Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.799
1.
Front Public Health ; 12: 1389513, 2024.
Article En | MEDLINE | ID: mdl-38841677

Background: Peripartum cardiomyopathy (PPCM) is a common cause of heart failure (HF) in the peripartum. Some medications are considered safe while breastfeeding. However, sacubitril/valsartan (Entresto), while efficacious, is not recommended in breastfeeding women due to concerns about adverse infant development, and no published data suggest otherwise. Objectives: This study aimed to assess the transfer of sacubitril/valsartan into human milk and evaluate the infant's risk of drug exposure. Methods: The InfantRisk Human Milk Biorepository released samples and corresponding health information from five breastfeeding maternal-infant dyads exposed to sacubitril/valsartan. Sacubitril, valsartan, and LBQ657 (sacubitril active metabolite) concentrations were determined using liquid chromatography-mass spectrometry (LC/MS/MS) from timed samples 0, 1, 2, 4, 6, 8, 10, and 12 h following medication administration at steady state conditions. Results: Valsartan levels were below the detection limit of 0.19 ng/mL in all milk samples. Sacubitril was measurable in all milk samples of the five participants, peaking 1 h after drug administration at a mean concentration of 1.52 ng/mL for a total infant dose of 0.00049 mg/kg/12 h and a relative infant dose (RID) calculated at 0.01%. The maximum concentration of its active metabolite LBQ657 in the milk samples was observed 4 h after medication administration and declined over the remaining 12-h dosing interval, for an average concentration of 9.5 ng/mL. The total infant dose was 0.00071 mg/kg/12 h, and the RID was 0.22%. Two mothers reported continuing to breastfeed while taking sacubitril/valsartan; both mothers stated observing no negative effects in their breastfed infants. Conclusion: The transfer of sacubitril/valsartan into human milk is minimal. These concentrations are unlikely to pose a significant risk to breastfeeding infants, with a combined calculated RID of <0.25%, which is far lower than the industry safety standards (RID <10%).


Aminobutyrates , Biphenyl Compounds , Breast Feeding , Drug Combinations , Milk, Human , Valsartan , Humans , Milk, Human/chemistry , Milk, Human/metabolism , Female , Aminobutyrates/analysis , Adult , Chromatography, Liquid , Pregnancy , Tandem Mass Spectrometry , Infant, Newborn , Tetrazoles , Infant , Angiotensin Receptor Antagonists/administration & dosage , Cardiomyopathies
3.
Food Res Int ; 186: 114317, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729709

Lipids play a pivotal role in the nutrition of preterm infants, acting as a primary energy source. Due to their underdeveloped gastrointestinal systems, lipid malabsorption is common, leading to insufficient energy intake and slowed growth. Therefore, it is critical to explore the reasons behind the low lipid absorption rate in formulas for preterm infants. This study utilized a simulated in intro gastrointestinal digestion model to assess the differences in lipid digestion between preterm human milk and various infant formulas. Results showed that the fatty acid release rates for formulas IF3, IF5, and IF7 were 58.90 %, 56.58 %, and 66.71 %, respectively, lower than human milk's 72.31 %. The primary free fatty acids (FFA) and 2-monoacylglycerol (2-MAG) released during digestion were C14:0, C16:0, C18:0, C18:1n-9, and C18:2n-6, in both human milk and formulas. Notably, the higher release of C16:0 in formulas may disrupt fatty acid balance, impacting lipid absorption. Further investigations are necessary to elucidate lipid absorption differences, which will inform the optimization of lipid content in preterm infant formulas.


Digestion , Infant Formula , Infant, Premature , Milk, Human , Milk, Human/chemistry , Milk, Human/metabolism , Humans , Infant Formula/chemistry , Infant, Newborn , Fatty Acids/analysis , Fatty Acids/metabolism , Lipids/analysis , Fatty Acids, Nonesterified/analysis , Fatty Acids, Nonesterified/metabolism , Lipid Metabolism , Gastrointestinal Tract/metabolism , Models, Biological , Monoglycerides/metabolism , Monoglycerides/analysis , Dietary Fats/metabolism , Dietary Fats/analysis
4.
PLoS One ; 19(5): e0292997, 2024.
Article En | MEDLINE | ID: mdl-38728264

