Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.562
Filter
1.
Harmful Algae ; 137: 102679, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39003024

ABSTRACT

Algal blooms can threaten human health if cyanotoxins such as microcystin are produced by cyanobacteria. Regularly monitoring microcystin concentrations in recreational waters to inform management action is a tool for protecting public health; however, monitoring cyanotoxins is resource- and time-intensive. Statistical models that identify waterbodies likely to produce microcystin can help guide monitoring efforts, but variability in bloom severity and cyanotoxin production among lakes and years makes prediction challenging. We evaluated the skill of a statistical classification model developed from water quality surveys in one season with low temporal replication but broad spatial coverage to predict if microcystin is likely to be detected in a lake in subsequent years. We used summertime monitoring data from 128 lakes in Iowa (USA) sampled between 2017 and 2021 to build and evaluate a predictive model of microcystin detection as a function of lake physical and chemical attributes, watershed characteristics, zooplankton abundance, and weather. The model built from 2017 data identified pH, total nutrient concentrations, and ecogeographic variables as the best predictors of microcystin detection in this population of lakes. We then applied the 2017 classification model to data collected in subsequent years and found that model skill declined but remained effective at predicting microcystin detection (area under the curve, AUC ≥ 0.7). We assessed if classification skill could be improved by assimilating the previous years' monitoring data into the model, but model skill was only minimally enhanced. Overall, the classification model remained reliable under varying climatic conditions. Finally, we tested if early season observations could be combined with a trained model to provide early warning for late summer microcystin detection, but model skill was low in all years and below the AUC threshold for two years. The results of these modeling exercises support the application of correlative analyses built on single-season sampling data to monitoring decision-making, but similar investigations are needed in other regions to build further evidence for this approach in management application.


Subject(s)
Environmental Monitoring , Lakes , Microcystins , Models, Statistical , Microcystins/analysis , Lakes/chemistry , Environmental Monitoring/methods , Iowa , Cyanobacteria , Climate , Seasons , Harmful Algal Bloom , Water Quality
2.
Mikrochim Acta ; 191(8): 490, 2024 07 27.
Article in English | MEDLINE | ID: mdl-39066900

ABSTRACT

A 3D-printed stereolithographic platform for selective biorecognition is designed to enable convective microscale affinity extraction of microcystin-LR (MC-LR) followed by direct solid-phase optosensing exploiting ratiometric front-face fluorescence spectroscopy. For this purpose, a recombinant monoclonal plantibody (recAb) is covalently attached to a 3D-printed structure for sorptive immunoextraction, whereupon the free and unbound primary amino moieties of the recAb are derivatized with a fluorescent probe. The fluorophore-recAb-MC-LR laden device is then accommodated in the cuvette holder of a conventional fluorometer without any instrumental modification for the recording of the solid-phase fluorescence emission. Using Rodbard's four-parameter sigmoidal function, the 3D-printed bioselective platform features a limit of detection (LOD) of 28 ng L-1 using a sample volume of 500 mL, device-to-device reproducibility down to 12%, and relative recoveries ranging from 91 to 100% in marine waters. Printed prototypes are affordable, just 0.4 € per print and ≤ 10 € per device containing recAb. One of the main assets of the miniaturized immunoextraction device is that it performs comparably well in terms of analytical figures of merit with costly mass spectrometric-based analytical methodologies, such as HPLC-MS/MS. The device is readily applicable to high-matrix samples, such as seawater, as opposed to previous biosensing platforms, just applied to freshwater systems.


Subject(s)
Marine Toxins , Microcystins , Printing, Three-Dimensional , Seawater , Spectrometry, Fluorescence , Microcystins/analysis , Marine Toxins/analysis , Spectrometry, Fluorescence/methods , Seawater/chemistry , Seawater/analysis , Limit of Detection , Fluorescent Dyes/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Recombinant Proteins/analysis
3.
J Environ Manage ; 365: 121707, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38968883

ABSTRACT

Addressing the threat of harmful cyanobacterial blooms (CyanoHABs) and their associated microcystins (MCs) is crucial for global drinking water safety. In this review, we comprehensively analyze and compares the physical, chemical, and biological methods and genetic engineering for MCs degradation in aquatic environments. Physical methods, such as UV treatments and photocatalytic reactions, have a high efficiency in breaking down MCs, with the potential for further enhancement in performance and reduction of hazardous byproducts. Chemical treatments using chlorine dioxide and potassium permanganate can reduce MC levels but require careful dosage management to avoid toxic by-products and protect aquatic ecosystems. Biological methods, including microbial degradation and phytoremediation techniques, show promise for the biodegradation of MCs, offering reduced environmental impact and increased sustainability. Genetic engineering, such as immobilization of microcystinase A (MlrA) in Escherichia coli and its expression in Synechocystis sp., has proven effective in decomposing MCs such as MC-LR. However, challenges related to specific environmental conditions such as temperature variations, pH levels, presence of other contaminants, nutrient availability, oxygen levels, and light exposure, as well as scalability of biological systems, necessitate further exploration. We provide a comprehensive evaluation of MCs degradation techniques, delving into their practicality, assessing the environmental impacts, and scrutinizing their efficiency to offer crucial insights into the multifaceted nature of these methods in various environmental contexts. The integration of various methodologies to enhance degradation efficiency is vital in the field of water safety, underscoring the need for ongoing innovation.


