Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.692
Filter
1.
Environ Geochem Health ; 46(8): 270, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954122

ABSTRACT

Radioactive nuclides cesium (Cs) and strontium (Sr) possess long half-lives, with 135Cs at approximately 2.3 million years and 87Sr at about 49 billion years. Their persistent accumulation can result in long-lasting radioactive contamination of soil ecosystems. This study employed geo-accumulation index (Igeo), pollution load index (PLI), potential ecological risk index (PEPI), health risk assessment model (HRA), and Monte Carlo simulation to evaluate the pollution and health risks of Cs and Sr in the surface soil of different functional areas in a typical mining city in China. Positive matrix factorization (PMF) model was used to elucidate the potential sources of Cs and Sr and the respective contribution rates of natural and anthropogenic sources. The findings indicate that soils in the mining area exhibited significantly higher levels of Cs and Sr pollution compared to smelting factory area, agricultural area, and urban residential area. Strontium did not pose a potential ecological risk in any studied functional area. The non-carcinogenic health risk of Sr to the human body in the study area was relatively low. Because of the lack of parameters for Cs, the potential ecological and human health risks of Cs was not calculated. The primary source of Cs in the soil was identified as the parent material from which the soil developed, while Sr mainly originated from associated contamination caused by mining activities. This research provides data for the control of Cs and Sr pollution in the surface soil of mining city.


Subject(s)
Cesium Radioisotopes , Mining , Soil Pollutants, Radioactive , Risk Assessment , China , Soil Pollutants, Radioactive/analysis , Cesium Radioisotopes/analysis , Humans , Strontium Radioisotopes/analysis , Cesium/analysis , Cities , Soil/chemistry , Monte Carlo Method , Radiation Monitoring
2.
Environ Geochem Health ; 46(8): 265, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954233

ABSTRACT

Shaanxi Province is located in the most important molybdenum ore district in the world, but a lot of molybdenum tailings have been released, polluting the environment and wasting resources seriously. Taking eleven tailing samples collected at the main molybdenum tailings ponds in Shaanxi Province as the research object, the physical, chemical, and mineralogical characteristics were studied through scanning electron microscope, X-ray fluorescence, X-ray diffraction, inductively coupled plasma mass spectrometer, and others. The ecological risk and utilization potential of molybdenum tailings were investigated through leaching test, geo-accumulation index, potential ecological risk assessment, and other methods. The results demonstrated that the main chemical and mineralogical composition of various molybdenum tailings in Shaanxi Province is similar, and the predominant mineral composition is muscovite, quartz, microcline, and calcite. The potential ecological risk of heavy metals in six molybdenum tailings is high, while Pb and Cd are the main pollution risk elements. Molybdenum tailings contain considerable amounts of critical minerals with huge potential economic value, and molybdenum tailings with high environmental hazards could be converted into a possible source for critical minerals by recovering the critical minerals and repurposing the secondary tailings as an additive or cement substitute. This study provides an innovative idea for the pollution treatment of molybdenum tailings and indicates the prospect of molybdenum tailings as a secondary source for critical minerals.


Subject(s)
Molybdenum , Molybdenum/analysis , China , Environmental Monitoring , Risk Assessment , Mining , Spectrometry, X-Ray Emission , Metals, Heavy/analysis , X-Ray Diffraction , Microscopy, Electron, Scanning , Soil Pollutants/analysis
3.
Waste Manag Res ; 42(7): 509-510, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946251
4.
Environ Geochem Health ; 46(8): 291, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976115

ABSTRACT

Potential toxic elements emanating from extracted ores during gold processing present occupational and unintentional health hazards in communities, the general populace, and the environment. This study investigated the concentrations and potential health effects of metal content in the topsoils of Obuasi municipality, which has been mined for gold over the past century. Surface topsoil samples, sieved to 250 µm, were initially scanned for metals using x-ray fluorescence techniques, followed by confirmation via ICP-MS. In vitro bioaccessibility assays were conducted using standard methods. The geoaccumulation indices (Igeo) indicate high enrichment of As (Igeo = 6.28) and Cd (Igeo = 3.80) in the soils, especially in the eastern part of the municipality where illegal artisanal mining is prevalent. Additionally, the southern corridor, situated near a gold mine, exhibited significant levels of As and Mn. Results obtained for the total metal concentrations and contamination indices confirmed the elevation of the studied potential toxic elements in the Obuasi community. A hazard index value of 4.42 and 3.30 among children and adults, respectively, indicates that indigens, especially children, are susceptible to non-cancer health effects.


