway. Loading CNPs onto MBs resulted in the uptake of CNPs by the cell through micropinocytosis and sonophoresis in the presence of ultrasound. The in vivo uptake CNP-MBs were performed in Danio rerio (Zebrafish larvae). This study provides insights into altering the uptake pathway through reformulation by loading nanoparticles onto MBs.


Subject(s)
Carbon , Microbubbles , Nanoparticles , Zebrafish , Animals , Carbon/chemistry , Mice , Nanoparticles/chemistry , NIH 3T3 Cells , Drug Delivery Systems/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...