Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.838
Filter
1.
Mikrochim Acta ; 191(7): 430, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38949666

ABSTRACT

A pico-injection-aided digital droplet detection platform is presented that integrates loop-mediated isothermal amplification (LAMP) with molecular beacons (MBs) for the ultrasensitive and quantitative identification of pathogens, leveraging the sequence-specific detection capabilities of MBs. The microfluidic device contained three distinct functional units including droplet generation, pico-injection, and droplet counting. Utilizing a pico-injector, MBs are introduced into each droplet to specifically identify LAMP amplification products, thereby overcoming issues related to temperature incompatibility. Our methodology has been validated through the quantitative detection of Escherichia coli, achieving a detection limit as low as 9 copies/µL in a model plasmid containing the malB gene and 3 CFU/µL in a spiked milk sample. The total analysis time was less than 1.5 h. The sensitivity and robustness of this platform further demonstrated the potential for rapid pathogen detection and diagnosis, particularly when integrated with cutting-edge microfluidic technologies.


Subject(s)
Escherichia coli , Limit of Detection , Milk , Nucleic Acid Amplification Techniques , Nucleic Acid Amplification Techniques/methods , Escherichia coli/isolation & purification , Escherichia coli/genetics , Milk/microbiology , Animals , Molecular Diagnostic Techniques/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , DNA, Bacterial/analysis , DNA, Bacterial/genetics
2.
Arch Microbiol ; 206(7): 335, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953983

ABSTRACT

Salmonella is considered as one of the most common zoonotic /foodborne pathogens in the world. The application of bacteriophages as novel antibacterial agents in food substrates has become an emerging strategy. Bacteriophages have the potential to control Salmonella contamination.We have isolated and characterized a broad-spectrum Salmonella phage, SP154, which can lyse 9 serotypes, including S. Enteritidis, S. Typhimurium, S. Pullorum, S. Arizonae, S. Dublin, S. Cholerasuis, S. Chester, S. 1, 4, [5], 12: i: -, and S. Derby, accounting for 81.9% of 144 isolates. SP154 showed a short latent period (40 min) and a high burst size (with the first rapid burst size at 107 PFUs/cell and the second rapid burst size at approximately 40 PFUs/cell). Furthermore, SP154 activity has higher survival rates across various environmental conditions, including pH 4.0-12.0 and temperatures ranging from 4 to 50 °C for 60 min, making it suitable for diverse food processing and storage applications. Significant reductions in live Salmonella were observed in different foods matrices such as milk and chicken meat, with a decrease of up to 1.9 log10 CFU/mL in milk contamination and a 1 log10 CFU/mL reduction in chicken meat. Whole genome sequencing analysis revealed that SP154 belongs to the genus Ithacavirus, subfamily Humphriesvirinae, within the family Schitoviridae. Phylogenetic analysis based on the terminase large subunit supported this classification, although an alternate tree using the tail spike protein gene suggested affiliation with the genus Kuttervirus, underscoring the limitations of relying on a single gene for phylogenetic inference. Importantly, no virulence or antibiotic resistance genes were detected in SP154. Our research highlights the potential of using SP154 for biocontrol of Salmonella in the food industry.


Subject(s)
Food Microbiology , Genome, Viral , Salmonella Phages , Salmonella , Whole Genome Sequencing , Salmonella Phages/genetics , Salmonella Phages/isolation & purification , Salmonella Phages/classification , Salmonella Phages/physiology , Animals , Salmonella/virology , Salmonella/genetics , Salmonella/classification , Salmonella/isolation & purification , Chickens , Milk/microbiology , Milk/virology , Meat/microbiology , Meat/virology , Phylogeny
3.
Mikrochim Acta ; 191(8): 441, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954045

ABSTRACT

A ratiometric SERS aptasensor based on catalytic hairpin self-assembly (CHA) mediated cyclic signal amplification strategy was developed for the rapid and reliable determination of Escherichia coli O157:H7. The recognition probe was synthesized by modifying magnetic beads with blocked aptamers, and the SERS probe was constructed by functionalizing gold nanoparticles (Au NPs) with hairpin structured DNA and 4-mercaptobenzonitrile (4-MBN). The recognition probe captured E. coli O157:H7 specifically and released the blocker DNA, which activated the CHA reaction on the SERS probe and turned on the SERS signal of 6-carboxyl-x-rhodamine (ROX). Meanwhile, 4-MBN was used as an internal reference to calibrate the matrix interference. Thus, sensitive and reliable determination and quantification of E. coli O157:H7 was established using the ratio of the SERS signal intensities of ROX to 4-MBN. This aptasensor enabled detection of 2.44 × 102 CFU/mL of E. coli O157:H7 in approximately 3 h without pre-culture and DNA extraction. In addition, good reliability and excellent reproducibility were observed for the determination of E. coli O157:H7 in spiked water and milk samples. This study offered a new solution for the design of rapid, sensitive, and reliable SERS aptasensors.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Escherichia coli O157 , Gold , Limit of Detection , Metal Nanoparticles , Milk , Spectrum Analysis, Raman , Escherichia coli O157/isolation & purification , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Milk/microbiology , Milk/chemistry , Spectrum Analysis, Raman/methods , Biosensing Techniques/methods , Animals , Catalysis , Inverted Repeat Sequences , Food Contamination/analysis , Water Microbiology , Reproducibility of Results
4.
Molecules ; 29(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38930811