Subject(s)
Gold , Mining , Soil Pollutants , Humans , Ghana , Soil Pollutants/analysis , Environmental Monitoring/methods , Child , Adult , Metals, Heavy/analysis , Biological Availability , Arsenic/analysis , Environmental Exposure , Risk Assessment
5.
PLoS One ; 19(6): e0306269, 2024.
Article in English | MEDLINE | ID: mdl-38941340

ABSTRACT

Thermal damage from heat sources severely affects the safety of deep mine production. Heat and mass transfer between heat sources and airflow leads to the increase of the airflow temperature (AFT), moisture content of airflow (AFMC) and relative humidity of airflow (AFRH). This study aims to quantify uncertainty contributions of the working face parameters on AFT, AFMC and AFRH and find their main contributors. The flow, geometric and physical parameters are chosen as uncertainty sources. Subsequently, Sobol indices are obtained using the point-collocation non-intrusive polynomial chaos method, denoting the sensitivity of each input parameter. It was found that the inflow wind temperature and the wind velocity are two top factors influencing AFT and AFMC, while relative humidity of inflow wind and the wind velocity are two top factors influencing AFRH. In the single factor analysis, the uncertainty contributions of the inflow wind temperature on AFT and AFMC, and relative humidity of inflow wind on AFRH can exceed 0.7, which is higher than those of the wind velocity. The geometric parameters of the working face, namely the length, width and height, and ventilation time are also significant quantities influencing AFT, AFMC and AFRH. Compared to AFT and AFMC, two other significant quantities influencing AFRH are the thermal conductivity of coal and the original temperature of the rock.


Subject(s)
Hot Temperature , Wind , Humidity , Humans , Mining , Thermal Conductivity , Models, Theoretical
6.
Rev Soc Bras Med Trop ; 57: e002002024, 2024.
Article in English | MEDLINE | ID: mdl-38922216

ABSTRACT

Deforestation and high human mobility due to mining activities have been key to the increase in malaria cases in the Americas. Here, we review the epidemiological and control aspects of malaria in the Amazon mining areas. Epidemiological evidence shows: 1) a positive correlation between illegal mining activity and malaria incidence, mostly in the Amazon region; 2) most Brazilian miners are males aged 15-29 years who move between states and even countries; 3) miners do not fear the disease and rely on medical care, diagnosis, and medication when they become ill; 4) illegal mining has emerged as the most reported anthropogenic activity within indigenous lands and is identified as a major cause of malaria outbreaks among indigenous people in the Amazon; and 5) because mining is largely illegal, most areas are not covered by any healthcare facilities or activities, leading to little assistance in the diagnosis and treatment of malaria. Our review identified five strategies for reducing the malaria incidence in areas with mining activities: 1) reviewing legislation to control deforestation and mining expansion, particularly in indigenous lands; 2) strengthening malaria surveillance by expanding the network of community health agents to support rapid diagnosis and treatment; 3) reinforcing vector control strategies, such as the use of insecticide-treated nets; 4) integrating deforestation alerts into the national malaria control program; and 5) implementing multi-sectoral activities and providing prompt assistance to indigenous populations. With this roadmap, we can expect a decrease in malaria incidence in the Amazonian mining areas in the future.


