Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.698
1.
Mol Biol Rep ; 51(1): 602, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698158

BACKGROUND: Low-temperature severely limits the growth and development of Camellia oleifera (C. oleifera). The mitogen-activated protein kinase (MAPK) cascade plays a key role in the response to cold stress. METHODS AND RESULTS: Our study aims to identify MAPK cascade genes in C. oleifera and reveal their roles in response to cold stress. In our study, we systematically identified and analyzed the MAPK cascade gene families of C. oleifera, including their physical and chemical properties, conserved motifs, and multiple sequence alignments. In addition, we characterized the interacting networks of MAPKK kinase (MAPKKK)-MAPK kinase (MAPKK)-MAPK in C. oleifera. The molecular mechanism of cold stress resistance of MAPK cascade genes in wild C. oleifera was analyzed by differential gene expression and real-time quantitative reverse transcription-PCR (qRT-PCR). CONCLUSION: In this study, 21 MAPKs, 4 MAPKKs and 55 MAPKKKs genes were identified in the leaf transcriptome of C. oleifera. According to the phylogenetic results, MAPKs were divided into 4 groups (A, B, C and D), MAPKKs were divided into 3 groups (A, B and D), and MAPKKKs were divided into 2 groups (MEKK and Raf). Motif analysis showed that the motifs in each subfamily were conserved, and most of the motifs in the same subfamily were basically the same. The protein interaction network based on Arabidopsis thaliana (A. thaliana) homologs revealed that MAPK, MAPKK, and MAPKKK genes were widely involved in C. oleifera growth and development and in responses to biotic and abiotic stresses. Gene expression analysis revealed that the CoMAPKKK5/CoMAPKKK43/CoMAPKKK49-CoMAPKK4-CoMAPK8 module may play a key role in the cold stress resistance of wild C. oleifera at a high-elevation site in Lu Mountain (LSG). This study can facilitate the mining and utilization of genetic resources of C. oleifera with low-temperature tolerance.


Camellia , Cold-Shock Response , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Cold-Shock Response/genetics , Camellia/genetics , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/genetics , Cold Temperature , Transcriptome/genetics , Multigene Family , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Gene Expression Profiling/methods , Plant Leaves/genetics
2.
PLoS Genet ; 20(5): e1011281, 2024 May.
Article En | MEDLINE | ID: mdl-38743788

CgHog1, terminal kinase of the high-osmolarity glycerol signalling pathway, orchestrates cellular response to multiple external stimuli including surplus-environmental iron in the human fungal pathogen Candida glabrata (Cg). However, CgHog1 substrates remain unidentified. Here, we show that CgHog1 adversely affects Cg adherence to host stomach and kidney epithelial cells in vitro, but promotes Cg survival in the iron-rich gastrointestinal tract niche. Further, CgHog1 interactome and in vitro phosphorylation analysis revealed CgSub2 (putative RNA helicase) to be a CgHog1 substrate, with CgSub2 also governing iron homeostasis and host adhesion. CgSub2 positively regulated EPA1 (encodes a major adhesin) expression and host adherence via its interactor CgHtz1 (histone H2A variant). Notably, both CgHog1 and surplus environmental iron had a negative impact on CgSub2-CgHtz1 interaction, with CgHTZ1 or CgSUB2 deletion reversing the elevated adherence of Cghog1Δ to epithelial cells. Finally, the surplus-extracellular iron led to CgHog1 activation, increased CgSub2 phosphorylation, elevated CgSub2-CgHta (canonical histone H2A) interaction, and EPA1 transcriptional activation, thereby underscoring the iron-responsive, CgHog1-induced exchange of histone partners of CgSub2. Altogether, our work mechanistically defines how CgHog1 couples Epa1 adhesin expression with iron abundance, and point towards specific chromatin composition modification programs that probably aid fungal pathogens align their adherence to iron-rich (gut) and iron-poor (blood) host niches.


