Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63.379
Filter
1.
J Nanobiotechnology ; 22(1): 382, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951872

ABSTRACT

Reperfusion therapy is critical for saving heart muscle after myocardial infarction, but the process of restoring blood flow can itself exacerbate injury to the myocardium. This phenomenon is known as myocardial ischemia-reperfusion injury (MIRI), which includes oxidative stress, inflammation, and further cell death. microRNA-146a (miR-146a) is known to play a significant role in regulating the immune response and inflammation, and has been studied for its potential impact on the improvement of heart function after myocardial injury. However, the delivery of miR-146a to the heart in a specific and efficient manner remains a challenge as extracellular RNAs are unstable and rapidly degraded. Milk exosomes (MEs) have been proposed as ideal delivery platform for miRNA-based therapy as they can protect miRNAs from RNase degradation. In this study, the effects of miR-146a containing MEs (MEs-miR-146a) on improvement of cardiac function were examined in a rat model of MIRI. To enhance the targeting delivery of MEs-miR-146a to the site of myocardial injury, the ischemic myocardium-targeted peptide IMTP was modified onto the surfaces, and whether the modified MEs-miR-146a could exert a better therapeutic role was examined by echocardiography, myocardial injury indicators and the levels of inflammatory factors. Furthermore, the expressions of miR-146a mediated NF-κB signaling pathway-related proteins were detected by western blotting and qRT-PCR to further elucidate its mechanisms. MiR-146 mimics were successfully loaded into the MEs by electroporation at a square wave 1000 V voltage and 0.1 ms pulse duration. MEs-miR-146a can be up-taken by cardiomyocytes and protected the cells from oxygen glucose deprivation/reperfusion induced damage in vitro. Oral administration of MEs-miR-146a decreased myocardial tissue apoptosis and the expression of inflammatory factors and improved cardiac function after MIRI. The miR-146a level in myocardium tissues was significantly increased after the administration IMTP modified MEs-miR-146a, which was higher than that of the MEs-miR-146a group. In addition, intravenous injection of IMTP modified MEs-miR-146a enhanced the targeting to heart, improved cardiac function, reduced myocardial tissue apoptosis and suppressed inflammation after MIRI, which was more effective than the MEs-miR-146a treatment. Moreover, IMTP modified MEs-miR-146a reduced the protein levels of IRAK1, TRAF6 and p-p65. Therefore, IMTP modified MEs-miR-146a exerted their anti-inflammatory effect by inhibiting the IRAK1/TRAF6/NF-κB signaling pathway. Taken together, our findings suggested miR-146a containing MEs may be a promising strategy for the treatment of MIRI with better outcome after modification with ischemic myocardium-targeted peptide, which was expected to be applied in clinical practice in future.


Subject(s)
Exosomes , MicroRNAs , Myocardial Reperfusion Injury , NF-kappa B , Rats, Sprague-Dawley , Signal Transduction , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Myocardial Reperfusion Injury/metabolism , Exosomes/metabolism , NF-kappa B/metabolism , Rats , Male , Milk/chemistry , Myocardium/metabolism , Cardiotonic Agents/pharmacology , Myocytes, Cardiac/metabolism
2.
Skin Res Technol ; 30(7): e13829, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951954

ABSTRACT

BACKGROUND: In the continuous endeavor to find safe and efficient treatments for Atopic Dermatitis (AD), there remains a considerable focus on dietary adjustments. Nevertheless, the limited availability of research and conflicting findings in the academic literature pose a hurdle in establishing conclusive recommendations. METHOD: Mendelian randomization (MR) was applied to the most comprehensive genome-wide association studies (GWAS) data on tea intake (447 485), green tea intake (n = 64 949), flavored milk intake (n = 64 941), never eat eggs, dairy, wheat, sugar: Wheat products(n = 461 046), never eat eggs, dairy, wheat, sugar: Sugar or foods/drinks containing sugar (n = 461 046), never eat eggs, dairy, wheat, sugar: I eat all of the above (n = 461 046) and atopic dermatitis (n = 218 467). We used the inverse-variance weighted method (IVW) as the primary method. RESULTS: The IVW analyses have demonstrated an increased tea intake was genetically associated with a reduced risk of AD (odds ratio [OR]: 0.646, 95% confidence interval [CI]: 0.430-0.968, p = 0.034). Furthermore, green tea intake was significantly negatively associated with AD (IVW OR: 0.986, 95% CI: 0.975-0.998; p = 0.024) in the IVW model. AD risk could be reduced by never eating wheat products (IVW OR: 8.243E-04, 95% CI: 7.223E-06-9.408E-02, p = 0.003). There was no association between never eating eggs, dairy, wheat, sugar: Sugar, or foods/drinks containing sugar, I eat all of the above and AD. CONCLUSIONS: Our MR study suggests a causal relationship between tea intake, green tea intake, and the avoidance of eating wheat products with atopic dermatitis. Our findings recommend that preventing and managing atopic dermatitis may be achieved by never eating wheat products while increasing tea and green tea intake.