Subject(s)
Biodegradation, Environmental , Genetic Engineering , Microcystins , Microcystins/metabolism , Cyanobacteria/metabolism
4.
Curr Microbiol ; 81(9): 275, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020143

ABSTRACT

In this study, the toxigenic characteristics of 14 strains of Microcystis were analyzed, and single nucleotide polymorphism (SNP) and insertion/deletion (InDel) loci in microcystin synthetase (mcy) gene clusters were screened. Based on SNP and InDel loci associated with the toxigenic characteristics, primers and TaqMan or Cycling fluorescent probes were designed to develop duplex real-time fluorescent quantitative PCR (FQ-PCR) assays. After evaluating specificity and sensitivity, these assays were applied to detect the toxigenic Microcystis genotypes in a shrimp pond where Microcystis blooms occurred. The results showed a total of 2155 SNP loci and 66 InDel loci were obtained, of which 12 SNP loci and 5 InDel loci were associated with the toxigenic characteristics. Three duplex real-time FQ-PCR assays were developed, each of which could quantify two genotypes of toxigenic Microcystis. These FQ-PCR assays were highly specific, and two Cycling assays were more sensitive than TaqMan assay. In the shrimp pond, six genotypes of toxigenic Microcystis were detected using the developed FQ-PCR assays, indicating that above genotyping assays have the potential for quantitative analysis of the toxigenic Microcystis genotypes in natural water.


Subject(s)
Genotype , Microcystis , Multigene Family , Polymorphism, Single Nucleotide , Real-Time Polymerase Chain Reaction , Microcystis/genetics , Microcystis/classification , Real-Time Polymerase Chain Reaction/methods , Microcystins/genetics , INDEL Mutation , Bacterial Proteins/genetics , Sensitivity and Specificity , Ponds/microbiology , Peptide Synthases/genetics
5.
Environ Monit Assess ; 196(8): 747, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023771

ABSTRACT

Large and temperate Lake Peipsi is the fourth largest lake in Europe, where the massive cyanobacterial blooms are composed mostly of Microcystis spp., which have been common for several decades now. The seasonal dynamics of potentially toxic Microcystis were studied using microscopy and quantitative polymerase chain reaction (qPCR) by assessing the microcystin-encoding microcystin synthetase gene E (mcyE) abundances. Water samples were analyzed over the lake areas, varying in depth, trophic level, and cyanobacterial composition during the growing period of 2021. The Microcystis mcyE genes were detected through the growing period (May-October), forming peak abundances in September with decreasing temperatures (8.9-11.1 °C). Total phosphorus (TP) and nitrate (NO3-) were the most relevant environmental variables influencing the Microcystis biomass as well as mcyE abundances. Comparison with previous years (2011, 2012) indicated that the abundance and seasonal dynamics of toxigenic Microcystis can be highly variable between the years and lake areas, varying also in dominant Microcystis species. Contrary to expectations, based on mcyE abundances, the increased risk of toxin-producing Microcystis can occur in Peipsi through the growing period, independently of the water temperature and biomasses of Microcystis.


Subject(s)
Environmental Monitoring , Lakes , Microcystins , Microcystis , Seasons , Lakes/microbiology , Lakes/chemistry , Microcystis/genetics
6.
Toxicon ; 247: 107846, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38964620

ABSTRACT

Microcystin (MC), a hepatotoxin that is harmful to human health, has frequently increased in freshwaters worldwide due to the increase in toxic cyanobacterial blooms. Despite many studies reported the human exposure to MC through drinking water, the potential transfer of this toxin to human via consumption of vegetables grown on farmlands that are naturally irrigated with contaminated water has not been largely investigated. Therefore, this study investigates the presence of MC in irrigation water and its potential accumulation in commonly consumed vegetables from Egyptian farmlands. The results of toxin analysis revealed that all irrigation water sites contained high MC concentrations (1.3-93.7 µg L-1) along the study period, in association with the abundance of dominant cyanobacteria in these sites. Meanwhile, MCs were detected in most vegetable plants surveyed, with highest levels in potato tubers (1100 µg kg-1 fresh weight, FW) followed by spinach (180 µg kg-1 FW), onion (170 µg g-1 FW), Swiss chard (160 µg kg-1 FW) and fava bean (46 µg kg-1 FW). These MC concentrations in vegetables led to estimated daily intake (EDI) values (0.08-1.13 µg kg bw-1 d-1 for adults and 0.11-1.5 µg kg bw-1 d-1 for children), through food consumption, exceeding the WHO recommended TDI (0.04 µg kg bw-1 d-1) for this toxin. As eutrophic water is widely used for irrigation in many parts of the world, our study suggests that cyanotoxins in irrigation waters and agricultural plants should be regularly monitored to safeguard the general public from inadvertent exposure to harmful toxins via food consumption.