Subject(s)
Malaria , Mining , Humans , Brazil/epidemiology , Malaria/epidemiology , Malaria/transmission , Malaria/prevention & control , Incidence , Male , Conservation of Natural Resources , Animals
7.
Biomolecules ; 14(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38927056

ABSTRACT

Hereditary transthyretin amyloidosis (hATTR) with polyneuropathy (formerly known as Familial Amyloid Polyneuropathy (FAP)) is an endemic amyloidosis involving the harmful aggregation of proteins, most commonly transthyretin (TTR) but sometimes also apolipoprotein A-1 or gelsolin. hATTR appears to be transmitted as an autosomal dominant trait. Over 100 point mutations have been identified, with the Val30Met substitution being the most common. Yet, the mechanism of pathogenesis and the overall origin of hATTR remain unclear. Here, we argue that hATTR could be related to harmful metal exposure. hATTR incidence is unevenly distributed globally, and the three largest defined clusters exist in Japan, Portugal, and Sweden. All three disease regions are also ancient mining districts with associated metal contamination of the local environment. There are two main mechanisms for how harmful metals, after uptake into tissues and body fluids, could induce hATTR. First, the metals could directly influence the expression, function, and/or aggregation of the proteins involved in hATTR pathology. Such metal-protein interactions might constitute molecular targets for anti-hATTR drug design. Second, metal exposure could induce hATTR -associated genetic mutations, which may have happened several generations ago. These two mechanisms can occur in parallel. In conclusion, the possibility that hATTR could be related to metal exposure in geochemically defined regions deserves further attention.


Subject(s)
Amyloid Neuropathies, Familial , Prealbumin , Humans , Amyloid Neuropathies, Familial/genetics , Amyloid Neuropathies, Familial/epidemiology , Prealbumin/genetics , Prealbumin/metabolism , Mining , Polyneuropathies/genetics , Polyneuropathies/epidemiology , Polyneuropathies/etiology , Portugal/epidemiology
8.
Curr Microbiol ; 81(7): 201, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822823

ABSTRACT

Mucor representatives are mostly rapidly growing cosmopolitan soil saprotrophs of early diverged Mucoromycotina subphylum. Although this is the most speciose genus within the group, some lineages are still understudied. In this study, new species of Mucor was isolated from the post-mining area in southwestern Poland, where soil chemical composition analysis revealed high concentration of hydrocarbons and heavy metals. Phylogenetic analysis based on multigene phylogeny showed that the new isolate clusters distinctly from other Mucor species as a sister group to Mucor microsporus. New species Mucor thermorhizoides Abramczyk (Mucorales, Mucoromycota) is characterized by the extensive rhizoid production in elevated temperatures and formation of two layers of sporangiophores. It also significantly differs from M. microsporus in the shape of spores and the size of sporangia. M. thermorhizoides was shown to be able to grow in oligotrophic conditions at low temperatures. Together with M. microsporus they represent understudied and highly variable lineage of the Mucor genus.


Subject(s)
Mucor , Phylogeny , Soil Microbiology , Mucor/genetics , Mucor/classification , Mucor/isolation & purification , Poland , Mining , DNA, Fungal/genetics , Metals, Heavy
9.
BMJ Case Rep ; 17(6)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914531

ABSTRACT

This case series sheds light on the pulmonary diseases afflicting artisanal gold miners in Chunya district, Mbeya, Tanzania. We present 3 cases from a group of 21 miners. The patients, ranging in age and mining exposure, exhibited symptoms of severe pulmonary conditions, including pneumoconiosis, pulmonary hypertension and Cor pulmonale, attributed to prolonged exposure to dust and inadequate protective measures in mining environments. These cases underscore the urgent need for enhanced occupational health standards and preventive strategies in artisanal mining communities.


Subject(s)
Mining , Pneumoconiosis , Humans , Tanzania , Male , Pneumoconiosis/diagnostic imaging , Pneumoconiosis/etiology , Pneumoconiosis/diagnosis , Middle Aged , Adult , Occupational Exposure/adverse effects , Miners , Hypertension, Pulmonary/etiology
10.
Environ Sci Pollut Res Int ; 31(30): 42931-42947, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38880846