BACKGROUND: Current research suggests that energy transfer through human milk influences infant nutritional development and initiates metabolic programming, influencing eating patterns into adulthood. To date, this research has predominantly been conducted among women in high income settings and/or among undernourished women. We will investigate the relationship between maternal body composition, metabolic hormones in human milk, and infant satiety to explore mechanisms of developmental satiety programming and implications for early infant growth and body composition in Samoans; a population at high risk and prevalence for overweight and obesity. Our aims are (1) to examine how maternal body composition influences metabolic hormone transfer from mother to infant through human milk, and (2) to examine the influences of maternal metabolic hormone transfer and infant feeding patterns on early infant growth and satiety. METHODS: We will examine temporal changes in hormone transfers to infants through human milk in a prospective longitudinal cohort of n = 80 Samoan mother-infant dyads. Data will be collected at three time points (1, 3, & 4 months postpartum). At each study visit we will collect human milk and fingerpick blood samples from breastfeeding mother-infant dyads to measure the hormones leptin, ghrelin, and adiponectin. Additionally, we will obtain body composition measurements from the dyad, observe breastfeeding behavior, conduct semi-structured interviews, and use questionnaires to document infant hunger and feeding cues and satiety responsiveness. Descriptive statistics, univariate and multivariate analyses will be conducted to address each aim. DISCUSSION: This research is designed to advance our understanding of variation in the developmental programming of satiety and implications for early infant growth and body composition. The use of a prospective longitudinal cohort alongside data collection that utilizes a mixed methods approach will allow us to capture a more accurate representation on both biological and cultural variables at play in a population at high risk of overweight and obesity.


Body Composition , Milk, Human , Humans , Milk, Human/metabolism , Milk, Human/chemistry , Female , Infant , Prospective Studies , Longitudinal Studies , Leptin/blood , Leptin/metabolism , Adiponectin/blood , Adiponectin/metabolism , Adult , Ghrelin/blood , Ghrelin/metabolism , Child Development/physiology , Male , Breast Feeding , Infant Nutritional Physiological Phenomena , Satiation/physiology , Mothers
5.
Molecules ; 29(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731536

The quality of fat in infant milk is determined by the fatty acid profile and selected indices describing nutritional value. The aim of this study was to analyze the fatty acid profile and lipid quality indices of infant formulas and compare these data with breast milk. The study material included seven types of cow's milk-based follow-on infant formulas and samples of mature breast milk. The determination of fatty acids was performed using the gas chromatography (GC) technique. Lipid quality indices were calculated based on the relevant equations. Infant formulas contained more medium-chain fatty acids (MCFAs) and oleic acid. Moreover, they contained more than 30% more linoleic acid and more than twice as much α-linolenic acid and docosahexaenoic acid. In contrast, significant amounts of trans fatty acids (TFAs) were noted in breast milk, while infant formulas contained trace amounts. Infant formulas were characterized by a lower AI (Index of Atherogenicity) (0.49-0.98) and TI (Index of Thrombogenicity) (0.48-0.60) and a higher H/H (hypocholesterolemic/hypercholesterolemic) ratio (1.93-2.30) compared with breast milk (1.47, 1.60, and 1.21, respectively). The composition of infant formulas depended on the type of fat added at the production stage and differed significantly from breast milk, particularly in terms of polyunsaturated fatty acids and lipid quality indices.


Fatty Acids , Infant Formula , Lipids , Milk, Human , Infant Formula/chemistry , Infant Formula/analysis , Humans , Fatty Acids/analysis , Milk, Human/chemistry , Infant , Lipids/analysis , Female , Nutritive Value , Animals
6.
Molecules ; 29(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38731587