Subject(s)
Agricultural Irrigation , Food Contamination , Food Safety , Microcystins , Vegetables , Microcystins/analysis , Egypt , Risk Assessment , Vegetables/chemistry , Humans , Food Contamination/analysis , Cyanobacteria
7.
J Chromatogr A ; 1730: 465139, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38970876

ABSTRACT

Adsorbents with good dispersibility and high efficiency are crucial for magnetic solid-phase extraction (MSPE). In this study, flower-like magnetic nanomaterials (F-Ni@NiO@ZnO2-C) were successfully prepared by calcination of metal-organic framework (MOF) precursors that was stacked by two-dimensional (2D) nanosheet. The synthesized F-Ni@NiO@ZnO2-C has a flower-like layered structure with a large amount of pore space, promoting the rapid diffusion of targets. In addition, Zn2+ doped in MOF precursors was still retained that further produced strong metal chelation with targets. The unique structure of F-Ni@NiO@ZnO2-C was used as MSPE adsorbent, and combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for extraction of three microcystins (MCs) detection, including microcystin-LR (MC-LR), microcystin-RR (MC-RR), microcystin-YR (MC-YR). The resulting method has a detection limit of 0.2-1.0 pg mL-1, a linear dynamic range of 0.6-500.0 pg mL-1 and has good linearity (R ≥ 0.9996). Finally, the established method was applied to the highly selective enrichment of MCs in biological samples, successfully detecting trace amounts of MCs (8.4-15.0 pg mL-1) with satisfactory recovery rates (83.7-103.1 %). The results indicated that flower-like magnetic F-Ni@NiO@ZnO2-C was a promising adsorbent, providing great potential for the determination of trace amounts of MCs in biological samples.


Subject(s)
Limit of Detection , Microcystins , Solid Phase Extraction , Tandem Mass Spectrometry , Microcystins/isolation & purification , Microcystins/chemistry , Microcystins/analysis , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Metal-Organic Frameworks/chemistry , Nanostructures/chemistry , Adsorption , Carbon/chemistry , Aquatic Organisms/chemistry , Animals , Reproducibility of Results , Nickel/chemistry
8.
Biosensors (Basel) ; 14(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38920572

ABSTRACT

In this study, we report a multiplexed platform for the simultaneous determination of five marine toxins. The proposed biosensor is based on a disposable electrical printed (DEP) microarray composed of eight individually addressable carbon electrodes. The electrodeposition of gold nanoparticles on the carbon surface offers high conductivity and enlarges the electroactive area. The immobilization of thiolated aptamers on the AuNP-decorated carbon electrodes provides a stable, well-orientated and organized binary self-assembled monolayer for sensitive and accurate detection. A simple electrochemical multiplexed aptasensor based on AuNPs was designed to synchronously detect multiple cyanotoxins, namely, microcystin-LR (MC-LR), Cylindrospermopsin (CYL), anatoxin-α, saxitoxin and okadaic acid (OA). The choice of the five toxins was based on their widespread presence and toxicity to aquatic ecosystems and humans. Taking advantage of the conformational change of the aptamers upon target binding, cyanotoxin detection was achieved by monitoring the resulting electron transfer increase by square-wave voltammetry. Under the optimal conditions, the linear range of the proposed aptasensor was estimated to be from 0.018 nM to 200 nM for all the toxins, except for MC-LR where detection was possible within the range of 0.073 to 150 nM. Excellent sensitivity was achieved with the limits of detection of 0.0033, 0.0045, 0.0034, 0.0053 and 0.0048 nM for MC-LR, CYL, anatoxin-α, saxitoxin and OA, respectively. Selectivity studies were performed to show the absence of cross-reactivity between the five analytes. Finally, the application of the multiplexed aptasensor to tap water samples revealed very good agreement with the calibration curves obtained in buffer. This simple and accurate multiplexed platform could open the window for the simultaneous detection of multiple pollutants in different matrices.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Cyanobacteria Toxins , Electrochemical Techniques , Gold , Marine Toxins , Metal Nanoparticles , Microcystins , Saxitoxin , Marine Toxins/analysis , Microcystins/analysis , Gold/chemistry , Saxitoxin/analysis , Metal Nanoparticles/chemistry , Bacterial Toxins/analysis , Uracil/analysis , Uracil/analogs & derivatives , Tropanes/analysis , Alkaloids/analysis , Okadaic Acid/analysis , Electrodes , Limit of Detection
9.
Toxins (Basel) ; 16(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38922157