Subject(s)
Dermatitis, Atopic , Diet , Genome-Wide Association Study , Mendelian Randomization Analysis , Dermatitis, Atopic/genetics , Humans , Diet/adverse effects , Tea , Eggs , Milk , Triticum/genetics , Dairy Products , Polymorphism, Single Nucleotide
3.
Anal Chim Acta ; 1316: 342876, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969434

ABSTRACT

BACKGROUND: Ofloxacin (OFL) is often abused in medicine and animal husbandry, which poses a great threat to human health and ecological environment. Therefore, it is necessary to establish efficient method to detect OFL. Electrochemical sensor has attracted widespread attention due to the advantages of low cost and fast response. However, most electrochemical sensors usually use one response signal to detect the target, which makes it sensitive to the variable background noise in the complex environment, resulting in low robustness and selectivity. The ratio detection mode and employing molecularly imprinted polymer (MIP) are two strategies to solve these problems. RESULTS: A novel molecular imprinting polymer-ratiometric electrochemical sensor (MIP-RECS) based on Fe-MOF-NH2/CNTs-NH2/MXene composite was prepared for the rapid and sensitive detection of OFL. The positively charged Fe-MOF-NH2 and CNTs-NH2 as interlayer spacers were introduced into the negatively charged MXene through a simple electrostatic self-assembly technique, which effectively prevented the agglomeration of MXene and increased the electrocatalytic activity. A glass carbon electrode was modified by the composite and a MIP film was electropolymerized on it using o-phenylenediamine and ß-cyclodextrin as bifunctional monomers and OFL as template. Then a MIP-RECS was designed by adding dopamine (DA) into the electrolyte solution as internal reference, and OFL was quantified by the response current ratio of OFL to DA. The current ratio and the concentration of OFL displayed a satisfying linear relationship in the range of 0.1 µM-100 µM, with a limit of detection (LOD) of 13.2 nM. SIGNIFICANCE: Combining molecular imprinting strategy and ratio strategy, the MIP-RECS has impressive selectivity compared with the non-imprinted polymer-RECS, and has better repeatability and reproducibility than non-ratiometric sensor. The MIP-RECS has high sensitivity and accuracy, which was applied for the detection of OFL in four different brands of milk and was verified by HPLC method with satisfactory results.


Subject(s)
Electrochemical Techniques , Metal-Organic Frameworks , Molecularly Imprinted Polymers , Ofloxacin , Ofloxacin/analysis , Ofloxacin/chemistry , Electrochemical Techniques/methods , Molecularly Imprinted Polymers/chemistry , Metal-Organic Frameworks/chemistry , Nanotubes, Carbon/chemistry , Iron/chemistry , Iron/analysis , Limit of Detection , Molecular Imprinting , Animals , Electrodes , Milk/chemistry
4.
Sci Rep ; 14(1): 15054, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38956159

ABSTRACT

This study aimed to develop a highly efficient nanocomposite composed of magnetic chitosan/molybdenum disulfide (CS/MoS2/Fe3O4) for the removal of three polycyclic aromatic hydrocarbons (PAHs)-pyrene, anthracene, and phenanthrene. Novelty was introduced through the innovative synthesis procedure and the utilization of magnetic properties for enhanced adsorption capabilities. Additionally, the greenness of chitosan as a sorbent component was emphasized, highlighting its biodegradability and low environmental impact compared to traditional sorbents. Factors influencing PAH adsorption, such as nanocomposite dosage, initial PAH concentration, pH, and contact time, were systematically investigated and optimized. The results revealed that optimal removal efficiencies were attained at an initial PAH concentration of 150 mg/L, a sorbent dose of 0.045 g, pH 6.0, and a contact time of 150 min. The pseudo-second-order kinetic model exhibited superior fitting to the experimental data, indicating an equilibrium time of approximately 150 min. Moreover, the equilibrium adsorption process followed the Freundlich isotherm model, with kf and n values exceeding 7.91 mg/g and 1.20, respectively. Remarkably, the maximum absorption capacities for phenanthrene, anthracene, and pyrene on the sorbent were determined as 217 mg/g, 204 mg/g, and 222 mg/g, respectively. These findings underscore the significant potential of the CS/MoS2/Fe3O4 nanocomposite for efficiently removing PAHs from milk and other dairy products, thereby contributing to improved food safety and public health.