We aimed to obtain the optimal formula for human milk fat substitute (HMFS) through a combination of software and an evaluation model and further verify its practicability through an animal experiment. The results showed that a total of 33 fatty acid (FA) and 63 triglyceride (TAG) molecular species were detected in vegetable oils. Palmitic acid, oleic acid, linoleic acid, 18:1/16:0/18:1, 18:2/16:0/18:2, 18:1/18:1/18:1 and 18:1/18:2/18:1, were the main molecular species among the FAs and TAGs in the vegetable oils. Based on the HMFS evaluation model, the optimal mixed vegetable oil formula was blended with 21.3% palm oil, 2.8% linseed oil, 2.6% soybean oil, 29.9% rapeseed oil and 43.4% maize oil, with the highest score of 83.146. Moreover, there was no difference in the weight, blood routine indices or calcium and magnesium concentrations in the feces of the mice between the homemade mixed vegetable oil (HMVO) group and the commercial mixed vegetable oil (CMVO) group, while nervonic acid (C24:1) and octanoic acid (C8:0) were absorbed easily in the HMVO group. Therefore, these results demonstrate that the mixing of the different vegetable oils was feasible via a combination of computer software and an evaluation model and provided a new way to produce HMFS.


Fat Substitutes , Fatty Acids , Milk, Human , Plant Oils , Software , Triglycerides , Humans , Animals , Plant Oils/chemistry , Fatty Acids/chemistry , Milk, Human/chemistry , Mice , Triglycerides/chemistry , Fat Substitutes/chemistry , Palm Oil/chemistry , Soybean Oil/chemistry , Linseed Oil/chemistry , Rapeseed Oil/chemistry , Corn Oil/chemistry , Caprylates/chemistry , Palmitic Acid/chemistry , Oleic Acid/chemistry
7.
Rev Saude Publica ; 58: 19, 2024.
Article En | MEDLINE | ID: mdl-38747867

OBJECTIVE: To identify the prevalence of contamination by pesticides and their metabolites in the milk of lactating mothers in Latin America. METHODS: In this systematic review, the PubMed, LILACS, Embase, and Scopus databases were searched up to January 2022 to identify observational studies. The Mendeley software was used to manage these references. The risk of bias assessment was evaluated according to the checklist for prevalence studies and writing design, by the Prisma guidelines. RESULTS: This study retrieved 1835 references and analyzed 49 studies. 69.38% of the analyzed studies found a 100% prevalence of breast milk contamination by pesticides among their sample. Main pesticides include dichlorodiphenyltrichloroethane (DDT) and its isomers (75.51%), followed by the metabolite dichlorodiphenyldichloroethylene (DDE) (69.38%) and hexachlorocyclohexane (HCH) (46.93%). This study categorized most (65.30%) studies as having a low risk of bias. CONCLUSIONS: This review shows a high prevalence of pesticide contamination in the breast milk of Latin American women. Further investigations should be carried out to assess contamination levels in breast milk and the possible effects of these substances on maternal and child health.


Lactation , Milk, Human , Pesticides , Humans , Milk, Human/chemistry , Female , Latin America , Pesticides/analysis , Pesticide Residues/analysis , Prevalence , DDT/analysis , Maternal Exposure/adverse effects
8.
Appl Microbiol Biotechnol ; 108(1): 338, 2024 May 21.
Article En | MEDLINE | ID: mdl-38771321

Fucosyl-oligosaccharides (FUS) provide many health benefits to breastfed infants, but they are almost completely absent from bovine milk, which is the basis of infant formula. Therefore, there is a growing interest in the development of enzymatic transfucosylation strategies for the production of FUS. In this work, the α-L-fucosidases Fuc2358 and Fuc5372, previously isolated from the intestinal bacterial metagenome of breastfed infants, were used to synthesize fucosyllactose (FL) by transfucosylation reactions using p-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as donor and lactose as acceptor. Fuc2358 efficiently synthesized the major fucosylated human milk oligosaccharide (HMO) 2'-fucosyllactose (2'FL) with a 35% yield. Fuc2358 also produced the non-HMO FL isomer 3'-fucosyllactose (3'FL) and traces of non-reducing 1-fucosyllactose (1FL). Fuc5372 showed a lower transfucosylation activity compared to Fuc2358, producing several FL isomers, including 2'FL, 3'FL, and 1FL, with a higher proportion of 3'FL. Site-directed mutagenesis using rational design was performed to increase FUS yields in both α-L-fucosidases, based on structural models and sequence identity analysis. Mutants Fuc2358-F184H, Fuc2358-K286R, and Fuc5372-R230K showed a significantly higher ratio between 2'FL yields and hydrolyzed pNP-Fuc than their respective wild-type enzymes after 4 h of transfucosylation. The results with the Fuc2358-F184W and Fuc5372-W151F mutants showed that the residues F184 of Fuc2358 and W151 of Fuc5372 could have an effect on transfucosylation regioselectivity. Interestingly, phenylalanine increases the selectivity for α-1,2 linkages and tryptophan for α-1,3 linkages. These results give insight into the functionality of the active site amino acids in the transfucosylation activity of the GH29 α-L-fucosidases Fuc2358 and Fuc5372. KEY POINTS: Two α-L-fucosidases from infant gut bacterial microbiomes can fucosylate glycans Transfucosylation efficacy improved by tailored point-mutations in the active site F184 of Fuc2358 and W151 of Fuc5372 seem to steer transglycosylation regioselectivity.