Candida glabrata , Cell Adhesion , Epithelial Cells , Fungal Proteins , Histones , Candida glabrata/genetics , Candida glabrata/metabolism , Humans , Histones/metabolism , Histones/genetics , Epithelial Cells/microbiology , Epithelial Cells/metabolism , Cell Adhesion/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Phosphorylation , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Iron/metabolism , Gene Expression Regulation, Fungal , Candidiasis/microbiology , Candidiasis/genetics , Signal Transduction
3.
Physiol Plant ; 176(3): e14362, 2024.
Article En | MEDLINE | ID: mdl-38807422

All over the world, potato (Solanum tuberosum L.) production is constrained by several biotic and abiotic factors. Many techniques and mechanisms have been used to overcome these hurdles and increase food for the rising population. In crop plants, the mitogen-activated protein kinase (MAPK) cascade, a significant regulator of the MAPK pathway under various biotic and abiotic stress conditions, is one of the targets to increase productivity. MAPK plays a significant role under drought stress in potato. However, the function of MAPK in drought resistance in potato is poorly understood. In this study, we wanted to identify the function of StMAPK10 in the drought resistance in potato. StMAPK10 was up-regulated under drought conditions and dynamically modulated by abiotic stresses. Over-expression and down-regulation of StMAPK10 revealed that StMAPK10 stimulated potato growth under drought conditions, as demonstrated by changes in SOD, CAT, and POD activity, as well as H2O2, proline, and MDA content. StMAPK10 up-regulation exaggerated the drought resistance of the potato plant by uplifting antioxidant activities and photosynthetic indices. Overexpressed-StMAPK10 potato lines showed highly significant results for physiological and photosynthetic indices in response to drought stress, while knockdown expression showed opposite outcomes. Additionally, subcellular localization and phenotypic analysis of transgenic and non-transgenic plants substantiated the role of the increased expression of StMAPK10 against drought stress. The results could provide novel insights into the functionality of StMAPK10 in drought responses and conceivable mechanisms.


Droughts , Gene Expression Regulation, Plant , Plant Proteins , Solanum tuberosum , Stress, Physiological , Solanum tuberosum/genetics , Solanum tuberosum/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Photosynthesis/genetics , Plants, Genetically Modified/genetics , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Hydrogen Peroxide/metabolism , Drought Resistance
4.
New Phytol ; 243(1): 381-397, 2024 Jul.
Article En | MEDLINE | ID: mdl-38741469

Ectomycorrhizal symbiosis, which involves mutually beneficial interactions between soil fungi and tree roots, is essential for promoting tree growth. To establish this symbiotic relationship, fungal symbionts must initiate and sustain mutualistic interactions with host plants while avoiding host defense responses. This study investigated the role of reactive oxygen species (ROS) generated by fungal NADPH oxidase (Nox) in the development of Laccaria bicolor/Populus tremula × alba symbiosis. Our findings revealed that L. bicolor LbNox expression was significantly higher in ectomycorrhizal roots than in free-living mycelia. RNAi was used to silence LbNox, which resulted in decreased ROS signaling, limited formation of the Hartig net, and a lower mycorrhizal formation rate. Using Y2H library screening, BiFC and Co-IP, we demonstrated an interaction between the mitogen-activated protein kinase LbSakA and LbNoxR. LbSakA-mediated phosphorylation of LbNoxR at T409, T477 and T480 positively modulates LbNox activity, ROS accumulation and upregulation of symbiosis-related genes involved in dampening host defense reactions. These results demonstrate that regulation of fungal ROS metabolism is critical for maintaining the mutualistic interaction between L. bicolor and P. tremula × alba. Our findings also highlight a novel and complex regulatory mechanism governing the development of symbiosis, involving both transcriptional and posttranslational regulation of gene networks.