ABSTRACT

Due to the intricate complexity of the original microbiota, residual heat-resistant enzymes, and chemical components, identifying the essential factors that affect dairy quality using traditional methods is challenging. In this study, raw milk, pasteurized milk, and ultra-heat-treated (UHT) milk samples were collectively analyzed using metagenomic next-generation sequencing (mNGS), high-throughput liquid chromatography-mass spectrometry (LC-MS), and gas chromatography-mass spectrometry (GC-MS). The results revealed that raw milk and its corresponding heated dairy products exhibited different trends in terms of microbiota shifts and metabolite changes during storage. Via the analysis of differences in microbiota and correlation analysis of the microorganisms present in differential metabolites in refrigerated pasteurized milk, the top three differential microorganisms with increased abundance, Microbacterium (p < 0.01), unclassified Actinomycetia class (p < 0.05), and Micrococcus (p < 0.01), were detected; these were highly correlated with certain metabolites in pasteurized milk (r > 0.8). This indicated that these genera were the main proliferating microorganisms and were the primary genera involved in the metabolism of pasteurized milk during refrigeration-based storage. Microorganisms with decreased abundance were classified into two categories based on correlation analysis with certain metabolites. It was speculated that the heat-resistant enzyme system of a group of microorganisms with high correlation (r > 0.8), such as Pseudomonas and Acinetobacter, was the main factor causing milk spoilage and that the group with lower correlation (r < 0.3) had a lower impact on the storage process of pasteurized dairy products. By comparing the metabolic pathway results based on metagenomic and metabolite annotation, it was proposed that protein degradation may be associated with microbial growth, whereas lipid degradation may be linked to raw milk's initial heat-resistant enzymes. By leveraging the synergy of metagenomics and metabolomics, the interacting factors determining the quality evolution of dairy products were systematically investigated, providing a novel perspective for controlling dairy processing and storage effectively.


Subject(s)
Microbiota , Milk , Animals , Milk/microbiology , Milk/metabolism , Food Storage/methods , Pasteurization , High-Throughput Nucleotide Sequencing , Dairy Products/microbiology , Metagenomics/methods , Gas Chromatography-Mass Spectrometry , Food Handling/methods , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Metabolome
5.
BMC Vet Res ; 20(1): 274, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38918815

ABSTRACT

BACKGROUND: Acinetobacter lwoffii (A. lwoffii) is a Gram-negative bacteria common in the environment, and it is the normal flora in human respiratory and digestive tracts. The bacteria is a zoonotic and opportunistic pathogen that causes various infections, including nosocomial infections. The aim of this study was to identify A. lwoffii strains isolated from bovine milk with subclinical mastitis in China and get a better understanding of its antimicrobial susceptibility and resistance profile. This is the first study to analyze the drug resistance spectrum and corresponding mechanisms of A. lwoffii isolated in raw milk. RESULTS: Four A. lwoffii strains were isolated by PCR method. Genetic evolution analysis using the neighbor-joining method showed that the four strains had a high homology with Acinetobacter lwoffii. The strains were resistant to several antibiotics and carried 17 drug-resistance genes across them. Specifically, among 23 antibiotics, the strains were completely susceptible to 6 antibiotics, including doxycycline, erythromycin, polymyxin, clindamycin, imipenem, and meropenem. In addition, the strains showed variable resistance patterns. A total of 17 resistance genes, including plasmid-mediated resistance genes, were detected across the four strains. These genes mediated resistance to 5 classes of antimicrobials, including beta-lactam, aminoglycosides, fluoroquinolones, tetracycline, sulfonamides, and chloramphenicol. CONCLUSION: These findings indicated that multi-drug resistant Acinetobacter lwoffii strains exist in raw milk of bovine with subclinical mastitis. Acinetobacter lwoffii are widespread in natural environmental samples, including water, soil, bathtub, soap box, skin, pharynx, conjunctiva, saliva, gastrointestinal tract, and vaginal secretions. The strains carry resistance genes in mobile genetic elements to enhance the spread of these genes. Therefore, more attention should be paid to epidemiological surveillance and drug resistant A. lwoffii.