ABSTRACT

E-waste, a global environmental concern resulting from supply chain inefficiency, also offers the opportunity to recover valuable materials, including general and rare earth metals. Waste printed circuit boards (WPCBs) are integral components of e-waste that contains substantial amounts of precious metals, making them a valuable waste category. Pyrolysis has emerged as a promising method for material recovery from WPCBs. Hence, pyrolytic urban mining of WPCBs offers an excellent avenue for resource recovery, redirecting valuable materials back into the supply chain. Under the current study, experimental investigation has been conducted to explore the recovery of materials from WPCBs through pyrolysis followed by process simulation, economic analysis, and life cycle assessment (LCA). An Aspen Plus simulation was conducted to model the pyrolysis of WPCBs and subsequent product recovery using a non-equilibrium kinetic model, which represents a unique approach in this study. Another distinct aspect is the comprehensive assessment of environmental and economic sustainability. The economic analysis has been carried out using Aspen economic analyzer whereas the LCA of WPCB pyrolysis has been conducted using the SimaPro software. The experimental investigation reveals yield of solid residues are about 75-84 wt.%, liquid yields of 6-13 wt.%, and gas yields of 4-21 wt.%, which is in well agreement with the Aspen Plus simulation results. The economic analysis for an e-waste pyrolysis plant with an annual feed rate of 2000 t reveals that the total capital cost of a pyrolysis plant is nearly $51.3 million, whereas the total equipment cost is nearly $2.7 million and the total operating cost is nearly $25.6 million. The desired rate of return is 20% per year and the payback period is 6 years with a profitability index of 1.25. From the LCA, the major impact categories are global warming, fossil resource scarcity, ozone formation in human health, ozone formation in terrestrial ecosystems, fine particulate matter formation, and water consumption. The findings of this study can serve as a guideline for e-waste recyclers, researchers, and decision-makers in establishing circular economy.


Subject(s)
Electronic Waste , Mining , Pyrolysis , Recycling
11.
Sci Total Environ ; 945: 174017, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38897455

ABSTRACT

Schwertmannite (Sch), a typical Fe(III)-oxyhydroxysulphate mineral, is the precipitation reservoir of toxic elements in acid mine drainage (AMD). Acid-tolerant microbes in AMD can participate in the microbe-mediated transformation of Sch, while Sch affects the physiological characteristics of these acid-tolerant microbes. Based on our discovery of algae and Sch enrichment in a contaminated acid mine pit lake, we predicted the interaction between algae and Sch when incubated together. The acid-tolerant alga Graesiella sp. MA1 was isolated from the pit-lake surface water of an acidic mine and incubated with different contents of Sch. Sch was detected as the main product at the end of 81 d; however, there was a weak transformation. The presence of dissolved Fe(II) could be largely attributed to the photoreduction dissolution of Sch, which was promoted by Graesiella sp. MA1. The adaptation and growth phases of Graesiella sp. MA1 differed under Sch stress. The photosynthetic and metabolic activities increased and decreased at the adaptation and growth phases, respectively. The MDA contents and antioxidant activity of SOD, APX, and GSH in algal cells gradually enhanced as the Sch treatment content increased, indicating a defense strategy of Graesiella sp. MA1. Metabolomic analysis revealed that Sch affected the expression of significant differential metabolites in Graesiella sp. MA1. Organic carboxylic acid substances were essentially up-regulated in response to Sch stress. They were abundant in the medium-Sch system with the highest Fe(III) reduction, capable of complexing Fe(III), and underwent photochemical reactions via photo-induced charge transfer. The significant up-regulation of reducing sugars revealed the high energy requirement of Graesiella sp. MA1 under Sch stress. And first enriched KEGG pathway demonstrated the importance of sugar metabolism in Graesiella sp. MA1. Data acquired in this study provide novel insights into extreme acid stress adaptation of acid-tolerant algae and Sch, contributing to furthering understanding of AMD environments.


Subject(s)
Iron Compounds , Iron Compounds/metabolism , Water Pollutants, Chemical , Mining , Lakes/microbiology
12.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1379-1387, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886437