Subject(s)
Chitosan , Disulfides , Milk , Molybdenum , Nanocomposites , Polycyclic Aromatic Hydrocarbons , Disulfides/chemistry , Nanocomposites/chemistry , Chitosan/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/isolation & purification , Molybdenum/chemistry , Milk/chemistry , Animals , Adsorption , Kinetics , Hydrogen-Ion Concentration
5.
Mikrochim Acta ; 191(8): 441, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38954045

ABSTRACT

A ratiometric SERS aptasensor based on catalytic hairpin self-assembly (CHA) mediated cyclic signal amplification strategy was developed for the rapid and reliable determination of Escherichia coli O157:H7. The recognition probe was synthesized by modifying magnetic beads with blocked aptamers, and the SERS probe was constructed by functionalizing gold nanoparticles (Au NPs) with hairpin structured DNA and 4-mercaptobenzonitrile (4-MBN). The recognition probe captured E. coli O157:H7 specifically and released the blocker DNA, which activated the CHA reaction on the SERS probe and turned on the SERS signal of 6-carboxyl-x-rhodamine (ROX). Meanwhile, 4-MBN was used as an internal reference to calibrate the matrix interference. Thus, sensitive and reliable determination and quantification of E. coli O157:H7 was established using the ratio of the SERS signal intensities of ROX to 4-MBN. This aptasensor enabled detection of 2.44 × 102 CFU/mL of E. coli O157:H7 in approximately 3 h without pre-culture and DNA extraction. In addition, good reliability and excellent reproducibility were observed for the determination of E. coli O157:H7 in spiked water and milk samples. This study offered a new solution for the design of rapid, sensitive, and reliable SERS aptasensors.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Escherichia coli O157 , Gold , Limit of Detection , Metal Nanoparticles , Milk , Spectrum Analysis, Raman , Escherichia coli O157/isolation & purification , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Milk/microbiology , Milk/chemistry , Spectrum Analysis, Raman/methods , Biosensing Techniques/methods , Animals , Catalysis , Inverted Repeat Sequences , Food Contamination/analysis , Water Microbiology , Reproducibility of Results
6.
BMC Vet Res ; 20(1): 286, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961471

ABSTRACT

BACKGROUND: The milk's nutritional value is determined by its constituents, including fat, protein, carbohydrates, and minerals. The mammary gland's ability to produce milk is controlled by a complex network of genes. Thereby, the fat, protein, and lactose synthesis must be boost in milk to increase milk production efficiency. This can be accomplished by fusing genetic advancements with proper management practices. Therefore, this study aimed to investigate the association between the Lipoprotein lipase (LPL), kappa casein CSN3, and Glucose transporter 1 (GLUT1) genes expression levels and such milk components as fat, protein, and lactose in different dairy breeds during different stages of lactation. METHODS: To achieve such a purpose, 94 milk samples were collected (72 samples from 36 multiparous black-white and red-white Holstein-Friesian (HF) cows and 22 milk samples from 11 Egyptian buffaloes) during the early and peak lactation stages. The milk samples were utilized for milk analysis and genes expressions analyses using non- invasive approach in obtaining milk fat globules (MFGs) as a source of Ribonucleic acid (RNA). RESULTS: LPL and CSN3 genes expressions levels were found to be significantly higher in Egyptian buffalo than Holstein-Friesian (HF) cows as well as fat and protein percentages. On the other hand, GLUT1 gene expression level was shown to be significantly higher during peak lactation than early lactation. Moreover, lactose % showed a significant difference in peak lactation phase compared to early lactation phase. Also, fat and protein percentages were significantly higher in early lactation period than peak lactation period but lactose% showed the opposite pattern of Egyptian buffalo. CONCLUSION: Total RNA can be successfully obtained from MFGs. The results suggest that these genes play a role in glucose absorption and lactose synthesis in bovine mammary epithelial cells during lactation. Also, these results provide light on the differential expression of these genes among distinct Holstein-Friesian cow breeds and Egyptian buffalo subspecies throughout various lactation phases.


Subject(s)
Caseins , Glycolipids , Glycoproteins , Lactation , Lipid Droplets , Mammary Glands, Animal , Milk , RNA, Messenger , Animals , Cattle/genetics , Lactation/genetics , Female , Lipid Droplets/metabolism , Milk/chemistry , Milk/metabolism , Glycolipids/metabolism , Caseins/genetics , Caseins/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mammary Glands, Animal/metabolism , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Buffaloes/genetics , Buffaloes/metabolism , Lactose/metabolism , Lactose/analysis , Milk Proteins/analysis , Milk Proteins/metabolism , Milk Proteins/genetics , Gene Expression Regulation
7.
J Texture Stud ; 55(4): e12852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38952166

ABSTRACT

The development of thickening powders for the management of dysphagia is imperative due to the rapid growth of aging population and prevalence of the dysphagia. One promising thickening agent that can be used to formulate dysphagia diets is basil seed mucilage (BSM). This work investigates the effects of dispersing media, including water, milk, skim milk, and apple juice, on the rheological and tribological properties of the BSM-thickened liquids. Shear rheology results revealed that the thickening ability of BSM in these media in ascending order is milk < skim milk ≈ apple juice < water. On the other hand, extensional rheology demonstrated that the longest filament breakup time was observed when BSM was dissolved in milk, followed by skim milk, water, and apple juice. Furthermore, tribological measurements showed varying lubrication behavior, depending on the BSM concentration and dispersing media. Dissolution of BSM in apple juice resulted in the most superior lubrication property compared with that in other dispersing media. Overall, this study provides insights on BSM's application as a novel gum-based thickening powder in a range of beverages and emphasizes how important it is for consumers to have clear guidance for the use of BSM in dysphagia management.