Gastrointestinal Microbiome , Metagenome , Milk, Human , Trisaccharides , alpha-L-Fucosidase , alpha-L-Fucosidase/genetics , alpha-L-Fucosidase/metabolism , Humans , Trisaccharides/metabolism , Milk, Human/chemistry , Lactose/metabolism , Oligosaccharides/metabolism , Mutagenesis, Site-Directed , Infant , Fucose/metabolism
9.
J Agric Food Chem ; 72(19): 10665-10678, 2024 May 15.
Article En | MEDLINE | ID: mdl-38691667

This review explores the role of microorganisms and metabolites in human breast milk and their impact on neonatal health. Breast milk serves as both a primary source of nutrition for newborns and contributes to the development and maturation of the digestive, immunological, and neurological systems. It has the potential to reduce the risks of infections, allergies, and asthma. As our understanding of the properties of human milk advances, there is growing interest in incorporating its benefits into personalized infant nutrition strategies, particularly in situations in which breastfeeding is not an option. Future infant formula products are expected to emulate the composition and advantages of human milk, aligning with an evolving understanding of infant nutrition. The long-term health implications of human milk are still under investigation.


Infant Health , Microbiota , Milk, Human , Milk, Human/chemistry , Milk, Human/metabolism , Humans , Infant , Infant, Newborn , Female , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Infant Nutritional Physiological Phenomena , Breast Feeding
10.
Nat Commun ; 15(1): 3851, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719803

Current guidelines advise against primaquine treatment for breastfeeding mothers to avoid the potential for haemolysis in infants with G6PD deficiency. To predict the haemolytic risk, the amount of drug received from the breast milk and the resulting infant drug exposure need to be characterised. Here, we develop a pharmacokinetic model to describe the drug concentrations in breastfeeding women using venous, capillary, and breast milk data. A mother-to-infant model is developed to mimic the infant feeding pattern and used to predict their drug exposures. Primaquine and carboxyprimaquine exposures in infants are <1% of the exposure in mothers. Therefore, even in infants with the most severe G6PD deficiency variants, it is highly unlikely that standard doses of primaquine (0.25-1 mg base/kg once daily given to the mother for 1-14 days) would cause significant haemolysis. After the neonatal period, primaquine should not be restricted for breastfeeding women (Clinical Trials Registration: NCT01780753).


Antimalarials , Breast Feeding , Lactation , Milk, Human , Primaquine , Humans , Female , Primaquine/pharmacokinetics , Primaquine/administration & dosage , Antimalarials/pharmacokinetics , Antimalarials/administration & dosage , Infant , Milk, Human/chemistry , Milk, Human/metabolism , Adult , Infant, Newborn , Hemolysis/drug effects , Models, Biological
11.
Nutrients ; 16(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38732534