ABSTRACT

Harmful algal bloom (HAB) formation leads to the eutrophication of water ecosystems and may render recreational lakes unsuitable for human use. We evaluated the applicability and comparison of metabarcoding, metagenomics, qPCR, and ELISA-based methods for cyanobacteria/cyanotoxin detection in bloom and non-bloom sites for the Great Lakes region. DNA sequencing-based methods robustly identified differences between bloom and non-bloom samples (e.g., the relative prominence of Anabaena and Planktothrix). Shotgun sequencing strategies also identified the enrichment of metabolic genes typical of cyanobacteria in bloom samples, though toxin genes were not detected, suggesting deeper sequencing or PCR methods may be needed to detect low-abundance toxin genes. PCR and ELISA indicated microcystin levels and microcystin gene copies were significantly more abundant in bloom sites. However, not all bloom samples were positive for microcystin, possibly due to bloom development by non-toxin-producing species. Additionally, microcystin levels were significantly correlated (positively) with microcystin gene copy number but not with total cyanobacterial 16S gene copies. In summary, next-generation sequencing-based methods can identify specific taxonomic and functional targets, which can be used for absolute quantification methods (qPCR and ELISA) to augment conventional water monitoring strategies.


Subject(s)
Cyanobacteria , Environmental Monitoring , Harmful Algal Bloom , Lakes , Microcystins , Microcystins/genetics , Microcystins/analysis , Lakes/microbiology , Cyanobacteria/genetics , Cyanobacteria/growth & development , Cyanobacteria/classification , Environmental Monitoring/methods , Ecosystem , Metagenomics , Recreation , Water Microbiology , Enzyme-Linked Immunosorbent Assay
10.
Toxins (Basel) ; 16(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38922163

ABSTRACT

The rise in cyanobacterial blooms due to eutrophication and climate change has increased cyanotoxin presence in water. Most current water treatment plants do not effectively remove these toxins, posing a potential risk to public health. This study introduces a water treatment approach using nanostructured beads containing magnetic nanoparticles (MNPs) for easy removal from liquid suspension, coated with different adsorbent materials to eliminate cyanotoxins. Thirteen particle types were produced using activated carbon, CMK-3 mesoporous carbon, graphene, chitosan, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidised cellulose nanofibers (TOCNF), esterified pectin, and calcined lignin as an adsorbent component. The particles' effectiveness for detoxification of microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-A (ATX-A) was assessed in an aqueous solution. Two particle compositions presented the best adsorption characteristics for the most common cyanotoxins. In the conditions tested, mesoporous carbon nanostructured particles, P1-CMK3, provide good removal of MC-LR and Merck-activated carbon nanostructured particles, P9-MAC, can remove ATX-A and CYN with high and fair efficacy, respectively. Additionally, in vitro toxicity of water treated with each particle type was evaluated in cultured cell lines, revealing no alteration of viability in human renal, neuronal, hepatic, and intestinal cells. Although further research is needed to fully characterise this new water treatment approach, it appears to be a safe, practical, and effective method for eliminating cyanotoxins from water.


Subject(s)
Bacterial Toxins , Cyanobacteria Toxins , Marine Toxins , Microcystins , Water Purification , Cyanobacteria Toxins/chemistry , Humans , Microcystins/toxicity , Microcystins/chemistry , Microcystins/isolation & purification , Marine Toxins/toxicity , Marine Toxins/chemistry , Marine Toxins/isolation & purification , Water Purification/methods , Adsorption , Bacterial Toxins/toxicity , Bacterial Toxins/chemistry , Bacterial Toxins/isolation & purification , Alkaloids/chemistry , Alkaloids/toxicity , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/toxicity , Tropanes/chemistry , Tropanes/toxicity , Tropanes/isolation & purification , Nanostructures/chemistry , Nanostructures/toxicity , Uracil/analogs & derivatives , Uracil/chemistry , Uracil/toxicity , Cyanobacteria/chemistry , Cell Survival/drug effects , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry
11.
Sci Total Environ ; 945: 173864, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38879032