Subject(s)
Acinetobacter , Anti-Bacterial Agents , Mastitis, Bovine , Milk , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/epidemiology , Female , Acinetobacter/isolation & purification , Acinetobacter/genetics , Acinetobacter/drug effects , Milk/microbiology , China/epidemiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/veterinary , Acinetobacter Infections/veterinary , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics
6.
Int J Food Microbiol ; 420: 110768, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38843647

ABSTRACT

The continuous detection of multi-drug-resistant enterococci in food source environments has aroused widespread concern. In this study, 198 samples from chicken products, animal feces, raw milk, and vegetables were collected in Japan and Egypt to investigate the prevalence of enterococci and virulence characterization. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was employed for species identification and taxonomic analysis of the isolates. The results showed that the rates of most virulence genes (efaA, gelE, asa1, ace, and hyl) in the Japanese isolates were slightly higher than those in the Egyptian isolates. The rate of efaA was the highest (94.9 %) among seven virulence genes detected, but the cylA gene was not detected in all isolates, which was in accordance with γ-type hemolysis phenotype. In Enterococcus faecalis, the rate of kanamycin-resistant strains was the highest (84.75 %) among the antibiotics tested. Moreover, 78 % of E. faecalis strains exhibited multi-drug resistance. Four moderately vancomycin-resistant strains were found in Egyptian isolates, but none were found in Japanese isolates. MALDI-TOF MS analysis correctly identified 98.5 % (68/69) of the Enterococcus isolates. In the principal component analysis dendrogram, strains isolated from the same region with the same virulence characteristics and similar biofilm-forming abilities were characterized by clustered distribution in different clusters. This finding highlights the potential of MALDI-TOF MS for classifying E. faecalis strains from food sources.


Subject(s)
Anti-Bacterial Agents , Biofilms , Enterococcus , Food Microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Virulence Factors , Biofilms/growth & development , Enterococcus/genetics , Enterococcus/pathogenicity , Enterococcus/drug effects , Enterococcus/isolation & purification , Virulence Factors/genetics , Animals , Egypt , Anti-Bacterial Agents/pharmacology , Vegetables/microbiology , Japan , Chickens , Milk/microbiology , Feces/microbiology , Microbial Sensitivity Tests , Drug Resistance, Bacterial , Drug Resistance, Multiple, Bacterial , Food Contamination/analysis
7.
Food Res Int ; 189: 114554, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876592

ABSTRACT

Listeria monocytogenes, a widespread food-borne pathogen, utilizes diverse growth substrates including mono- and di-saccharides via PEP-phosphotransferase (PTS) systems. We evaluated a collection of L. monocytogenes isolates of different origins for their ability to utilize lactose, a disaccharide composed of galactose and glucose and the main carbon source in milk and dairy products. Notably, the dairy-associated outbreak strain F2365 could not utilize lactose efficiently, conceivably due to a frameshift mutation (lacR887del) resulting in a truncated LacR. Transcriptional activator LacR is involved in the expression of two PTS systems, encoded by the lpo operon lmo1718-1720 in combination with lmo2708 and the lmo2683-2685 operon, and linked to lactose and/or cellobiose metabolism in L. monocytogenes. Via experimental evolution of the ancestral strain F2365, an evolved isolate F2365 EV was obtained which showed enhanced growth and metabolism of lactose. Using the lactose-positive model strain L. monocytogenes EGDe as a control, HPLC experiments showed that EGDe and F2365 EV could consume lactose and utilize the glucose moiety, while the galactose moiety was exported from the cells. Genome sequencing of F2365 EV found the original lacR887del mutation was still present but an additional point mutation lmo2766C415T had occurred, resulting in an amino acid substitution in the putative regulator Lmo2766. The lmo2766 gene is located next to operon lmo2761-2765 with putative PTS genes in the genome. Notably, comparative RNAseq analysis confirmed that the lmo2761-2765 operon was strongly upregulated in F2365 EV in the presence of lactose but not in EGDe and F2365. Conversely, the LacR-regulated lpo operon, lmo2708, and lmo2683-2685 operon were only upregulated in EGDe. Additional growth and HPLC experiments, using mutants constructed in lactose-positive L. monocytogenes EGDe, showed reduced growth of the EGDe lacR887del mutant with no utilization of lactose, while the double mutant EGDe lacR887dellmo2766C415T showed enhanced growth and lactose utilization. Hence, these results demonstrate that an amino acid substitution in the Lmo2766 regulator activates a previously silent lactose utilization pathway encoded by PTS operon lmo2761-2765, facilitating the growth and metabolism of L. monocytogenes with lactose as a substrate. This finding enhances our understanding of the metabolic capabilities and adaptability of L. monocytogenes, offering a broader view of the lactose utilization capacity of this pathogen.