Human milk oligosaccharides (HMOs) are complexes that play a crucial role in shaping the early-life gut microbiota. This study intends to explore whether HMO patterns are associated with the gut microbiota of infants. We included 96 Chinese breastfeeding mother-infant dyads. Breast milk and infant faecal samples were collected and tested. With milk 2'-fucosyllactose, difucosyllactose, and lacto-N-fucopentaose-I as biomarkers, we divided the mothers into secretor and non-secretor groups. HMO patterns were extracted using principal component analysis. The majority (70.7%) of mothers were categorised as secretor and five different HMO patterns were identified. After adjustment, the infants of secretor mothers exhibited a lower relative abundance of Bifidobacterium bifidum (ß = -0.245, 95%CI: -0.465~-0.025). An HMO pattern characterised by high levels of 3-fucosyllactose, lacto-N-fucopentaose-III, and lacto-N-neodifucohexaose-II was positively associated with the relative abundance of Bifidobacterium breve (p = 0.014), while the pattern characterised by lacto-N-neotetraose, 6'-sialyllactose, and sialyllacto-N-tetraose-b was negatively associated with Bifidobacterium breve (p = 0.027). The pattern characterised by high levels of monofucosyl-lacto-N-hexaose-III and monofucosyl-lacto-N-neohexaose was positively associated with Bifidobacterium dentium (p = 0.025) and Bifidobacterium bifidum (p < 0.001), respectively. This study suggests that HMO patterns from mature breast milk were associated with certain gut microbiota of breastfed infants.


Breast Feeding , Feces , Gastrointestinal Microbiome , Milk, Human , Oligosaccharides , Humans , Milk, Human/chemistry , Oligosaccharides/analysis , Gastrointestinal Microbiome/physiology , Female , Infant , Feces/microbiology , Feces/chemistry , Adult , Male , Bifidobacterium bifidum , Infant, Newborn , Trisaccharides
12.
Nutrients ; 16(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732546

In this study, the influence of total sn-2 palmitic triacylglycerols (TAGs) and ratio of 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) to 1,3-dioleoyl-2-palmitoylglycerol (OPO) in human milk fat substitute (HMFS) on the metabolic changes were investigated in Sprague-Dawley rats. Metabolomics and lipidomics profiling analysis indicated that increasing the total sn-2 palmitic TAGs and OPL to OPO ratio in HMFS could significantly influence glycine, serine and threonine metabolism, glycerophospholipid metabolism, glycerolipid metabolism, sphingolipid metabolism, bile acid biosynthesis, and taurine and hypotaurine metabolism pathways in rats after 4 weeks of feeding, which were mainly related to lipid, bile acid and energy metabolism. Meanwhile, the up-regulation of taurine, L-tryptophan, and L-cysteine, and down-regulations of lysoPC (18:0) and hypoxanthine would contribute to the reduction in inflammatory response and oxidative stress, and improvement of immunity function in rats. In addition, analysis of targeted biochemical factors also revealed that HMFS-fed rats had significantly increased levels of anti-inflammatory factor (IL-4), immunoglobulin A (IgA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px), and decreased levels of pro-inflammatory factors (IL-6 and TNF-α) and malondialdehyde (MDA), compared with those of the control fat-fed rats. Collectively, these observations present new in vivo nutritional evidence for the metabolic regulatory effects of the TAG structure and composition of human milk fat substitutes on the host.


Fat Substitutes , Milk, Human , Rats, Sprague-Dawley , Triglycerides , Animals , Milk, Human/chemistry , Triglycerides/metabolism , Humans , Rats , Fat Substitutes/pharmacology , Male , Lipid Metabolism/drug effects , Glycerides/metabolism , Glycerides/pharmacology , Metabolomics/methods , Lipidomics , Oxidative Stress/drug effects , Female
13.
Sci Total Environ ; 931: 172911, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38705305

Breastfeeding provides numerous health benefits for both infants and mothers, promoting optimal growth and development while offering protection against various illnesses and diseases. This study investigated the levels of polychlorinated biphenyls (PCB), organochlorine pesticides (OCP) and polycyclic aromatic hydrocarbons (PAH) in human milk sampled in Zadar (Croatia). The primary objectives were twofold: firstly, to evaluate the individual impact of each compound on the total antioxidant capacity (TAC) value, and secondly, to assess associated health risks. Notably, this study presents pioneering and preliminary insights into PAH levels in Croatian human milk, contributing to the limited research on PAH in breast milk worldwide. PCB and OCP levels in Croatian human milk were found to be relatively lower compared to worldwide data. Conversely, PAH levels were comparatively higher, albeit with lower detection frequencies. A negative correlation was established between organic contaminant levels and antioxidative capacity, suggesting a potential link between higher antioxidative potential and lower organic contaminant levels. Diagnostic ratio pointed towards traffic emissions as the primary source of the detected PAH. The presence of PAH suggests potential health risk, underscoring the need for further in-depth investigation.