ABSTRACT

The energy oriented mine ecological restoration mode of photovoltaic+ecological restoration provides a breakthrough for alleviating the dilemma of photovoltaic land development and solving the urgent need for restoration of abandoned mining land. Taking a mining area in central Liaoning Province as an example, we established three photovoltaic+mining ecological restoration modes, including forest-photovoltaic complementary, agriculture-photovoltaic, and grass photovoltaic complementation. Combined with the life cycle assessment method, we calculated and assessed the potential of photovoltaic+mining ecological restoration in carbon reduction and sink enhancement. The average annual carbon reduction and sink increase was 514.93 t CO2·hm-2 under the photovoltaic+mining ecological restoration mode, while the average annual carbon reduction per megawatt photovoltaic power station was 1242.94 t CO2. The adoption of photovoltaic+ecological restoration mode in this mining area could make carbon reduction and sink enhancement 6.30-7.79 Mt CO2 during 25 years. The carbon reduction and sink increment mainly stemmed from the photovoltaic clean power generation induced carbon reduction, accounting for 96.4%-99.4%, while the contribution of ecosystem carbon sink increment was small, accounting for only 0.6%-3.7% of the total. Among different photovoltaic+ecological restoration modes, the carbon reduction and sink increment was the largest in forest-photovoltaic complementary (7.11 Mt CO2), followed by agriculture-photovoltaic (7.04 Mt CO2), and the least in grass photovoltaic complementation (6.98 Mt CO2). Constructing the development mode of "photovoltaic+mining ecological restoration" could effectively leverage the dual benefits of reducing emissions from photovoltaic power generation and increase sinks from mining ecological restoration, which would be helpful for achieving the goal of carbon neutrality in China.


Subject(s)
Carbon Sequestration , Ecosystem , Mining , China , Environmental Restoration and Remediation/methods , Models, Theoretical , Carbon/chemistry , Carbon/analysis , Conservation of Natural Resources/methods , Carbon Dioxide/analysis , Solar Energy
13.
Environ Sci Technol ; 58(23): 10028-10040, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38822757

ABSTRACT

Our understanding of connections between human and animal health has advanced substantially since the canary was introduced as a sentinel of toxic conditions in coal mines. Nonetheless, the development of wildlife sentinels for monitoring human exposure to toxins has been limited. Here, we capitalized on a three-decade long child blood lead monitoring program to demonstrate that the globally ubiquitous and human commensal house sparrow (Passer domesticus) can be used as a sentinel of human health risks in urban environments impacted by lead mining. We showed that sparrows are a viable proxy for the measurement of blood lead levels in children at a neighborhood scale (0.28 km2). In support of the generalizability of this approach, the blood lead relationship established in our focal mining city enabled us to accurately predict elevated blood lead levels in children from another mining city using only sparrows from the second location. Using lead concentrations and lead isotopic compositions from environmental and biological matrices, we identified shared sources and pathways of lead exposure in sparrows and children, with strong links to contamination from local mining emissions. Our findings showed how human commensal species can be used to identify and predict human health risks over time and space.


Subject(s)
Environmental Exposure , Lead , Sparrows , Animals , Lead/blood , Humans , Child , Mining , Environmental Monitoring , Sentinel Species , Environmental Pollutants
14.
J Safety Res ; 89: 197-209, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38858044

ABSTRACT

INTRODUCTION: The workplace's health hazard remains a significant concern to workers in the mining industry, where miners are continually exposed to various kinds of exposure sources. METHOD: First, the determinants of miners' health were systematically extracted from 259 publications, comprising chemical, physical, ergonomic, and psychosocial stressors, vulnerability factors, and common health outcomes. Then, 16 meta-analyses were performed to ascertain the epidemiological evidence for associations between four stressors and three health outcomes. The seven top contributing factors affecting miners' health were identified through 166 available prospective studies. Finally, based on the classic and domestic measurement scales, a cross-sectional survey of 559 Chinese miners was conducted to determine the core psychosocial predictors. In addition to the traditional mechanisms, complex interactive networks among the antecedents and consequences and the reversed effects of consequences were also obtained, where 379 strong association rules were yielded via the Apriori algorithm. RESULTS: The results showed that occupational dust, NO2, heavy metals, heat, vibration, awkward posture, and job stress are significant risk factors associated with individuals' health conditions. Psychological capital, coping style, job demand, social support, organizational support, justice, and culture are core psychosocial predictors of miners. CONCLUSIONS: This study presents a case for identifying the most significant occupational risk factors related to individuals' health, which could be extended and applied to other industries, as working populations around the world are suffering from various chemical, physical, ergonomic, and psychosocial stressors. PRACTICAL APPLICATIONS: Identifying the significant occupational risk factors affecting workers' health conditions is essential for comprehensive occupational health risk assessment and management. Therefore, this study could be important for health management in mines and other industries.