ABSTRACT

Cyanobacteria blooms (CBs) caused by eutrophication pose a global concern, especially Microcystis aeruginosa (M. aeruginosa), which could release harmful microcystins (MCs). The impact of microplastics (MPs) on allelopathy in freshwater environments is not well understood. This study examined the joint effect of adding polystyrene (PS-MPs) as representative MPs and two concentrations (2 and 8 mg/L) of pyrogallol (PYR) on the allelopathy of M. aeruginosa. The results showed that the addition of PS-MPs intensified the inhibitory effect of 8 mg/L PYR on the growth and photosynthesis of M. aeruginosa. After a 7-day incubation period, the cell density decreased to 69.7 %, and the chl-a content decreased to 48 % compared to the condition without PS-MPs (p < 0.05). Although the growth and photosynthesis of toxic Microcystis decreased with the addition of PS-MPs, the addition of PS-MPs significantly resulted in a 3.49-fold increase in intracellular MCs and a 1.10-fold increase in extracellular MCs (p < 0.05). Additionally, the emission rates of greenhouse gases (GHGs) (carbon dioxide, nitrous oxide and methane) increased by 2.66, 2.23 and 2.17-fold, respectively (p < 0.05). In addition, transcriptomic analysis showed that the addition of PS-MPs led to the dysregulation of gene expression related to DNA synthesis, membrane function, enzyme activity, stimulus detection, MCs release and GHGs emissions in M. aeruginosa. PYR and PS-MPs triggered ROS-induced membrane damage and disrupted photosynthesis in algae, leading to increased MCs and GHG emissions. PS-MPs accumulation exacerbated this issue by impeding light absorption and membrane function, further heightening the release of MCs and GHGs emissions. Therefore, PS-MPs exhibited a synergistic effect with PYR in inhibiting the growth and photosynthesis of M. aeruginosa, resulting in additional risks such as MCs release and GHGs emissions. These results provide valuable insights for the ecological risk assessment and control of algae bloom in freshwater ecosystems.


Subject(s)
Greenhouse Gases , Microcystins , Microcystis , Microplastics , Pyrogallol , Microcystis/physiology , Microcystis/drug effects , Microcystins/toxicity , Microplastics/toxicity , Allelopathy , Water Pollutants, Chemical/toxicity , Photosynthesis/drug effects
12.
Harmful Algae ; 135: 102631, 2024 May.
Article in English | MEDLINE | ID: mdl-38830709

ABSTRACT

Cyanobacterial harmful algal blooms (CyanoHABs) threaten public health and freshwater ecosystems worldwide. In this study, our main goal was to explore the dynamics of cyanobacterial blooms and how microcystins (MCs) move from the Lalla Takerkoust reservoir to the nearby farms. We used Landsat imagery, molecular analysis, collecting and analyzing physicochemical data, and assessing toxins using HPLC. Our investigation identified two cyanobacterial species responsible for the blooms: Microcystis sp. and Synechococcus sp. Our Microcystis strain produced three MC variants (MC-RR, MC-YR, and MC-LR), with MC-RR exhibiting the highest concentrations in dissolved and intracellular toxins. In contrast, our Synechococcus strain did not produce any detectable toxins. To validate our Normalized Difference Vegetation Index (NDVI) results, we utilized limnological data, including algal cell counts, and quantified MCs in freeze-dried Microcystis bloom samples collected from the reservoir. Our study revealed patterns and trends in cyanobacterial proliferation in the reservoir over 30 years and presented a historical map of the area of cyanobacterial infestation using the NDVI method. The study found that MC-LR accumulates near the water surface due to the buoyancy of Microcystis. The maximum concentration of MC-LR in the reservoir water was 160 µg L-1. In contrast, 4 km downstream of the reservoir, the concentration decreased by a factor of 5.39 to 29.63 µgL-1, indicating a decrease in MC-LR concentration with increasing distance from the bloom source. Similarly, the MC-YR concentration decreased by a factor of 2.98 for the same distance. Interestingly, the MC distribution varied with depth, with MC-LR dominating at the water surface and MC-YR at the reservoir outlet at a water depth of 10 m. Our findings highlight the impact of nutrient concentrations, environmental factors, and transfer processes on bloom dynamics and MC distribution. We emphasize the need for effective management strategies to minimize toxin transfer and ensure public health and safety.


Subject(s)
Environmental Monitoring , Harmful Algal Bloom , Microcystins , Microcystis , Satellite Imagery , Microcystins/metabolism , Microcystins/analysis , Microcystis/physiology , Microcystis/growth & development , Environmental Monitoring/methods , Cyanobacteria/physiology , Cyanobacteria/growth & development , Indonesia , Synechococcus/physiology , Lakes/microbiology
13.
Harmful Algae ; 135: 102646, 2024 May.
Article in English | MEDLINE | ID: mdl-38830712

ABSTRACT

Toxic cyanobacterial blooms present a substantial risk to public health due to the production of secondary metabolites, notably microcystins (MCs). Microcystin-LR (MC-LR) is the most prevalent and toxic variant in freshwater. MCs resist conventional water treatment methods, persistently impacting water quality. This study focused on an oligohaline shallow lagoon historically affected by MC-producing cyanobacteria, aiming to identify bacteria capable of degrading MC and investigating the influence of environmental factors on this process. While isolated strains did not exhibit MC degradation, microbial assemblages directly sourced from lagoon water removed MC-LR within seven days at 25 ºC and pH 8.0. The associated bacterial community demonstrated an increased abundance of bacterial taxa assigned to Methylophilales, and also Rhodospirillales and Rhodocyclales to a lesser extent. However, elevated atmospheric temperatures (45 ºC) and acidification (pH 5.0 and 3.0) hindered MC-LR removal, indicating that extreme environmental changes could contribute to prolonged MC persistence in the water column. This study highlights the importance of considering environmental conditions in order to develop strategies to mitigate cyanotoxin contamination in aquatic ecosystems.