Antioxidants , Hydrocarbons, Chlorinated , Milk, Human , Polycyclic Aromatic Hydrocarbons , Milk, Human/chemistry , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Hydrocarbons, Chlorinated/analysis , Risk Assessment , Croatia , Female , Persistent Organic Pollutants , Pesticides/analysis , Environmental Monitoring , Polychlorinated Biphenyls/analysis , Adult , Environmental Pollutants/analysis
14.
J Agric Food Chem ; 72(21): 12198-12208, 2024 May 29.
Article En | MEDLINE | ID: mdl-38752986

Holder pasteurization (HoP) enhances donor human milk microbiological safety but damages many bioactive milk proteins. Though ultraviolet-C irradiation (UV-C) can enhance safety while better preserving some milk proteins, it has not been optimized for dose or effect on a larger array of bioactive proteins. We determined the minimal UV-C parameters that provide >5-log reductions of relevant bacteria in human milk and how these treatments affect an array of bioactive proteins, vitamin E, and lipid oxidation. Treatment at 6000 and 12 000 J/L of UV-C resulted in >5-log reductions of all vegetative bacteria and bacterial spores, respectively. Both dosages improved retention of immunoglobulin A (IgA), IgG, IgM, lactoferrin, cathepsin D, and elastase and activities of bile-salt-stimulated lipase and lysozyme compared with HoP. These UV-C doses caused minor reductions in α-tocopherol but not γ-tocopherol and no increases in lipid oxidation products. UV-C treatment is a promising approach for donor human milk processing.


Bacteria , Milk, Human , Pasteurization , Ultraviolet Rays , Humans , Milk, Human/chemistry , Milk, Human/radiation effects , Pasteurization/methods , Bacteria/radiation effects , Bacteria/metabolism , Bacteria/isolation & purification , Milk Proteins/chemistry , Food Irradiation/methods , Lipids/chemistry , Vitamins/analysis , Vitamin E/pharmacology
15.
Bioresour Technol ; 402: 130798, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705212

Biosensor-based high-throughput screening is efficient for improving industrial microorganisms. There is a severe shortage of human milk oligosaccharides (HMOs) biosensors. This study established a 3-fucosyllactose (3-FL, a kind of HMOs) whole-cell biosensor by coupling cell growth with production. To construct and optimize the biosensor, an Escherichia coli 3-FL producer was engineered by deleting the manA, yihS and manX genes, directing the mannose flux solely to 3-FL synthesis. Then, an α-L-fucosidase was introduced to hydrolyze 3-FL to fucose which was used as the only carbon source for cell growth. Using the biosensor, the 3-FL production of a screened mutant was improved by 25 % to 42.05 ± 1.28 g/L. The productivity reached 1.17 g/L/h, the highest level reported by now. The csrB mutant obtained should be a new clue for the 3-FL overproduction mechanism. In summary, this study provided a novel approach to construct HMOs biosensors for strain improvement.


Biosensing Techniques , Escherichia coli , Trisaccharides , Biosensing Techniques/methods , Escherichia coli/metabolism , Escherichia coli/genetics , Trisaccharides/metabolism , High-Throughput Screening Assays/methods , Mutation , Humans , Milk, Human/chemistry , alpha-L-Fucosidase/metabolism , alpha-L-Fucosidase/genetics , Oligosaccharides
16.
J Proteomics ; 301: 105194, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38723850