Subject(s)
Lactose , Listeria monocytogenes , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Listeria monocytogenes/growth & development , Lactose/metabolism , Operon , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Disease Outbreaks , Gene Expression Regulation, Bacterial , Food Microbiology , Milk/microbiology , Animals , Dairy Products/microbiology
8.
Food Res Int ; 189: 114556, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876593

ABSTRACT

This study aimed to evaluate the microbiome, resistome and virulome of two types of Portuguese cheese using high throughput sequencing (HTS). Culture-dependent chromogenic methods were also used for certain groups/microorganisms. Eight samples of raw ewe's milk cheese were obtained from four producers: two producers with cheeses with a PDO (Protected Designation of Origin) label and the other two producers with cheeses without a PDO label. Agar-based culture methods were used to quantify total mesophiles, Enterobacteriaceae, Escherichia coli, Staphylococcus, Enterococcus and lactic acid bacteria. The presence of Listeria monocytogenes and Salmonella was also investigated. The selected isolates were identified by 16S rRNA gene sequencing and evaluated to determine antibiotic resistance and the presence of virulence genes. The eight cheese samples analyzed broadly complied with EC regulations in terms of the microbiological safety criteria. The HTS results demonstrated that Leuconostoc mesenteroides, Lactococcus lactis, Lactobacillus plantarum, Lacticaseibacillus rhamnosus, Enterococcus durans and Lactobacillus coryniformis were the most prevalent bacterial species in cheeses. The composition of the bacterial community varied, not only between PDO and non-PDO cheeses, but also between producers, particularly between the two non-PDO cheeses. Alpha-diversity analyses showed that PDO cheeses had greater bacterial diversity than non-PDO cheeses, demonstrating that the diversity of spontaneously fermented foods is significantly higher in cheeses produced without the addition of food preservatives and dairy ferments. Despite complying with microbiological regulations, both PDO and non-PDO cheeses harbored potential virulence genes as well as antibiotic resistance genes. However, PDO cheeses exhibited fewer of these virulence and antibiotic resistance genes compared to non-PDO cheeses. Therefore, the combination of conventional microbiological methods and the metagenomic approach could contribute to improving the attribution of the PDO label to this type of cheese.


Subject(s)
Cheese , Food Microbiology , Microbiota , Cheese/microbiology , Microbiota/genetics , Portugal , Animals , Metagenomics , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , RNA, Ribosomal, 16S/genetics , Drug Resistance, Bacterial/genetics , Sheep , High-Throughput Nucleotide Sequencing , Milk/microbiology , Enterococcus/genetics , Enterococcus/isolation & purification
9.
Anal Methods ; 16(25): 4083-4092, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38855899

ABSTRACT

Salmonella enterica is a common foodborne pathogen that can cause food poisoning in humans. The organism also infects and causes disease in animals. Rapid and sensitive detection of S. enterica is essential to prevent the spread of this pathogen. Traditional technologies for the extraction and detection of this pathogen from complex food matrices are cumbersome and time-consuming. In this study, we introduced a novel strategy of biphasic assay integrated with an accelerated strand exchange amplification (ASEA) method for efficient detection of S. enterica without culture or other extraction procedures. Food samples are rapidly dried, resulting in a physical fluidic network inside the dried food matrix, which allows polymerases and primers to access the target DNA and initiate ASEA. The dried food matrix is defined as the solid phase, while amplification products are enriched in the supernatant (liquid phase) and generate fluorescence signals. The analytical performances demonstrated that this strategy was able to specifically identify S. enterica and did not show any cross-reaction with other common foodborne pathogens. For artificially spiked food samples, the strategy can detect 5.0 × 101 CFU mL-1S. enterica in milk, 1.0 × 102 CFU g-1 in duck, scallop or lettuce, and 1.0 × 103 CFU g-1 in either oyster or cucumber samples without pre-enrichment of the target pathogen. We further validated the strategy using 82 real food samples, and this strategy showed 92% sensitivity. The entire detection process can be finished, sample-to-answer, within 50 min, dramatically decreasing the detection time. Therefore, we believe that the proposed method enables rapid and sensitive detection of S. enterica and holds great promise for the food safety industry.


Subject(s)
Food Microbiology , Nucleic Acid Amplification Techniques , Salmonella enterica , Salmonella enterica/isolation & purification , Salmonella enterica/genetics , Food Microbiology/methods , Nucleic Acid Amplification Techniques/methods , Animals , DNA, Bacterial/analysis , Milk/microbiology , Ducks/microbiology , Food Contamination/analysis , Lactuca/microbiology
10.
Sci Rep ; 14(1): 14569, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914650