Subject(s)
Microcystins , Microcystins/metabolism , Microcystins/analysis , Bacteria/metabolism , Cyanobacteria/metabolism , Cyanobacteria/physiology , Microbiota , Seawater/microbiology , Seawater/chemistry , Plankton , Hydrogen-Ion Concentration
14.
Harmful Algae ; 135: 102647, 2024 May.
Article in English | MEDLINE | ID: mdl-38830717

ABSTRACT

Cyanobacterial harmful algal blooms (cHABs) are pervasive sources of stress resulting in neurotoxicity in fish. A member of the widely distributed Microcystis genus of bloom-forming cyanobacteria, Microcystis wesenbergii can be found in many freshwater lakes, including Dianchi Lake (China), where it has become one of the dominant contributors to the lake's recurrent blooms. However, unlike its more well-known counterpart M. aeruginosa, the effects of dense non-microcystin-containing M. wesenbergii blooms are seldom studied. The disturbance of appetite regulation and feeding behaviour can have downstream effects on the growth of teleost fish, posing a significant challenge to aquaculture and conservation efforts. Here we examined the effects of M. wesenbergii blooms on the food intake of Acrossocheilus yunnanensis, a native cyprinid in southern China. This fish species has disappeared in Dianchi Lake, and its reintroduction might be negatively affected by the presence of this newly-dominant Microcystis species. We co-cultured juvenile A. yunnanensis with a non-microcystin-producing strain of M. wesenbergii at initial densities between 5 × 104 and 1 × 106 cells/mL and monitored fish feeding behaviour and changes in neurotransmitter and hormone protein levels. High-density M. wesenbergii cultures increased the feeding rate of co-cultured fish, elevating concentrations of appetite-stimulating signalling molecules (Agouti-related protein and γ-aminobutyric acid), while decreasing inhibitory ones (POMC). These changes coincided with histopathological alterations and reduced somatic indices in brain and intestinal tissues. Given this potential for detrimental effects and dysregulation of food intake, further studies are necessary to determine the impacts of chronic exposure of M. wesenbergii in wild fish.


Subject(s)
Microcystis , Animals , Microcystis/physiology , Harmful Algal Bloom , Appetite Regulation/physiology , Cyprinidae/physiology , Eating , Microcystins/metabolism , Lakes , China , Feeding Behavior
15.
Harmful Algae ; 136: 102657, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876528

ABSTRACT

The bloom-forming species Microcystis wesenbergii and M. aeruginosa occur in many lakes globally, and may exhibit alternating blooms both spatially and temporally. As environmental changes increase, cyanobacteria bloom in more and more lakes and are often dominated by M. wesenbergii. The adverse impact of M. aeruginosa on co-existing organisms including zooplanktonic species has been well-studied, whereas studies of M. wesenbergii are limited. To compare effects of these two species on zooplankton, we explored effects of exudates from different strains of microcystin-producing M. aeruginosa (Ma905 and Ma526) and non-microcystin-producing M. wesenbergii (Mw908 and Mw929), on reproduction by the model zooplankter Daphnia magna in both chronic and acute exposure experiments. Specifically, we tested physiological, biochemical, molecular and transcriptomic characteristics of D. magna exposed to Microcystis exudates. We observed that body length and egg and offspring number of the daphnid increased in all treatments. Among the four strains tested, Ma526 enhanced the size of the first brood, as well as total egg and offspring number. Microcystis exudates stimulated expression of specific genes that induced ecdysone, juvenile hormone, triacylglycerol and vitellogenin biosynthesis, which, in turn, enhanced egg and offspring production of D. magna. Even though all strains of Microcystis affected growth and reproduction, large numbers of downregulated genes involving many essential pathways indicated that the Ma905 strain might contemporaneously induce damage in D. magna. Our study highlights the necessity of including M. wesenbergii into the ecological risk evaluation of cyanobacteria blooms, and emphasizes that consequences to zooplankton may not be clear-cut when assessments are based upon production of microcystins alone.


Subject(s)
Daphnia , Microcystis , Reproduction , Microcystis/physiology , Microcystis/growth & development , Animals , Daphnia/physiology , Daphnia/growth & development , Microcystins/metabolism , Zooplankton/physiology , Harmful Algal Bloom , Lakes/microbiology
16.
Harmful Algae ; 136: 102656, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876531