This study explores the disulfide bridges present in the human milk proteome by a novel approach permitting both positional identification and relative quantification of the disulfide bridges. Human milk from six donors was subjected to trypsin digestion without reduction. The digested human milk proteins were analyzed by nanoLC-timsTOF Pro combined with data analysis using xiSEARCH. A total of 85 unique disulfide bridges were identified in 25 different human milk proteins. The total relative abundance of disulfide bridge-containing peptides constituted approximately 5% of the total amount of tryptic-peptides. Seven inter-molecular disulfide bridges were identified between either α-lactalbumin and lactotransferrin (5) or αS1-casein and κ-casein (2). All cysteines involved in the observed disulfide bridges of α-lactalbumin and lactotransferrin were mapped onto protein models using AlphaFold2 Multimer to estimate the length of the observed disulfide bridges. The lengths of the disulfide bridges of lactotransferrin indicate a potential for multi- or poly-merization of lactotransferrin. The high number of intramolecular lactotransferrin disulfide bridges identified, suggests that these are more heterogeneous than previously presumed. SIGNIFICANCE: Disulfide-bridges in the human milk proteome are an often overseen post-transaltional modification. Thus, mapping the disulfide-bridges, their positions and relative abundance, are valuable new knowledge needed for an improved understanding of human milk protein behaviour. Although glycosylation and phosphorylation have been described, even less information is available on the disulfide bridges and the disulfide-bridge derived protein complexes. This is important for future work in precision fermentation for recombinant production of human milk proteins, as this will highlight which disulfide-bridges are naturally occouring in human milk proteins. Further, this knowledge would be of value for the infant formula industry as it provides more information on how to humanize bovine-milk based infant formula. The novel method developed here can be broadly applied in other biological systems as the disulfid-brigdes are important for the structure and functionality of proteins.


Disulfides , Milk, Human , Proteome , Proteomics , Humans , Milk, Human/chemistry , Disulfides/chemistry , Disulfides/analysis , Proteomics/methods , Proteome/analysis , Lactoferrin/analysis , Lactoferrin/chemistry , Milk Proteins/analysis , Milk Proteins/chemistry , Lactalbumin/chemistry , Lactalbumin/analysis , Female
17.
Clin Pharmacokinet ; 63(5): 561-588, 2024 May.
Article En | MEDLINE | ID: mdl-38748090

Human milk is a remarkable biofluid that provides essential nutrients and immune protection to newborns. Breastfeeding women consuming medications could pass the drug through their milk to neonates. Drugs can be transferred to human milk by passive diffusion or active transport. The physicochemical properties of the drug largely impact the extent of drug transfer into human milk. A comprehensive understanding of the physiology of human milk formation, composition of milk, mechanisms of drug transfer, and factors influencing drug transfer into human milk is critical for appropriate selection and use of medications in lactating women. Quantification of drugs in the milk is essential for assessing the safety of pharmacotherapy during lactation. This can be achieved by developing specific, sensitive, and reproducible analytical methods using techniques such as liquid chromatography coupled with mass spectrometry. The present review briefly discusses the physiology of human milk formation, composition of human milk, mechanisms of drug transfer into human milk, and factors influencing transfer of drugs from blood to milk. We further expand upon and critically evaluate the existing analytical approaches/assays used for the quantification of drugs in human milk.


Milk, Human , Humans , Milk, Human/chemistry , Milk, Human/metabolism , Pharmaceutical Preparations/metabolism , Female , Lactation/metabolism , Breast Feeding , Infant, Newborn , Chromatography, Liquid/methods , Mass Spectrometry/methods
18.
Nutrients ; 16(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38794660

Breastfeeding is the most appropriate source of a newborn's nutrition; among the plethora of its benefits, its modulation of circadian rhythmicity with melatonin as a potential neuroendocrine transducer has gained increasing interest. Transplacental transfer assures melatonin provision for the fetus, who is devoid of melatonin secretion. Even after birth, the neonatal pineal gland is not able to produce melatonin rhythmically for several months (with an even more prolonged deficiency following preterm birth). In this context, human breast milk constitutes the main natural source of melatonin: diurnal dynamic changes, an acrophase early after midnight, and changes in melatonin concentrations according to gestational age and during the different stages of lactation have been reported. Understudied thus far are the factors impacting on (changes in) melatonin content in human breast milk and their clinical significance in chronobiological adherence in the neonate: maternal as well as environmental aspects have to be investigated in more detail to guide nursing mothers in optimal feeding schedules which probably means a synchronized instead of mistimed feeding practice. This review aims to be thought-provoking regarding the critical role of melatonin in chrononutrition during breastfeeding, highlighting its potential in circadian entrainment and therefore optimizing (neuro)developmental outcomes in the neonatal setting.