Subject(s)
Ocimum basilicum , Plant Mucilage , Rheology , Seeds , Ocimum basilicum/chemistry , Seeds/chemistry , Plant Mucilage/chemistry , Animals , Milk/chemistry , Viscosity , Deglutition Disorders , Malus/chemistry , Fruit and Vegetable Juices/analysis , Humans , Water , Powders , Lubrication
8.
Anim Sci J ; 95(1): e13968, 2024.
Article in English | MEDLINE | ID: mdl-38951923

ABSTRACT

We predicted the energy balance of cows from milk traits and estimated the genetic correlations of predicted energy balance (PEB) with fertility traits for the first three lactations. Data included 9,646,606 test-day records of 576,555 Holstein cows in Japan from 2015 to 2019. Genetic parameters were estimated with a multiple-trait model in which the records among lactation stages and parities were treated as separate traits. Fertility traits were conception rate at first insemination (CR), number of inseminations (NI), and days open (DO). Heritability estimates of PEB were 0.28-0.35 (first lactation), 0.15-0.29 (second), and 0.09-0.23 (third). Estimated genetic correlations among lactation stages were 0.85-1.00 (first lactation), 0.73-1.00 (second), and 0.64-1.00 (third). Estimated genetic correlations among parities were 0.82-0.96 (between first and second), 0.97-0.99 (second and third), and 0.69-0.92 (first and third). Estimated genetic correlations of PEB in early lactation with fertility were 0.04 to 0.19 for CR, -0.03 to -0.19 for NI, and -0.01 to -0.24 for DO. Genetic improvement of PEB is possible. Lower PEB in early lactation was associated with worse fertility, suggesting that improving PEB in early lactation may improve reproductive performance.


Subject(s)
Energy Metabolism , Fertility , Lactation , Milk , Animals , Cattle/genetics , Cattle/physiology , Cattle/metabolism , Female , Energy Metabolism/genetics , Fertility/genetics , Fertilization/genetics , Japan , Lactation/genetics , Milk/metabolism , Quantitative Trait, Heritable
9.
Mikrochim Acta ; 191(7): 430, 2024 06 29.
Article in English | MEDLINE | ID: mdl-38949666

ABSTRACT

A pico-injection-aided digital droplet detection platform is presented that integrates loop-mediated isothermal amplification (LAMP) with molecular beacons (MBs) for the ultrasensitive and quantitative identification of pathogens, leveraging the sequence-specific detection capabilities of MBs. The microfluidic device contained three distinct functional units including droplet generation, pico-injection, and droplet counting. Utilizing a pico-injector, MBs are introduced into each droplet to specifically identify LAMP amplification products, thereby overcoming issues related to temperature incompatibility. Our methodology has been validated through the quantitative detection of Escherichia coli, achieving a detection limit as low as 9 copies/µL in a model plasmid containing the malB gene and 3 CFU/µL in a spiked milk sample. The total analysis time was less than 1.5 h. The sensitivity and robustness of this platform further demonstrated the potential for rapid pathogen detection and diagnosis, particularly when integrated with cutting-edge microfluidic technologies.


Subject(s)
Escherichia coli , Limit of Detection , Milk , Nucleic Acid Amplification Techniques , Nucleic Acid Amplification Techniques/methods , Escherichia coli/isolation & purification , Escherichia coli/genetics , Milk/microbiology , Animals , Molecular Diagnostic Techniques/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , DNA, Bacterial/analysis , DNA, Bacterial/genetics
10.
BMC Vet Res ; 20(1): 297, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971767

ABSTRACT

BACKGROUND: Listeriosis is a global health threat to both animals and humans, especially in developing countries. This study was designed to isolate Listeria monocytogenes from faeces; environmental samples; and cow, sheep and goat milk, as well as human stool, to study its molecular characteristics and antibiotic sensitivity in the New Valley and Beheira Governorates, Egypt. The isolation and identification of L. monocytogenes were carried out using traditional culture and biochemical methods, followed by antibiography, genus confirmation of some isolates and detection and sequencing of InlB genes via PCR. RESULTS: Out of 2097 examined samples, the prevalence of L. monocytogenes was 13.4% in animals; the prevalence was 9.2%, 2.4%, 25.4%, 4%, 42.4%, and 6.4% in cattle faeces, cattle milk, sheep faeces, sheep milk, goat faeces, and goat milk, respectively. However, the prevalence of L. monocytogenes was 8.3% in human samples. Both animal and human isolates showed 100% resistance to trimethoprim-sulfamethoxazole, and the isolates showed the highest sensitivity to flumequine (100%), amikacin (99.2%), gentamicin (97.6%), and levofloxacin (94.6%). Multidrug resistance (MDR) was detected in 86.9% of the tested isolates. The 16 S rRNA and inlB genes were detected in 100% of the randomly selected L. monocytogenes isolates. Phylogenetic analysis of three isolates based on the inlB gene showed 100% identity between faecal, milk and human stool isolates. CONCLUSIONS: Faeces and milk are major sources of listeriosis, and the high degree of genetic similarity between animal and human isolates suggests the possibility of zoonotic circulation. The high prevalence of MDR L. monocytogenes in both animal and human samples could negatively impact the success of prevention and treatments for animal and human diseases, thereby imposing serious risks to public health.