Subject(s)
Mining , Occupational Exposure , Humans , Risk Factors , Occupational Exposure/adverse effects , Occupational Exposure/statistics & numerical data , Miners/statistics & numerical data , Occupational Health , Occupational Diseases/epidemiology , Occupational Stress/epidemiology , China/epidemiology
15.
J Environ Manage ; 362: 121292, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838539

ABSTRACT

Soil cover is a prevailing method used at mine sites to ensure the safety of hazardous materials and restore ecological functions when the base materials are unfavorable for plant growth. The former open-pit Ningyo-toge Mine was backfilled with overburden and neutralized smelting residues and covered with soil in 1987. After 36 years, the vegetation remained dominated by the perennial herb Miscanthus sinensis, and woody plant establishment did not progress successfully. This study investigated the factors that inhibited woody plant establishment at the site. The soil profile survey revealed that the soil cover formed Bg horizons (pseudogley soil) with cloudy mottling, representative of poorly drained soil. In the Bg horizon, woody plant roots of Pinus densiflora and Weigela hortensis exhibited growth inhibition. Elemental analysis revealed that in the Bg horizon the roots of P. densiflora and W. hortensis accumulated high Fe concentrations exceeding 10,000 mg/kg DW at critical levels. Our results suggested that woody plant roots in the Bg horizon may have suffered from chronic oxygen deficiency accompanied by excessive Fe stress in the soil cover. Topsoil water content (<50 mm) and microtopographic features were not critical factors disrupting woody plant establishment because some individuals were growing in areas with high soil water content, exceeding 60%. Considering that woody plant roots were developed primarily in the shallow A horizon, A horizon formation by M. sinensis is a key step in initiating woody plant establishment by improving the soil structure and physiochemical characteristics of the soil cover, such as carbon content, exchangeable nutrients, and air-filled porosity. For successful mine pollution control and vegetation recovery, implementing an appropriate topsoil system, such as native forest soil, loosely graded and minor infiltration layer above the overburden would be necessary.


Subject(s)
Mining , Soil , Soil/chemistry , Plant Roots/growth & development , Poaceae/growth & development
16.
PLoS One ; 19(6): e0299476, 2024.
Article in English | MEDLINE | ID: mdl-38829898

ABSTRACT

In order to ensure the safety of coal mine production, a mine water source identification model is proposed to improve the accuracy of mine water inrush source identification and effectively prevent water inrush accidents based on kernel principal component analysis (KPCA) and improved sparrow search algorithm (ISSA) optimized kernel extreme learning machine (KELM). Taking Zhaogezhuang mine as the research object, firstly, Na+, Ca2+, Mg2+, Cl-, SO2- 4 and HCO- 3 were selected as evaluation indexes, and their correlation was analyzed by SPSS27 software, with reducing the dimension of the original data by KPCA. Secondly, the Sine Chaotic Mapping, dynamic adaptive weights, and Cauchy Variation and Reverse Learning were introduced to improve the Sparrow Search Algorithm (SSA) to strengthen global search ability and stability. Meanwhile, the ISSA was used to optimize the kernel parameters and regularization coefficients in the KELM to establish a mine water inrush source discrimination model based on the KPCA-ISSA-KELM. Then, the mine water source data are input into the model for discrimination in compared with discrimination results of KPCA-SSA-KELM, KPCA-KELM, ISSA-KELM, SSA-KELM and KELM models. The results of the study show as follows: The discrimination results of the KPCA-ISSA-KELM model are in agreement with the actual results. Compared with the other models, the accuracy of the KPCA-ISSA-KELM model is improved by 8.33%, 12.5%, 4.17%, 21.83%, and 25%, respectively. Finally, when these models were applied to discriminate water sources in a coal mine in Shanxi, and the misjudgment rates of each model were 28.57%, 19.05%, 14.29%, 23.81%, 9.52% and 4.76%, respectively. From this, the KPCA-ISSA-KLEM model is the most accurate about discrimination and significantly better than other models in other evaluation indicators, verifying the universality and stability of the model. It can be effectively applied to the discrimination of inrush water sources in mines, providing important guarantees for mine safety production.