ABSTRACT

Sandusky Bay is the drowned mouth of the Sandusky River in the southwestern portion of Lake Erie. The bay is a popular recreation location and a regional source for drinking water. Like the western basin of Lake Erie, Sandusky Bay is known for being host to summer cyanobacterial harmful algal blooms (cHABs) year after year, fueled by runoff from the predominantly agricultural watershed and internal loading of legacy nutrients (primarily phosphorus). Since at least 2003, Sandusky Bay has harbored a microcystin-producing bloom of Planktothrix agardhii, a species of filamentous cyanobacteria that thrives in low light conditions. Long-term sampling (2003-2018) of Sandusky Bay revealed regular Planktothrix-dominated blooms during the summer months, but in recent years (2019-2022), 16S rRNA gene community profiling revealed that Planktothrix has largely disappeared. From 2017-2022, microcystin decreased well below the World Health Organization (WHO) guidelines. Spring TN:TP ratios increased in years following dam removal, yet there were no statistically significant shifts in other physicochemical variables, such as water temperature and water clarity. With the exception of the high bloom of Planktothrix in 2018, there was no statistical difference in chlorophyll during all other years. Concurrent with the disappearance of Planktothrix, Cyanobium spp. have become the dominant cyanobacterial group. The appearance of other potential toxigenic genera (i.e., Aphanizomenon, Dolichospermum, Cylindrospermopsis) may motivate monitoring of new toxins of concern in Sandusky Bay. Here, we document the regime shift in the cyanobacterial community and propose evidence supporting the hypothesis that the decline in the Planktothrix bloom was linked to the removal of an upstream dam on the Sandusky River.


Subject(s)
Bays , Harmful Algal Bloom , Phytoplankton , Planktothrix , Phytoplankton/physiology , Phytoplankton/growth & development , Bays/microbiology , Microcystins/metabolism , Microcystins/analysis , Environmental Monitoring , Seasons , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Cyanobacteria/growth & development , Cyanobacteria/physiology , Cyanobacteria/genetics
17.
Environ Res ; 257: 119291, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38823607

ABSTRACT

The presence of butylparaben (BP), a prevalent pharmaceutical and personal care product, in surface waters has raised concerns regarding its impact on aquatic ecosystems. Despite its frequent detection, the toxicity of BP to the cyanobacterium Microcystis aeruginosa remains poorly understood. This study investigates the influence of BP on the growth and physiological responses of M. aeruginosa. Results indicate that low concentrations of BP (below 2.5 mg/L) have negligible effects on M. aeruginosa growth, whereas higher concentrations (5 mg/L and 10 mg/L) lead to significant growth inhibition. This inhibition is attributed to the severe disruption of photosynthesis, evidenced by decreased Fv/Fm values and chlorophyll a content. BP exposure also triggers the production of reactive oxygen species (ROS), resulting in elevated activity of antioxidant enzymes. Excessive ROS generation stimulates the production of microcystin-LR (MC-LR). Furthermore, lipid peroxidation and cell membrane damage indicate that high BP concentrations cause cell membrane rupture, facilitating the release of MC-LR into the environment. Transcriptome analysis reveals that BP disrupts energy metabolic processes, particularly affecting genes associated with photosynthesis, carbon fixation, electron transport, glycolysis, and the tricarboxylic acid cycle. These findings underscore the profound physiological impact of BP on M. aeruginosa and highlight its role in stimulating the production and release of MC-LR, thereby amplifying environmental risks in aquatic systems.


Subject(s)
Microcystis , Microcystis/drug effects , Microcystis/growth & development , Microcystis/metabolism , Microcystins/biosynthesis , Biomass , Cell Membrane/drug effects , Cell Membrane/metabolism , Marine Toxins/biosynthesis , Parabens/pharmacology , Antioxidants/metabolism
18.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928005

ABSTRACT

The pregnane X receptor (PXR) is a nuclear hormone receptor that plays a pivotal role in regulating gene expression in response to various ligands, particularly xenobiotics. In this context, the aim of this study was to shed light on the ligand affinity and functions of four NR1J1 paralogs identified in the marine mussel Mytilus galloprovincialis, employing a dual-luciferase reporter assay. To achieve this, the activation patterns of these paralogs in response to various toxins, including freshwater cyanotoxins (Anatoxin-a, Cylindrospermopsin, and Microcystin-LR, -RR, and -YR) and marine algal toxins (Nodularin, Saxitoxin, and Tetrodotoxin), alongside natural compounds (Saint John's Wort, Ursolic Acid, and 8-Methoxypsoralene) and microalgal extracts (Tetraselmis, Isochrysis, LEGE 95046, and LEGE 91351 extracts), were studied. The investigation revealed nuanced differences in paralog response patterns, highlighting the remarkable sensitivity of MgaNR1J1γ and MgaNR1J1δ paralogs to several toxins. In conclusion, this study sheds light on the intricate mechanisms of xenobiotic metabolism and detoxification, particularly focusing on the role of marine mussel NR1J1 in responding to a diverse array of compounds. Furthermore, comparative analysis with human PXR revealed potential species-specific adaptations in detoxification mechanisms, suggesting evolutionary implications. These findings deepen our understanding of PXR-mediated metabolism mechanisms, offering insights into environmental monitoring and evolutionary biology research.