Subject(s)
Anti-Bacterial Agents , Feces , Goats , Listeria monocytogenes , Listeriosis , Milk , Animals , Egypt/epidemiology , Listeria monocytogenes/drug effects , Listeria monocytogenes/genetics , Listeria monocytogenes/isolation & purification , Humans , Prevalence , Sheep , Anti-Bacterial Agents/pharmacology , Cattle , Feces/microbiology , Listeriosis/veterinary , Listeriosis/epidemiology , Listeriosis/microbiology , Milk/microbiology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
11.
Nutrients ; 16(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38999852

ABSTRACT

Dairy products are a significant source of iodine, and their contribution to iodine intake must be evaluated regularly. However, there is a lack of data on iodine intake from dairy products in China. Through a cross-sectional study, we determined the iodine content of dairy products in the Chinese diet and estimated iodine intake among Chinese children. Intake records for 30 consecutive days were used to investigate the consumption of dairy products by 2009 children from Yunnan and Liaoning Provinces. The iodine contents of 266 dairy products with high intake frequency were determined using inductively coupled plasma-mass spectrometry (ICP-MS). We then calculated the iodine intake and contribution of dairy products and explored the related factors of dairy iodine intake through a generalized linear mixed model. Ultra-high-temperature (UHT) sterilized milk accounted for 78.7% of the total dairy products, with an iodine content of 23.0 µg/100 g. The dairy product intake rate of children in China was 83.6%, with an average daily intake of 143.1 g. The median iodine intake from milk and dairy was 26.8 µg/d, 41.5% of the estimated average recommendation (EAR) for younger children and 31.8% of the EAR for older children. The daily milk iodine intake of children in Yunnan Province was 9.448 µg/day lower than that of children in Liaoning Province (p < 0.001), and the daily iodine intake of children in rural areas was 17.958 µg/day lower than that of children in urban areas (p < 0.001). Chinese dairy products were rich in iodine, and the content of iodine was intermediate to that reported in Europe and the USA. However, children's daily intake of milk iodine was lower than that of children in other developed countries due to the lower daily intake of dairy products, especially those in rural areas.


Subject(s)
Dairy Products , Diet , Iodine , Iodine/analysis , Iodine/administration & dosage , Humans , Dairy Products/analysis , China , Cross-Sectional Studies , Male , Female , Child , Child, Preschool , Diet/statistics & numerical data , Milk/chemistry , Animals , Infant
12.
Reprod Domest Anim ; 59(7): e14675, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39005139

ABSTRACT

The aim of this research was to assess genetic parameters for first lactation production and reproduction traits in Murrah buffaloes by employing additive and maternal effects. Data on pedigree and specific traits of 640 Murrah buffaloes were gathered from 1997 to 2020. These traits encompassed first lactation milk yield (FLMY), 305-day first lactation milk yield (305FLMY), first lactation length (FLL), first lactation peak yield (FPY), first service period (FSP), first calving interval (FCI) and first dry period (FDP). Genetic evaluations employed six univariate animal models, accounting for both direct and maternal effects, facilitated by THRGIBBS1F90 and POSTGIBBSF90 programs. Fixed factors included in the analysis were period of calving, season of calving and age at first calving. The Bayesian estimates for direct heritability, derived from the most suitable model, were as follows: FLMY: 0.28 ± 0.01, 305FLMY: 0.30 ± 0.01, FLL: 0.19 ± 0.01, FPY: 0.18 ± 0.01, FSP: 0.12 ± 0.01, FCI: 0.14 ± 0.01 and FDP: 0.12 ± 0.01. Maternal effects were found significant, ranging from 5% to 10%, in first lactation traits under Model 2 and Model 5. Additionally, positive and significant genetic and phenotypic correlations were observed among the studied traits. In conclusion, selection based on 305-day first lactation milk yield suggests potential for genetic enhancement in Murrah buffaloes, advocating its inclusion in breeding programmes to bolster early performance. Also, consideration of maternal influences is necessary for genetic progress of animals.