Subject(s)
Algorithms , Principal Component Analysis , Machine Learning , Coal Mining , Mining , Models, Theoretical
17.
Sci Rep ; 14(1): 12715, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830984

ABSTRACT

To assess the concentration characteristics and ecological risks of potential toxic elements (PTEs) in water and sediment, 17 water samples and 17 sediment samples were collected in the Xiyu River to analyze the content of Cr, Ni, As, Cu, Zn, Pb, Cd and Hg, and the environmental risks of PTEs was evaluated by single-factor pollution index, Nemerow comprehensive pollution index, potential ecological risk, and human health risk assessment. The results indicated that Hg in water and Pb, Cu, Cd in sediments exceeded the corresponding environmental quality standards. In the gold mining factories distribution river section (X8-X10), there was a significant increase in PTEs in water and sediments, indicating that the arbitrary discharge of tailings during gold mining flotation is the main cause of PTEs pollution. The increase in PTEs concentration at the end of the Xiyu River may be related to the increased sedimentation rate, caused by the slowing of the riverbed, and the active chemical reactions at the estuary. The single-factor pollution index and Nemerow pollution index indicated that the river water was severely polluted by Hg. Potential ecological risk index indicated that the risk of Hg in sediments was extremely high, the risk of Cd was high, and the risk of Pb and Cu was moderate. The human health risk assessment indicated that As in water at point X10 and Hg in water at point X9 may pose non-carcinogenic risk to children through ingestion, and As at X8-X10 and Cd at X14 may pose carcinogenic risk to adults through ingestion. The average HQingestion value of Pb in sediments was 1.96, indicating that the ingestion of the sediments may poses a non-carcinogenic risk to children, As in the sediments at X8-X10 and X15-X17 may pose non-carcinogenic risk to children through ingestion.


Subject(s)
Environmental Monitoring , Geologic Sediments , Gold , Mining , Rivers , Water Pollutants, Chemical , Geologic Sediments/analysis , Geologic Sediments/chemistry , China , Risk Assessment , Rivers/chemistry , Water Pollutants, Chemical/analysis , Humans , Environmental Monitoring/methods , Metals, Heavy/analysis , Metals, Heavy/toxicity
18.
Environ Monit Assess ; 196(7): 635, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900337

ABSTRACT

Detecting human impact on freshwater ecosystems is problematic without rigorous assessment of temporal changes. Assessments of mining impacts are further complicated by the strong influence of local catchment geology on surface waters even in unmined environments. Such influence cannot be effectively considered by using broad-scale reference frameworks based on regionalization and stream types. Using the BACI (Before-After Control-Impact) design, we examined the impact of mining discharges on freshwater algae and macroinvertebrate communities resulting from the rerouting of treated wastewaters through a pipeline to larger water bodies in Northern and North-Eastern Finland. Impacted sites and control sites were sampled 1 to 2 years before and 1 to 3 years after the pipelines became operational. Stream diatom communities recovered from past loadings upstream of the pipeline (which was no longer impacted by wastewaters) after rerouting of the wastewaters, while no changes downstream from the pipeline were detected. Upstream from the pipeline, diatom species richness increased and changes in relative abundances of the most common diatom taxa as well as in the overall community composition were observed. The effects of the pipeline were less evident for stream macroinvertebrate communities. There was an indication that regional reference conditions used in national biomonitoring may not represent diatom communities in areas with a strong geochemical background influence. Lake profundal macroinvertebrate communities were impacted by past loadings before the construction of the pipeline, and the influence of the pipeline was observed only as changes in the abundances of a few individual species such as phantom midges (which increased in abundance in response to discharges directed through the pipeline). Our results highlight the variable influence of mining discharges on aquatic communities. Statistically strong monitoring programmes, such as BACI designs, are clearly needed to detect these influences.