ABSTRACT

Mastitis is considered one of the most widespread infectious disease of cattle and buffaloes, affecting dairy herds. The current study aimed to characterize the Staphylococcus aureus isolates recovered from subclinical mastitis animals in Pothohar region of the country. A total of 278 milk samples from 17 different dairy farms around two districts of the Pothohar region, Islamabad and Rawalpindi, were collected and screened for sub clinical mastitis using California Mastitis Test. Positive milk samples were processed for isolation of Staphylococcus aureus using mannitol salt agar. The recovered isolates were analyzed for their antimicrobial susceptibility and virulence genes using disc diffusion and PCR respectively. 62.2% samples were positive for subclinical mastitis and in total 70 Staphylococcus aureus isolates were recovered. 21% of these isolates were determined to be methicillin resistant, carrying the mecA gene. S. aureus isolates recovered during the study were resistant to all first line therapeutic antibiotics and in total 52% isolates were multidrug resistant. SCCmec typing revealed MRSA SCCmec types IV and V, indicating potential community-acquired MRSA (CA-MRSA) transmission. Virulence profiling revealed high prevalence of key genes associated with adhesion, toxin production, and immune evasion, such as hla, hlb, clfA, clfB and cap5. Furthermore, the Panton-Valentine leukocidin (PVL) toxin, that is often associated with recurrent skin and soft tissue infections, was present in 5.7% of isolates. In conclusion, the increased prevalence of MRSA in bovine mastitis is highlighted by this study, which also reveals a variety of virulence factors in S. aureus and emphasizes the significance of appropriate antibiotic therapy in combating this economically burdensome disease.


Subject(s)
Anti-Bacterial Agents , Mastitis, Bovine , Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Mastitis, Bovine/microbiology , Female , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Pakistan , Virulence/genetics , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Virulence Factors/genetics , Microbial Sensitivity Tests , Milk/microbiology , Bacterial Proteins/genetics
11.
Sensors (Basel) ; 24(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38894425

ABSTRACT

Milk and dairy products are included in the list of the Food Security Doctrine and are of paramount importance in the diet of the human population. At the same time, the presence of many macro- and microcomponents in milk, as available sources of carbon and energy, as well as the high activity of water, cause the rapid development of native and pathogen microorganisms in it. The goal of the work was to assess the possibility of using an array of gas chemical sensors based on piezoquartz microbalances with polycomposite coatings to assess the microbiological indicators of milk quality and to compare the microflora of milk samples. Piezosensors with polycomposite coatings with high sensitivity to volatile compounds were obtained. The gas phase of raw milk was analyzed using the sensors; in parallel, the physicochemical and microbiological parameters were determined for these samples, and species identification of the microorganisms was carried out for the isolated microorganisms in milk. The most informative output data of the sensor array for the assessment of microbiological indicators were established. Regression models were constructed to predict the quantity of microorganisms in milk samples based on the informative sensors' data with an error of no more than 17%. The limit of determination of QMAFAnM in milk was 243 ± 174 CFU/cm3. Ways to improve the accuracy and specificity of the determination of microorganisms in milk samples were proposed.


Subject(s)
Electronic Nose , Milk , Milk/microbiology , Milk/chemistry , Animals , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Volatile Organic Compounds/analysis , Humans
12.
PLoS One ; 19(6): e0301611, 2024.
Article in English | MEDLINE | ID: mdl-38843180

ABSTRACT

Coxiella burnetii is the worldwide zoonotic infectious agent for Q fever in humans and animals. Farm animals are the main reservoirs of C. burnetii infection, which is mainly transmitted via tick bites. In humans, oral, percutaneous, and respiratory routes are the primary sources of infection transmission. The clinical signs vary from flu-like symptoms to endocarditis for humans' acute and chronic Q fever. While it is usually asymptomatic in livestock, abortion, stillbirth, infertility, mastitis, and endometritis are its clinical consequences. Infected farm animals shed C. burnetii in birth products, milk, feces, vaginal mucus, and urine. Milk is an important source of infection among foods of animal origin. This study aimed to determine the prevalence and molecular characterization of C. burnetii in milk samples of dairy animals from two districts in Punjab, Pakistan, as it has not been reported there so far. Using a convenience sampling approach, the current study included 304 individual milk samples from different herds of cattle, buffalo, goats, and sheep present on 39 farms in 11 villages in the districts of Kasur and Lahore. PCR targeting the IS1111 gene sequence was used for its detection. Coxiella burnetii DNA was present in 19 of the 304 (6.3%) samples. The distribution was 7.2% and 5.2% in districts Kasur and Lahore, respectively. The results showed the distribution in ruminants as 3.4% in buffalo, 5.6% in cattle, 6.7% in goats, and 10.6% in sheep. From the univariable analysis, the clinical signs of infection i.e. mastitis and abortion were analyzed for the prevalence of Coxiella burnetii. The obtained sequences were identical to the previously reported sequence of a local strain in district Lahore, Sahiwal and Attock. These findings demonstrated that the prevalence of C. burnetii in raw milk samples deserves more attention from the health care system and veterinary organizations in Kasur and Lahore of Punjab, Pakistan. Future studies should include different districts and human populations, especially professionals working with animals, to estimate the prevalence of C. burnetii.