Subject(s)
Bayes Theorem , Buffaloes , Lactation , Reproduction , Animals , Buffaloes/physiology , Buffaloes/genetics , Female , Lactation/physiology , Reproduction/physiology , Reproduction/genetics , Milk , Maternal Inheritance , Breeding , Male
13.
Mikrochim Acta ; 191(8): 464, 2024 07 15.
Article in English | MEDLINE | ID: mdl-39007936

ABSTRACT

Rapid and high-sensitive Salmonella detection in milk is important for preventing foodborne disease eruption. To overcome the influence of the complex ingredients in milk on the sensitive detection of Salmonella, a dual-signal reporter red fluorescence nanosphere (RNs)-Pt was designed by combining RNs and Pt nanoparticles. After being equipped with antibodies, the immune RNs-Pt (IRNs-Pt) provide an ultra-strong fluorescence signal when excited by UV light. With the assistance of the H2O2/TMB system, a visible color change appeared that was attributed to the strong peroxidase-like catalytic activity derived from Pt nanoparticles. The IRNs-Pt in conjunction with immune magnetic beads can realize that Salmonella typhimurium (S. typhi) was captured, labeled, and separated effectively from untreated reduced-fat pure milk samples. Under the optimal experimental conditions, with the assay, as low as 50 CFU S. typhi can be converted to detectable fluorescence and absorbance signals within 2 h, suggesting the feasibility of practical application of the assay. Meanwhile, dual-signal modes of quantitative detection were realized. For fluorescence signal detection (emission at 615 nm), the linear correlation between signal intensity and the concentration of S. typhi was Y = 83C-3321 (R2 = 0.9941), ranging from 103 to 105 CFU/mL, while for colorimetric detection (absorbamce at 450 nm), the relationship between signal intensity and the concentration of S. typhi was Y = 2.9logC-10.2 (R2 = 0.9875), ranging from 5 × 103 to 105 CFU/mL. For suspect food contamination by foodborne pathogens, this dual-mode signal readout assay is promising for achieving the aim of convenient preliminary screening and accurate quantification simultaneously.


Subject(s)
Colorimetry , Milk , Salmonella typhimurium , Milk/microbiology , Milk/chemistry , Salmonella typhimurium/isolation & purification , Colorimetry/methods , Animals , Metal Nanoparticles/chemistry , Limit of Detection , Platinum/chemistry , Hydrogen Peroxide/chemistry , Fluorescence , Nanospheres/chemistry , Food Microbiology/methods , Food Contamination/analysis , Spectrometry, Fluorescence/methods
14.
J Agric Food Chem ; 72(28): 15959-15970, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38954479

ABSTRACT

The lack of practical platforms for bacterial separation remains a hindrance to the detection of bacteria in complex samples. Herein, a composite cryogel was synthesized by using clickable building blocks and boronic acid for bacterial separation. Macroporous cryogels were synthesized by cryo-gelation polymerization using 2-hydroxyethyl methacrylate and allyl glycidyl ether. The interconnected macroporous architecture enabled high interfering substance tolerance. Nanohybrid nanoparticles were prepared via surface-initiated atom transfer radical polymerization and immobilized onto cryogel by click reaction. Alkyne-tagged boronic acid was conjugated to the composite for specific bacteria binding. The physical and chemical characteristics of the composite cryogel were analyzed systematically. Benefitting from the synergistic, multiple binding sites provided by the silica-assisted polymer, the composite cryogel exhibited excellent affinity toward S. aureus and Salmonella spp. with capacities of 91.6 × 107 CFU/g and 241.3 × 107 CFU/g in 0.01 M PBS (pH 8.0), respectively. Bacterial binding can be tuned by variations in pH and temperature and the addition of monosaccharides. The composite was employed to separate S. aureus and Salmonella spp. from spiked tap water, 40% cow milk, and sea cucumber enzymatic hydrolysate, which resulted in high bacteria separation and demonstrated remarkable potential in bacteria separation from food samples.


Subject(s)
Click Chemistry , Cryogels , Salmonella , Staphylococcus aureus , Cryogels/chemistry , Staphylococcus aureus/isolation & purification , Animals , Salmonella/isolation & purification , Porosity , Milk/microbiology , Milk/chemistry , Boronic Acids/chemistry , Cattle , Methacrylates/chemistry
15.
J Agric Food Chem ; 72(28): 15416-15426, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38955361

ABSTRACT

In recent years, there has been a growing interest in the pure casein fraction of milk protein, particularly ß-casein due to its physicochemical properties as well as its bio- and techno-functional properties. The utilization of self-assembled ß-caseins from bovine origin as nanocarriers for the delivery of nutraceutical compounds or drugs has increased dramatically. Concerning ß-caseins from other milk sources, the use of hypoallergenic donkey ß-caseins as a potential delivery vehicle for nutraceutical hydrophobic compounds is beginning to generate interest. The present review deals with casein micelles models, bovine and donkey ß-casein molecular structures, as well as their physical-chemical properties that account for their exploitation in nutraceutics and pharmaceutics. This review work suggests the possibility of developing delivery systems for hydrophobic bioactive compounds using ß-casein purified from hypoallergenic donkey milk, highlighting the potential of this protein as an innovative and promising vehicle for enhancing the enrichment and bioavailability of various bioactive substances in food products.