Fungal Proteins , Laccaria , Mycorrhizae , NADPH Oxidases , Reactive Oxygen Species , Symbiosis , Laccaria/physiology , Laccaria/genetics , Laccaria/metabolism , Mycorrhizae/physiology , NADPH Oxidases/metabolism , NADPH Oxidases/genetics , Reactive Oxygen Species/metabolism , Phosphorylation , Fungal Proteins/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics
5.
Mycopathologia ; 189(3): 37, 2024 May 05.
Article En | MEDLINE | ID: mdl-38704808

Trichophyton rubrum is a human fungal pathogen that causes dermatophytosis, an infection that affects keratinized tissues. Integrated molecular signals coordinate mechanisms that control pathogenicity. Transcriptional regulation is a core regulation of relevant fungal processes. Previous RNA sequencing data revealed that the absence of the transcription factor StuA resulted in the differential expression of the MAPK-related high glycerol osmolarity gene (hog1) in T. rubrum. Here we validated the role of StuA in regulating the transcript levels of hog1. We showed through RT-qPCR that transcriptional regulation controls hog1 levels in response to glucose, keratin, and co-culture with human keratinocytes. In addition, we also detected hog1 pre-mRNA transcripts that underwent alternative splicing, presenting intron retention in a StuA-dependent mechanism. Our findings suggest that StuA and alternative splicing simultaneously, but not dependently, coordinate hog1 transcript levels in T. rubrum. As a means of preventing and treating dermatophytosis, our results contribute to the search for new potential drug therapies based on the molecular aspects of signaling pathways in T. rubrum.


Alternative Splicing , Arthrodermataceae , Gene Expression Regulation, Fungal , Mitogen-Activated Protein Kinases , Tinea , Transcription Factors , Humans , Arthrodermataceae/genetics , Arthrodermataceae/metabolism , Glucose/metabolism , Keratinocytes/microbiology , Keratins/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Real-Time Polymerase Chain Reaction , Transcription Factors/genetics , Transcription Factors/metabolism , Tinea/metabolism , Tinea/microbiology
6.
Parasitol Res ; 123(4): 189, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38639821

Toxocara canis is a parasitic zoonose that is distributed worldwide and is one of the two pathogens causing toxocariasis. After infection, it causes serious public health and safety problems, which pose significant veterinary and medical challenges. To better understand the regulatory effects of T. canis infection on the host immune cells, murine macrophages (RAW264.7) were incubated with recombinant T. canis C-type lectin 4 (rTc-CTL-4) protein in vitro. The quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to analyze the nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2), receptor-interacting protein 2 (RIP2), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) on mRNA level and protein expression level in macrophages. Our results indicated that 10 µg/mL rTc-CTL-4 protein could modulate the expression of NOD1, NOD2, and RIP2 at both the transcriptional and translational levels. The protein translation levels of NF-κB, P-p65, p38, and P-p38 in macrophages were also modulated by rTc-CTL-4 protein. Macrophages were co-incubated with rTc-CTL-4 protein after siRNA silencing of NOD1, NOD2, and RIP2. The expression levels of NF-κB, P-p65, p38, and P-p38 were significantly changed compared with the negative control groups (Neg. Ctrl.). Taken together, rTc-CTL-4 protein seemed to act on NOD1/2-RIP2-NF-κB and MAPK signaling pathways in macrophages and might activate MAPK and NF-κB signaling pathways by regulating NOD1, NOD2, and RIP2. The insights from the above studies could contribute to our understanding of immune recognition and regulatory mechanisms of T. canis infection in the host animals.


NF-kappa B , Toxocara canis , Animals , Mice , NF-kappa B/genetics , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Toxocara canis/metabolism , Signal Transduction/physiology , Macrophages
7.
J Agric Food Chem ; 72(17): 10065-10075, 2024 May 01.
Article En | MEDLINE | ID: mdl-38634532