Subject(s)
Buffaloes , Coxiella burnetii , Goats , Milk , Q Fever , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Animals , Pakistan/epidemiology , Milk/microbiology , Q Fever/epidemiology , Q Fever/microbiology , Q Fever/veterinary , Cattle , Buffaloes/microbiology , Goats/microbiology , Sheep/microbiology , Animals, Domestic/microbiology , Female , DNA, Bacterial/genetics , Prevalence , Farms , Humans
13.
Int J Food Microbiol ; 421: 110778, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38861847

ABSTRACT

Bacillus cereus is a foodborne pathogen that induces vomiting and diarrhea in affected individuals. It exhibits resistance to traditional sterilization methods and has a high contamination rate in dairy products and rice. Therefore, the development of a new food safety controlling strategy is necessary. In this research, we isolated and identified a novel phage named vB_BceP_LY3, which belongs to a new genus of the subfamily Northropvirinae. This phage demonstrates a short latency period and remains stable over a wide range of temperatures (4-60 °C) and pH levels (4-11). The 28,124 bp genome of LY3 does not contain any antibiotic-resistance genes or virulence factors. With regards to its antibacterial properties, LY3 not only effectively inhibits the growth of B. cereus in TSB (tryptic soy broth), but also demonstrates significant inhibitory effects in various food matrices. Specifically, LY3 treatment at 4 °C with a high MOI (MOI = 10,000) can maintain B. cereus levels below the detection limit for up to 24 h in milk. LY3 represents a safe and promising biocontrol agent against B. cereus, possessing long-term antibacterial capabilities and stability.


Subject(s)
Bacillus cereus , Food Microbiology , Milk , Oryza , Oryza/microbiology , Bacillus cereus/virology , Milk/microbiology , Animals , Genome, Viral , Food Contamination/prevention & control , Food Contamination/analysis , Bacillus Phages/genetics , Bacillus Phages/isolation & purification , Bacillus Phages/classification , Bacillus Phages/physiology , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/physiology
14.
Nat Commun ; 15(1): 5341, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937464

ABSTRACT

Gut microbiomes of mammals carry a complex symbiotic assemblage of microorganisms. Feeding newborn infants milk from the mammary gland allows vertical transmission of the parental milk microbiome to the offspring's gut microbiome. This has benefits, but also has hazards for the host population. Using mathematical models, we demonstrate that biparental vertical transmission enables deleterious microbial elements to invade host populations. In contrast, uniparental vertical transmission acts as a sieve, preventing these invasions. Moreover, we show that deleterious symbionts generate selection on host modifier genes that keep uniparental transmission in place. Since microbial transmission occurs during birth in placental mammals, subsequent transmission of the milk microbiome needs to be maternal to avoid the spread of deleterious elements. This paper therefore argues that viviparity and the hazards from biparental transmission of the milk microbiome, together generate selection against male lactation in placental mammals.


Subject(s)
Gastrointestinal Microbiome , Lactation , Symbiosis , Animals , Female , Male , Gastrointestinal Microbiome/physiology , Milk/microbiology , Pregnancy , Mammals/microbiology , Maternal Inheritance
15.
Food Res Int ; 190: 114610, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945575

ABSTRACT

Spore-forming bacteria are the most complex group of microbes to eliminate from the dairy production line due to their ability to withstand heat treatment usually used in dairy processing. These ubiquitous microorganisms have ample opportunity for multiple points of entry into the milk chain, creating issues for food quality and safety. Certain spore-formers, namely bacilli and clostridia, are more problematic to the dairy industry due to their possible pathogenicity, growth, and production of metabolites and spoilage enzymes. This research investigated the spore-forming population from raw milk reception at two Norwegian dairy plants through the cheesemaking stages until ripening. Samples were collected over two years and examined by amplicon sequencing in a culture independent manner and after an anaerobic spore-former enrichment step. In addition, a total of 608 isolates from the enriched samples were identified at the genus or species level using MALDI-TOF analysis. Most spore-forming isolates belong to the genera Bacillus or Clostridium, with the latter dominating the enriched MPN tubes of raw milk and bactofugate. Results showed a great variation among the clostridia and bacilli detected in the enriched MPN tubes. However, B. licheniformis and C. tyrobutyricum were identified in all sample types from both plants throughout the 2-year study. In conclusion, our results shed light on the fate of different spore-formers at different processing stages in the cheese production chain, which could facilitate targeted actions to reduce quality problems.