Subject(s)
Marine Toxins , Mytilus , Pregnane X Receptor , Animals , Pregnane X Receptor/metabolism , Pregnane X Receptor/genetics , Mytilus/metabolism , Mytilus/genetics , Humans , Microcystins/metabolism , Microalgae/metabolism , Microalgae/genetics , Xenobiotics/metabolism , Bacterial Toxins/metabolism , Cyanobacteria Toxins
19.
Ecotoxicol Environ Saf ; 281: 116636, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917588

ABSTRACT

This study explored the regulatory role of bta-miR-149-3p in the inflammatory response induced by microcystin-leucine arginine (MC-LR) exposure in bovine Sertoli cells. The research endeavored to enhance the comprehension of the epigenetic mechanisms underlying MC-LR-induced cytotoxicity in Sertoli cells and establish a foundation for mitigating these effects in vitro. In this study, we elucidated the regulatory mechanism of bta-miR-149-3p in the MC-LR-induced inflammatory response by verifying the target gene of bta-miR-149-3p through luciferase assays and treating the cells with a bta-miR-149-3p inhibitor for 24 h. The results demonstrate that nuclear factor κB (NF-κB) acts as a downstream target gene of bta-miR-149-3p, which inhibits the MC-LR-induced inflammatory response in bovine Sertoli cells. This inhibition occurs by regulating the downregulation of tight junction constitutive proteins of the blood-testis barrier (BTB) through the suppression of the TLR-4/NF-κB signaling pathway (p < 0.05) and the up-regulation of the adhesion junction protein ß-catenin (p < 0.05). Notably, MC-LR exposure resulted in the up-regulation (p < 0.05) of inflammatory cytokines (IL-6, IL-1ß, and NLRP3) and the down-regulation (p < 0.05) of BTB tight junction constitutive proteins (ZO-1, Occludin) in Sertoli cells. Furthermore, the BTB constitutive protein ZO-1 exhibited significant down-regulation in Sertoli cells pretreated with the bta-miR-149-3p inhibitor compared to controls (p < 0.05), while Occludin showed no significant difference from CTNNB1 (p > 0.05). In summary, our findings suggest that bta-miR-149-3p suppresses the MC-LR-induced inflammatory response and alterations in the expression of BTB proteins in bovine Sertoli cells by inhibiting the TLR-4/NF-κB signaling pathway.


Subject(s)
Marine Toxins , MicroRNAs , Microcystins , NF-kappa B , Sertoli Cells , Signal Transduction , Toll-Like Receptor 4 , Animals , Cattle , Male , Microcystins/toxicity , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , NF-kappa B/metabolism , Signal Transduction/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Inflammation/chemically induced , Leucine/pharmacology
20.
Ecotoxicol Environ Saf ; 281: 116629, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917587

ABSTRACT

The degradation of cyanobacterial blooms releases hazardous contaminants such as microcystin-LR (MC-LR) and nitrite, which may collectively exert toxicity on various bodily systems. To evaluate their individual and combined toxicity in the kidney, mice were subjected to different concentrations of MC-LR and/or nitrite over a 6-month period in this study. The results revealed that combined exposure to MC-LR and nitrite exacerbated renal pathological alterations and dysfunction compared to exposure to either compound alone. Specifically, the protein and mRNA expression of kidney injury biomarkers, such as kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), were notably increased in combined exposure group. Concurrently, co-exposure to MC-LR and nitrite remarkedly upregulated levels of proinflammatory cytokines TNF-α, IL-6 and IL-1ß, while decreasing the anti-inflammatory cytokine IL-10. Notably, MC-LR and nitrite exhibited synergistic effects on the upregulation of renal IL-1ß levels. Moreover, MC-LR combined with nitrite not only elevated mRNA levels of proinflammatory cytokines but also increased protein levels of pyroptosis biomarkers such as IL-1ß, Gasdermin D (GSDMD), and Cleaved-GSDMD. Mechanistic investigations revealed that co-exposure to MC-LR and nitrite promoted pyroptosis both in vivo and in vitro, possibly through the activation of the TLR4/NLRP3/GSDMD pathway. Pretreatment with TLR4 inhibitor and NLRP3 inhibitor effectively suppressed pyroptosis induced by the co-exposure of these two toxins in HEK293T cells. These findings provide compelling evidence that MC-LR combined with nitrite synergistically induces pyroptosis in the kidney by activating the TLR4/NLRP3/GSDMD pathway. Overall, this study significantly enhances our comprehension of how environmental toxins interact and induce harm to the kidneys, offering promising avenues for identifying therapeutic targets to alleviate their toxic effects on renal health.


Subject(s)
Marine Toxins , Microcystins , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Pyroptosis , Toll-Like Receptor 4 , Microcystins/toxicity , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 4/metabolism , Animals , Pyroptosis/drug effects , Mice , Phosphate-Binding Proteins/metabolism , Male , Nitrites , Mice, Inbred C57BL , Kidney/drug effects , Kidney/pathology , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Cytokines/metabolism , Humans , Gasdermins
SELECTION OF CITATIONS
SEARCH DETAIL