Aflatoxins (AFs), highly carcinogenic natural products, are produced by the secondary metabolism of fungi such as Aspergillus flavus. Essential for the fungi to respond to environmental changes and aflatoxin synthesis, the pheromone mitogen-activated protein kinase (MAPK) is a potential regulator of aflatoxin biosynthesis. However, the mechanism by which pheromone MAPK regulates aflatoxin biosynthesis is not clear. Here, we showed Gal83, a new target of Fus3, and identified the pheromone Fus3-MAPK signaling pathway as a regulator of the Snf1/AMPK energy-sensing pathway modulating aflatoxins synthesis substrates. The screening for Fus3 target proteins identified the ß subunit of Snf1/AMPK complexes using tandem affinity purification and multiomics. This subunit physically interacted with Fus3 both in vivo and in vitro and received phosphorylation from Fus3. Although the transcript levels of aflatoxin synthesis genes were not noticeably downregulated in both gal83 and fus3 deletion mutant strains, the levels of aflatoxin B1 and its synthesis substrates and gene expression levels of primary metabolizing enzymes were significantly reduced. This suggests that both the Fus3-MAPK and Snf1/AMPK pathways respond to energy signals. In conclusion, all the evidence unlocks a novel pathway of Fus3-MAPK to regulate AFs synthesis substrates by cross-talking with the Snf1/AMPK complexes.


Aspergillus flavus , Fungal Proteins , Gene Expression Regulation, Fungal , Mitogen-Activated Protein Kinases , Aspergillus flavus/metabolism , Aspergillus flavus/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Secondary Metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Phosphorylation , Aflatoxins/metabolism , Protein Binding , Signal Transduction
8.
J Am Heart Assoc ; 13(8): e033287, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38563363

BACKGROUND: We aimed to correlate alterations in the rat sarcoma virus (RAS)/mitogen-activated protein kinase pathway in vascular anomalies to the clinical phenotype for improved patient and treatment stratification. METHODS AND RESULTS: This retrospective multicenter cohort study included 29 patients with extracranial vascular anomalies containing mosaic pathogenic variants (PVs) in genes of the RAS/mitogen-activated protein kinase pathway. Tissue samples were collected during invasive treatment or clinically indicated biopsies. PVs were detected by the targeted sequencing of panels of genes known to be associated with vascular anomalies, performed using DNA from affected tissue. Subgroup analyses were performed according to the affected genes with regard to phenotypic characteristics in a descriptive manner. Twenty-five vascular malformations, 3 vascular tumors, and 1 patient with both a vascular malformation and vascular tumor presented the following distribution of PVs in genes: Kirsten rat sarcoma viral oncogene (n=10), neuroblastoma ras viral oncogene homolog (n=1), Harvey rat sarcoma viral oncogene homolog (n=5), V-Raf murine sarcoma viral oncogene homolog B (n=8), and mitogen-activated protein kinase kinase 1 (n=5). Patients with RAS PVs had advanced disease stages according to the Schobinger classification (stage 3-4: RAS, 9/13 versus non-RAS, 3/11) and more frequent progression after treatment (RAS, 10/13 versus non-RAS, 2/11). Lesions with Kirsten rat sarcoma viral oncogene PVs infiltrated more tissue layers compared with the other PVs including other RAS PVs (multiple tissue layers: Kirsten rat sarcoma viral oncogene, 8/10 versus other PVs, 6/19). CONCLUSIONS: This comparison of patients with various PVs in genes of the RAS/MAPK pathway provides potential associations with certain morphological and clinical phenotypes. RAS variants were associated with more aggressive phenotypes, generating preliminary data and hypothesis for future larger studies.


Proto-Oncogene Proteins p21(ras) , Vascular Malformations , Humans , Cohort Studies , Genetic Association Studies , Mitogen-Activated Protein Kinases/genetics , Mutation , Vascular Malformations/genetics
9.
Funct Plant Biol ; 512024 04.
Article En | MEDLINE | ID: mdl-38669459