Subject(s)
Cheese , Food Microbiology , Spores, Bacterial , Norway , Cheese/microbiology , Spores, Bacterial/isolation & purification , Milk/microbiology , Clostridium/isolation & purification , Clostridium/genetics , Animals , Bacillus/isolation & purification , Bacillus/genetics , Bacillus/classification , Food Handling/methods , Dairying
16.
Food Res Int ; 190: 114597, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945613

ABSTRACT

The Minas artisanal cheese from the Serra da Canastra (MAC-CM) microregion is a traditional product due to its production and ripening process. Artisanal chesses manufactured with raw cow's milk and endogenous dairy starters ("also known as pingo") have distinctive flavors and other sensory characteristics because of the unknown microbiota. The aim of this study was to evaluate the microbiota during 30 days of ripening, the physicochemical changes, and their relation in MACs produced in two different microregions located in the Serra da Canastra microregion through culture-dependent and culture-independent methods. The MACs were collected in the cities of Bambuí (MAC-CMB) and Tapiraí (MAC-CMT) in the Canastra microregion (n = 21). Cheeses uniqueness was demonstrated with the multivariate analysis that joined the microbiota and physicochemical characteristics, mainly to the proteolysis process, in which the MAC-CMT showed deeper proteolysis (DI -T0:14.18; T30: 13.95), while the MAC-CMB reached only a primary level (EI -T0:24.23; T30: 31.10). Abiotic factors were responsible for the differences in microbial diversity between the cheese farms. Different microbial groups: the prokaryotes, like Corynebacterium variabile, Lactococcus lactis, and Staphylococcus saprophyticus; and the eukaryotes, like Kluyveromyces lactis and Diutina catenulata dominated ripening over time. The microbial community and proteolysis were responsible for the predominance of volatile groups, with alcohols predominating in MAC-CMB and free fatty acids/acids and esters in MAC-CMT.


Subject(s)
Cheese , Food Microbiology , Cheese/microbiology , Cheese/analysis , Polymerase Chain Reaction , Microbiota , Denaturing Gradient Gel Electrophoresis , Milk/microbiology , Milk/chemistry , Animals , Bacteria/classification , Bacteria/growth & development , Taste , Dairying/methods , Fermentation , Proteolysis
17.
Int J Food Microbiol ; 421: 110797, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38878706

ABSTRACT

Nowadays, the discovery of alternative natural antimicrobial substances such as bacteriophages, essential oils, and other physical and chemical agents is developing in the food industry. In this study, nine bacteriophages were isolated from various parts of raw chickens and exhibited lytic activities against L. monocytogenes and various Listeria spp. The characterization of phage vB_LmoS-PLM9 was stable at 4 to 50 °C and pH range from 4 to 10. Phage vB_LmoS-PLM9 had a circular, double-stranded genomic DNA with 38,345 bp having endolysin but no antibiotic resistance or virulence genes. Among the eight essential oils tested at 10 %, cinnamon bark, and cassia oils showed the strongest antilisterial activities. The combined use of phage vB_LmoS-PLM9 and cinnamon oils indicated higher efficiency than single treatments. The combination of phage (MOI of 10) and both cinnamon oils (0.03 %) reduced the viable counts of L. monocytogenes and inhibited the regrowth of resistant cell populations in broth at 30 °C. Furthermore, treatment with the combination of phage (MOI of 100) and cinnamon oil (0.125 %) was effective in milk, especially at 4 °C by reducing the viable count to less than lower limit of detection. These results suggest combining phage and cinnamon oil is a potential approach for controlling L. monocytogenes in milk.


Subject(s)
Bacteriophages , Cinnamomum zeylanicum , Listeria monocytogenes , Milk , Oils, Volatile , Salmon , Animals , Listeria monocytogenes/drug effects , Listeria monocytogenes/virology , Milk/microbiology , Cinnamomum zeylanicum/chemistry , Oils, Volatile/pharmacology , Salmon/microbiology , Food Microbiology , Plant Oils/pharmacology , Food Preservation/methods , Chickens , Anti-Bacterial Agents/pharmacology
18.
BMC Vet Res ; 20(1): 249, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849801

ABSTRACT

BACKGROUND: Intramammary infection is the result of invasion and multiplication of microorganisms in the mammary gland and commonly leads to mastitis in dairy animals. Although much has been done to improve cows' udder health, mastitis remains a significant and costly health issue for dairy farmers, especially if subclinical. In this study, quarter milk samples from clinically healthy cows were harvested to detect pathogens via quantitative PCR (qPCR) and evaluate changes in individual milk traits according to the number of quarters infected and the type of microorganism(s). A commercial qPCR kit was used for detection of Mycoplasma bovis, Mycoplasma spp., Staphylococcus aureus, coagulase-negative staphylococci (CNS), Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Prototheca spp., Escherichia coli, Klebsiella spp., Enterococcus spp. and Lactococcus lactis ssp. lactis. Quarter and pooled milk information of 383 Holstein, 132 Simmental, 129 Rendena, and 112 Jersey cows in 9 Italian single-breed herds was available. RESULTS: Among the cows with pathogen(s) present in at least 1 quarter, CNS was the most commonly detected DNA, followed by Streptococcus uberis, Mycoplasma bovis, and Streptococcus agalactiae. Cows negative to qPCR were 206 and had the lowest milk somatic cell count. Viceversa, cows with DNA isolated in ≥ 3 quarters were those with the highest somatic cell count. Moreover, when major pathogens were isolated in ≥ 3 quarters, milk had the lowest casein index and lactose content. In animals with pathogen(s) DNA isolated, the extent with whom milk yield and major solids were impaired did not significantly differ between major and minor pathogens. CONCLUSIONS: The effect of the number of affected quarters on the pool milk quality traits was investigated in clinically healthy cows using a commercial kit. Results remark the important negative effect of subclinical udder inflammations on milk yield and quality, but more efforts should be made to investigate the presence of untargeted microorganisms, as they may be potentially dangerous for cows. For a smarter use of antimicrobials, analysis of milk via qPCR is advisable - especially in cows at dry off - to identify quarters at high risk of inflammation and thus apply a targeted/tailored treatment.