Subject(s)
Caseins , Equidae , Micelles , Milk , Animals , Caseins/chemistry , Cattle , Milk/chemistry , Drug Carriers/chemistry , Dietary Supplements/analysis , Hydrophobic and Hydrophilic Interactions
16.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955370

ABSTRACT

AIMS: This study aims to evaluate the storage stability of the freeze-dried recombinant Lactococcus lactis NZ3900-fermented milk powder expressing K-ras (Kristen rat sarcoma viral oncogene homolog) mimotopes targeting colorectal cancer in vacuum packaging. METHODS AND RESULTS: The freeze-dried L. lactis-fermented milk powder stored in 4-ply retortable polypropylene (RCPP)-polyamide (PA)-aluminium (AL)-polyethylene terephthalate (PET) and aluminium polyethylene (ALPE) was evaluated throughout 49 days of accelerated storage (38°C and 90% relative humidity). The fermented milk powder stored in 4-ply packaging remained above 6 log10 CFU g-1 viability, displayed lower moisture content (6.1%), higher flowability (43° angle of repose), water solubility (62%), and survivability of L. lactis after simulated gastric and intestinal digestion (>82%) than ALPE packaging after 42 days of accelerated storage. K-ras mimotope expression was detected intracellularly and extracellularly in the freeze-dried L. lactis-fermented milk powder upon storage. CONCLUSIONS: This suggests that fermented milk powder is a suitable food carrier for this live oral vaccine.


Subject(s)
Food Packaging , Freeze Drying , Lactococcus lactis , Lactococcus lactis/metabolism , Lactococcus lactis/genetics , Food Packaging/methods , Animals , Vacuum , Powders , Cultured Milk Products/microbiology , Fermentation , Milk/chemistry , Genes, ras/genetics , Food Storage
17.
Acta Vet Scand ; 66(1): 33, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020375

ABSTRACT

An increasing number of dairy farmers plan to implement cow-calf contact (CCC) in their herd which necessitates descriptions of the cows` performance in different systems. The aim of the study was to describe (1) Automatic milking system (AMS) milk yield of cows in a CCC system during the first 100 days in milk (DIM) and (2) AMS milk yield before and after cow-calf separation. In a prospective study at a commercial Norwegian dairy farm, we included all calvings from Norwegian Red cows between January 2019 to April 2020. After calving, cow-calf pairs stayed in an individual calving pen during the first 5-6 d before they were moved to the loose housing unit with the remaining herd. Calves had whole-day (24 h/d) and full physical contact to the cows. Cows were milked in an AMS. From 14 individual cows of which one cow calved twice during the study period, we collected daily AMS yields from 15 different lactations, with parities ranging from 1 (n = 6), 2 (n = 5) and 3 (n = 4). Due to the sample size and structure of the data set, we only calculated descriptive statistics from DIM 7-100. All data is shown separately for primiparous and multiparous cows. Mean (± SD) calf age at (fence-line) separation was 52 d ± 14.8 beyond which suckling was prevented. Our data indicates great individual variation in the AMS milk yield. Prior to separation, primiparous cows` AMS yields ranged from 11.0 to 25.9 kg/d while that of multiparous cows ranged from 4.8 to 28.8 kg/d. Once calves were no longer allowed to suckle, the yield increased gradually. During the week after separation, AMS yields ranged from 17.3 to 30.4 kg/d for primiparous cows and 8.7 to 41.8 kg/d for multiparous cows and these yields increased in DIM 93-100 (26.5 to 34.3 and 20.6 to 38.3 kg/d respectively). This study is limited by a low sample size from a single-herd but may provide useful descriptions of AMS milk yield in a whole-day, full contact CCC system during the first 100 days of lactation.


Subject(s)
Dairying , Lactation , Milk , Animals , Cattle/physiology , Female , Lactation/physiology , Dairying/methods , Milk/chemistry , Prospective Studies , Norway , Pregnancy
18.
Arch Microbiol ; 206(7): 335, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953983