Subject(s)
Diatoms , Ecosystem , Environmental Monitoring , Fresh Water , Invertebrates , Mining , Environmental Monitoring/methods , Animals , Fresh Water/chemistry , Finland , Rivers/chemistry , Water Pollutants, Chemical/analysis
19.
Arch Microbiol ; 206(7): 320, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907882

ABSTRACT

The mining and metallurgical industry represents one of the leading causes of environmental pollution. In this context, the optimization of mineral waste management and the efficient extraction of metals of interest becomes an imperative priority for a sustainable future. Microorganisms such as Acidithiobacillus thiooxidans have represented a sustainable and economical alternative in recent years due to their capacity for environmental remediation in bioleaching processes because of their sulfur-oxidizing capacity and sulfuric acid generation. However, its use has been limited due to the reluctance of mine operators because of the constant reproduction of the bacterial culture in suitable media and the care that this entails. In this work, the central objective was to evaluate the functional characteristics of A. thiooxidans, microencapsulated and stored at room temperature for three years in vacuum bags, using a spray drying process with gum arabic as a wall vector. Growth kinetics showed a survival of 80 ± 0.52% after this long period of storage. Also, a qualitative fluorescence technique with a 5-cyano-2-3 ditolyl tetrazolium (CTC) marker was used to determine the respiratory activity of the microorganisms as soon as it was resuspended. On the other hand, the consumption of resuspended sulfur was evaluated to corroborate the correct metabolic functioning of the bacteria, with results of up to 50% sulfur reduction in 16 days and sulfate generation of 513.85 ± 0.4387 ppm and 524.15 ± 0.567 ppm for microencapsulated and non-microencapsulated cultures, respectively. These results demonstrate the success after three years of the microencapsulation process and give guidelines for its possible application in the mining-metallurgical industry.


Subject(s)
Acidithiobacillus thiooxidans , Gum Arabic , Mining , Acidithiobacillus thiooxidans/metabolism , Acidithiobacillus thiooxidans/growth & development , Gum Arabic/chemistry , Spray Drying , Biotechnology/methods , Sulfur/metabolism
20.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1141-1149, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884249

ABSTRACT

Mining causes severe damage to soil ecosystems. Vegetation restoration in abandoned mine areas is an inevitable requirement for sustainable development. Soil microbes, as the most active component of soil organic matter, play a crucial role in the transformation of carbon, nitrogen, phosphorus, and other elements. They are often used as indicators to assess the extent of vegetation restoration in ecologically fragile areas. However, the impacts of vegetation restoration on soil microbial community structure in mining areas at the global scale remains largely unknown. Based on 310 paired observations from 44 papers, we employed the meta-analysis approach to examine the influence of vegetation restoration on soil microbial abundance and biomass in mining area. The results indicated that vegetation restoration significantly promotes soil microbial biomass in mining areas. In comparison to bare soil, vegetation restoration leads to a significant 95.1% increase in soil microbial biomass carbon and a 87.8% increase in soil microbial biomass nitrogen. The abundance of soil bacteria, fungi, and actinomycetes are significantly increased by 1005.4%, 472.4%, and 177.7%, respectively. Among various vegetation restoration types, the exclusive plan-ting of trees exhibits the most pronounced promotion effect on soil microbial biomass and population, which results in a significant increase of 540.3% in soil fungi and 104.5% in actinomycetes, along with a respective enhancement of 110.3% and 106.4% in microbial biomass carbon and nitrogen. Model selection results revealed that soil satura-ted water content and vegetation restoration history contribute most significantly to the abundance of soil bacteria and fungi. Soil available nitrogen has the most significant impact on the abundance of actinomycetes and microbial biomass carbon, while soil available phosphorus emerges as a crucial factor affecting microbial biomass nitrogen. This research could contribute to understanding the relationship between vegetation restoration and the structure of soil microbial communities in mining areas, and providing scientific support for determining appropriate vegetation restoration types in mining areas.


Subject(s)
Ecosystem , Mining , Soil Microbiology , China , Environmental Restoration and Remediation/methods , Soil/chemistry , Trees/growth & development , Nitrogen/analysis , Bacteria/classification , Bacteria/growth & development , Biomass , Plants , Conservation of Natural Resources
SELECTION OF CITATIONS
SEARCH DETAIL
...