Mitogen-activated protein kinases (MAPKs) play important roles in plant stress response. As a major member of the MAPK family, MPK3 has been reported to participate in the regulation of chilling stress. However, the regulatory function of wheat (Triticum aestivum ) mitogen-activated protein kinase TaMPK3 in freezing tolerance remains unknown. Dongnongdongmai No.1 (Dn1) is a winter wheat variety with strong freezing tolerance; therefore, it is important to explore the mechanisms underlying this tolerance. In this study, the expression of TaMPK3 in Dn1 was detected under low temperature and hormone treatment. Gene cloning, bioinformatics and subcellular localisation analyses of TaMPK3 in Dn1 were performed. Overexpressed TaMPK3 in Arabidopsis thaliana was obtained, and freezing tolerance phenotype observations, physiological indices and expression levels of ICE-C-repeat binding factor (CBF)-COR -related genes were determined. In addition, the interaction between TaMPK3 and TaICE41 proteins was detected. We found that TaMPK3 expression responds to low temperatures and hormones, and the TaMPK3 protein is localised in the cytoplasm and nucleus. Overexpression of TaMPK3 in Arabidopsis significantly improves freezing tolerance. TaMPK3 interacts with the TaICE41 protein. In conclusion, TaMPK3 is involved in regulating the ICE-CBF-COR cold resistance module through its interaction with TaICE41, thereby improving freezing tolerance in Dn1 wheat.


Arabidopsis , Freezing , Gene Expression Regulation, Plant , Triticum , Arabidopsis/genetics , Triticum/genetics , Triticum/metabolism , Triticum/enzymology , Plants, Genetically Modified/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics
10.
J Microbiol ; 62(3): 231-248, 2024 Mar.
Article En | MEDLINE | ID: mdl-38587594

Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules that coordinate diverse biological processes such as plant innate immunity and development. Recently, MAPK cascades have emerged as pivotal regulators of the plant holobiont, influencing the assembly of normal plant microbiota, essential for maintaining optimal plant growth and health. In this review, we provide an overview of current knowledge on MAPK cascades, from upstream perception of microbial stimuli to downstream host responses. Synthesizing recent findings, we explore the intricate connections between MAPK signaling and the assembly and functioning of plant microbiota. Additionally, the role of MAPK activation in orchestrating dynamic changes in root exudation to shape microbiota composition is discussed. Finally, our review concludes by emphasizing the necessity for more sophisticated techniques to accurately decipher the role of MAPK signaling in establishing the plant holobiont relationship.


Microbiota , Plant Roots , Plants , Microbiota/physiology , Plants/microbiology , Plant Roots/microbiology , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Symbiosis , Plant Immunity
11.
J Biol Chem ; 300(5): 107273, 2024 May.
Article En | MEDLINE | ID: mdl-38588806

The stability of ribosomal DNA (rDNA) is maintained through transcriptional silencing by the NAD+-dependent histone deacetylase Sir2 in Saccharomyces cerevisiae. Alongside proteostasis, rDNA stability is a crucial factor regulating the replicative lifespan of S. cerevisiae. The unfolded protein response (UPR) is induced by misfolding of proteins or an imbalance of membrane lipid composition and is responsible for degrading misfolded proteins and restoring endoplasmic reticulum (ER) membrane homeostasis. Recent investigations have suggested that the UPR can extend the replicative lifespan of yeast by enhancing protein quality control mechanisms, but the relationship between the UPR and rDNA stability remains unknown. In this study, we found that the deletion of ARV1, which encodes an ER protein of unknown molecular function, activates the UPR by inducing lipid bilayer stress. In arv1Δ cells, the UPR and the cell wall integrity pathway are activated independently of each other, and the high osmolarity glycerol (HOG) pathway is activated in a manner dependent on Ire1, which mediates the UPR. Activated Hog1 translocates the stress response transcription factor Msn2 to the nucleus, where it promotes the expression of nicotinamidase Pnc1, a well-known Sir2 activator. Following Sir2 activation, rDNA silencing and rDNA stability are promoted. Furthermore, the loss of other ER proteins, such as Pmt1 or Bst1, and ER stress induced by tunicamycin or inositol depletion also enhance rDNA stability in a Hog1-dependent manner. Collectively, these findings suggest that the induction of the UPR enhances rDNA stability in S. cerevisiae by promoting the Msn2-Pnc1-Sir2 pathway in a Hog1-dependent manner.