ABSTRACT

Salmonella is considered as one of the most common zoonotic /foodborne pathogens in the world. The application of bacteriophages as novel antibacterial agents in food substrates has become an emerging strategy. Bacteriophages have the potential to control Salmonella contamination.We have isolated and characterized a broad-spectrum Salmonella phage, SP154, which can lyse 9 serotypes, including S. Enteritidis, S. Typhimurium, S. Pullorum, S. Arizonae, S. Dublin, S. Cholerasuis, S. Chester, S. 1, 4, [5], 12: i: -, and S. Derby, accounting for 81.9% of 144 isolates. SP154 showed a short latent period (40 min) and a high burst size (with the first rapid burst size at 107 PFUs/cell and the second rapid burst size at approximately 40 PFUs/cell). Furthermore, SP154 activity has higher survival rates across various environmental conditions, including pH 4.0-12.0 and temperatures ranging from 4 to 50 °C for 60 min, making it suitable for diverse food processing and storage applications. Significant reductions in live Salmonella were observed in different foods matrices such as milk and chicken meat, with a decrease of up to 1.9 log10 CFU/mL in milk contamination and a 1 log10 CFU/mL reduction in chicken meat. Whole genome sequencing analysis revealed that SP154 belongs to the genus Ithacavirus, subfamily Humphriesvirinae, within the family Schitoviridae. Phylogenetic analysis based on the terminase large subunit supported this classification, although an alternate tree using the tail spike protein gene suggested affiliation with the genus Kuttervirus, underscoring the limitations of relying on a single gene for phylogenetic inference. Importantly, no virulence or antibiotic resistance genes were detected in SP154. Our research highlights the potential of using SP154 for biocontrol of Salmonella in the food industry.


Subject(s)
Food Microbiology , Genome, Viral , Salmonella Phages , Salmonella , Whole Genome Sequencing , Salmonella Phages/genetics , Salmonella Phages/isolation & purification , Salmonella Phages/classification , Salmonella Phages/physiology , Animals , Salmonella/virology , Salmonella/genetics , Salmonella/classification , Salmonella/isolation & purification , Chickens , Milk/microbiology , Milk/virology , Meat/microbiology , Meat/virology , Phylogeny
19.
J Food Sci ; 89(7): 4419-4429, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957111

ABSTRACT

The objective of this research was to evaluate changes in flow behavior of chocolate during chocolate grinding using a stone grinder as affected by chocolate formulation. Three different types of chocolates were evaluated. Two chocolates without milk added (70% chocolate) and two chocolates with milk added and with different amounts of cocoa nibs (30% chocolate and 14% chocolate) were tested. For the 70% chocolates, nibs of two different origins were used; therefore, a total of four samples were evaluated. Chocolates were processed in a stone grinder, and samples were taken as a function of grinding time. For each timepoint, the flow behavior of the samples was measured using a rotational rheometer and fitted to the Casson model. Particle size was measured using a laser scattering instrument. Results showed that yield stress increased linearly while the Casson plastic viscosity decreased exponentially with grinding time (smaller particles). Particle size distribution of the chocolates showed a prominent bimodal distribution for short grinding times (∼9 h) with small (∼15 µm) and large (∼100 µm) particles; with longer grinding time, the population of larger particles decreased. Yield stress values were higher for the 70% chocolate, but they were not very different between the two milk chocolates tested. The Casson plastic viscosity was greatest for the 70% chocolate, followed by the 30% chocolate. The 14% chocolate had the lowest Casson plastic viscosity. Changes of Casson plastic viscosity with particle size were more evident for the dark chocolates compared to the milk ones. These results are helpful to small chocolate producers who need better understanding of how the formulation and grinding of chocolate affect its flow behavior, which will ultimately affect chocolate handling during production.


Subject(s)
Chocolate , Food Handling , Milk , Particle Size , Chocolate/analysis , Food Handling/methods , Viscosity , Milk/chemistry , Rheology , Cacao/chemistry , Animals
20.
Anim Sci J ; 95(1): e13976, 2024.
Article in English | MEDLINE | ID: mdl-38967066

ABSTRACT

We investigated the effects of regrowth interval and first-cut timing on the dietary characteristics of second-cut orchardgrass silage and feed intake and milk production in dairy cows fed second-cut orchardgrass silage. The second-cut grasses were harvested 7w after the first-cut at the early stage (E7w) or at the heading stage (H7w), or harvested 6w after the first-cut at the early stage (E6w) from orchardgrass sward, and then ensiled. We evaluated the effect of regrowth interval by comparing E7w and E6w, and the effect of first-cut timing by comparing E7w and H7w. Six multiparous Holstein cows were used in a replicated 3 × 3 Latin square design, with three dietary treatments: diets containing E7w, E6w, or H7w silage at 30% dietary dry matter. We observed that feeding E6w silage instead of E7w silage increased fiber digestibility, dry matter intake, and milk production; however, the first-cut timing (E7w vs. H7w) did not affect nutrient content and digestibility, feed intake, or lactation performance. These results show that harvesting at short regrowth intervals for second-cut orchardgrass can be an effective strategy for improving feed utilization and milk yield; however, the first-cut timing for second-cut orchardgrass has little impact.


Subject(s)
Dactylis , Diet , Digestion , Eating , Lactation , Milk , Silage , Animals , Cattle/physiology , Cattle/metabolism , Female , Lactation/physiology , Digestion/physiology , Eating/physiology , Milk/metabolism , Diet/veterinary , Animal Nutritional Physiological Phenomena/physiology , Dietary Fiber , Dairying/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...