Breast Feeding , Circadian Rhythm , Lactation , Melatonin , Milk, Human , Humans , Melatonin/metabolism , Melatonin/administration & dosage , Milk, Human/chemistry , Milk, Human/metabolism , Circadian Rhythm/physiology , Female , Infant, Newborn , Lactation/physiology , Infant Nutritional Physiological Phenomena/physiology
19.
Nutrients ; 16(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38794725

The composition of human breast milk is an ideal combination of substances necessary for the healthy development of an infant's body while protecting from pathogens and the balanced development of the microbiota. Its composition is dynamic and changes with the age of the child, meeting their current needs. The study provides a thorough overview of human milk components, such as immunological components, growth factors, hormones, carbohydrates, lipids, minerals, and vitamins. Authors focus on capturing the most important aspects of the effects of these substances on a newborn's body, while also looking for specific connections and describing the effects on given systems. Supplementation and the use of ingredients are also discussed. The purpose of this paper is to present the current state of knowledge about the bioactive components of human milk and their impact on the growth, development, and health of the young child.


Child Development , Milk, Human , Milk, Human/chemistry , Humans , Infant , Infant, Newborn , Child Health , Infant Nutritional Physiological Phenomena , Female , Dietary Supplements , Child, Preschool , Child
20.
Sci Total Environ ; 933: 173157, 2024 Jul 10.
Article En | MEDLINE | ID: mdl-38740209

Per- and polyfluoroalkyl substances (PFAS) are related to various adverse health outcomes, and food is a common source of PFAS exposure. Dietary sources of PFAS have not been adequately explored among U.S. pregnant individuals. We examined associations of dietary factors during pregnancy with PFAS concentrations in maternal plasma and human milk in the New Hampshire Birth Cohort Study. PFAS concentrations, including perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), and perfluorodecanoate (PFDA), were measured in maternal plasma collected at ∼28 gestational weeks and human milk collected at ∼6 postpartum weeks. Sociodemographic, lifestyle and reproductive factors were collected from prenatal questionnaires and diet from food frequency questionnaires at ∼28 gestational weeks. We used adaptive elastic net (AENET) to identify important dietary variables for PFAS concentrations. We used multivariable linear regression to assess associations of dietary variables selected by AENET models with PFAS concentrations. Models were adjusted for sociodemographic, lifestyle, and reproductive factors, as well as gestational week of blood sample collection (plasma PFAS), postpartum week of milk sample collection (milk PFAS), and enrollment year. A higher intake of fish/seafood, eggs, coffee, or white rice during pregnancy was associated with higher plasma or milk PFAS concentrations. For example, every 1 standard deviation (SD) servings/day increase in egg intake during pregnancy was associated with 4.4 % (95 % CI: 0.6, 8.4), 3.3 % (0.1, 6.7), and 10.3 % (5.6, 15.2) higher plasma PFOS, PFOA, and PFDA concentrations respectively. Similarly, every 1 SD servings/day increase in white rice intake during pregnancy was associated with 7.5 % (95 % CI: -0.2, 15.8) and 12.4 % (4.8, 20.5) greater milk PFOS and PFOA concentrations, respectively. Our study suggests that certain dietary factors during pregnancy may contribute to higher PFAS concentrations in maternal plasma and human milk, which could inform interventions to reduce PFAS exposure for both birthing people and offspring.


Alkanesulfonic Acids , Diet , Environmental Pollutants , Fluorocarbons , Milk, Human , Humans , Fluorocarbons/blood , Fluorocarbons/analysis , Milk, Human/chemistry , Female , Diet/statistics & numerical data , Environmental Pollutants/blood , Environmental Pollutants/analysis , New Hampshire , Alkanesulfonic Acids/analysis , Alkanesulfonic Acids/blood , Adult , Birth Cohort , Maternal Exposure/statistics & numerical data , Pregnancy , Caprylates/blood , Caprylates/analysis , Cohort Studies , Dietary Exposure/statistics & numerical data , Dietary Exposure/analysis , Decanoic Acids/blood , Decanoic Acids/analysis
...