Subject(s)
Mastitis, Bovine , Milk , Animals , Cattle , Milk/microbiology , Milk/chemistry , Female , Mastitis, Bovine/microbiology , DNA, Bacterial/analysis , Streptococcus/isolation & purification , Lactation , Real-Time Polymerase Chain Reaction/veterinary
19.
Food Res Int ; 188: 114463, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823831

ABSTRACT

To investigate the prevalence of Pseudomonas in the pasteurized milk production process and its effect on milk quality, 106 strains of Pseudomonas were isolated from the pasteurized milk production process of a milk production plant in Shaanxi Province, China. The protease, lipase and biofilm-producing capacities of the 106 Pseudomonas strains were evaluated, and the spoilage enzyme activities of their metabolites were assessed by simulating temperature incubation in the refrigerated (7 °C) and transport environment (25 °C) segments and thermal treatments of pasteurization (75 °C, 5 min) and ultra-high temperature sterilization (121 °C, 15 s). A phylogenetic tree was drawn based on 16S rDNA gene sequencing and the top 5 strains were selected as representative strains to identify their in situ spoilage potential by examining their growth potential and ability to hydrolyze proteins and lipids in milk using growth curves, pH, whiteness, Zeta-potential, lipid oxidation, SDS-PAGE and volatile flavor compounds. The results showed that half and more of the isolated Pseudomonas had spoilage enzyme production and biofilm capacity, and the spoilage enzyme activity of metabolites was affected by the culture temperature and sterilization method, but ultra-high temperature sterilization could not completely eliminate the enzyme activity. The growth of Pseudomonas lundensis and Pseudomonas qingdaonensis was less affected by temperature and time, and the hydrolytic capacity of extracellular protease and lipase secreted by Pseudomonas lurida was the strongest, which had the greatest effect on milk quality. Therefore, it is crucial to identify the key contamination links of Pseudomonas, the main bacteria responsible for milk spoilage, and the influence of environmental factors on its deterioration.


Subject(s)
Biofilms , Food Microbiology , Lipase , Milk , Pasteurization , Pseudomonas , Pseudomonas/metabolism , Pseudomonas/genetics , Pseudomonas/isolation & purification , Pseudomonas/growth & development , Milk/microbiology , Animals , Biofilms/growth & development , Lipase/metabolism , China , Phylogeny , Peptide Hydrolases/metabolism , RNA, Ribosomal, 16S/genetics , Food Contamination/analysis , Temperature
20.
Environ Microbiol ; 26(6): e16664, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830671

ABSTRACT

Milk is a complex biochemical fluid that includes macronutrients and microbiota, which, together, are known to facilitate infant growth, mediate the colonization of infant microbiomes, and promote immune development. Examining factors that shape milk microbiomes and milk-nutrient interplay across host taxa is critical to resolving the evolution of the milk environment. Using a comparative approach across four cercopithecine primate species housed at three facilities under similar management conditions, we test for the respective influences of the local environment (housing facility) and host species on milk (a) macronutrients (fat, sugar, and protein), (b) microbiomes (16S rRNA), and (c) predicted microbial functions. We found that milk macronutrients were structured according to host species, while milk microbiomes and predicted function were strongly shaped by the local environment and, to a lesser extent, host species. The milk microbiomes of rhesus macaques (Macaca mulatta) at two different facilities more closely resembled those of heterospecific facility-mates compared to conspecifics at a different facility. We found similar, facility-driven patterns of microbial functions linked to physiology and immune modulation, suggesting that milk microbiomes may influence infant health and development. These results provide novel insight into the complexity of milk and its potential impact on infants across species and environments.


Subject(s)
Microbiota , Milk , Nutrients , RNA, Ribosomal, 16S , Animals , Milk/microbiology , Nutrients/metabolism , RNA, Ribosomal, 16S/genetics , Macaca mulatta/microbiology , Female , Cercopithecidae/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biological Evolution
SELECTION OF CITATIONS
SEARCH DETAIL
...