DNA, Ribosomal , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Unfolded Protein Response , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , DNA, Ribosomal/metabolism , DNA, Ribosomal/genetics , Lipid Bilayers/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Nicotinamidase/metabolism , Nicotinamidase/genetics , Sirtuin 2/metabolism , Sirtuin 2/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Glycoproteins
12.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Article En | MEDLINE | ID: mdl-38560781

Mitogen-activated protein kinase (MAPK) pathways control the response to intrinsic and extrinsic stimuli. In the budding yeast Saccharomyces cerevisiae, cells undergo filamentous growth, which is regulated by the fMAPK pathway. To better understand the regulation of the fMAPK pathway, a genetic screen was performed to identify spontaneous mutants with elevated activity of an fMAPK pathway-dependent growth reporter (ste4  FUS1-HIS3). In total, 159 mutants were isolated and analyzed by secondary screens for invasive growth by the plate-washing assay and filament formation by microscopy. Thirty-two mutants were selected for whole-genome sequencing, which identified new alleles in genes encoding known regulators of the fMAPK pathway. These included gain-of-function alleles in STE11, which encodes the MAPKKK, as well as loss-of-function alleles in KSS1, which encodes the MAP kinase, and loss-of-function alleles in RGA1, which encodes a GTPase-activating protein (GAP) for CDC42. New alleles in previously identified pathway modulators were also uncovered in ALY1, AIM44, RCK2, IRA2, REG1, and in genes that regulate protein folding (KAR2), glycosylation (MNN4), and turnover (BLM10). Mutations leading to C-terminal truncations in the transcription factor Ste12p were also uncovered that resulted in elevated reporter activity, identifying an inhibitory domain of the protein from residues 491 to 688. We also find that a diversity of filamentous growth phenotypes can result from combinatorial effects of multiple mutations and by loss of different regulators of the response. The alleles identified here expand the connections surrounding MAPK pathway regulation and reveal new features of proteins that function in the signaling cascade.


Alleles , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Mutation , Gene Expression Regulation, Fungal , Phenotype
13.
Cell Cycle ; 23(3): 279-293, 2024 Feb.
Article En | MEDLINE | ID: mdl-38445655

Studies indicate that mitogen-activated protein kinases (MAPKs) are activated and overexpressed in psoriatic lesions. The aim of the study was to assess changes in the expression pattern of genes encoding MAPKs and microRNA (miRNA) molecules potentially regulating their expression in human adult low-calcium high-temperature (HaCaT) keratinocytes exposed to bacterial lipopolysaccharide A (LPS) and cyclosporine A (CsA). HaCaT cells were treated with 1 µg/mL LPS for 8 h, followed by treatment with 100 ng/mL cyclosporine A for 2, 8, or 24 h. Untreated cells served as controls. The molecular analysis consists of microarray, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay analyses. The statistical analysis of the obtained results was performed using Transcriptome Analysis Console and STATISTICA 13.5 PL with the statistical significance threshold of p < 0.05. Changes in the expression profile of six mRNAs: dual-specificity phosphatase 1 (DUSP1), dual-specificity phosphatase 4 (DUSP4), mitogen-activated protein kinase kinase 2 (MAP2K2), mitogen-activated protein kinase kinase 7 (MAP2K7), mitogen-activated protein kinase kinase kinase 2 (MAP3K2) and mitogen-activated protein kinase 9 (MAPK9) in cell culture exposed to LPS or LPS and the drug compared to the control. We observed that under the LPS and cyclosporine treatment, the expression o/ miR-34a, miR-1275, miR-3188, and miR-382 changed significantly (p < 0.05). We demonstrated a potential relationship between DUSP1 and miR-34a; DUSP4 and miR-34a, miR-382, and miR-3188; MAPK9 and miR-1275, MAP2K7 and mir-200-5p; MAP3K2 and mir-200-5p, which may be the subject of further research in the context of psoriasis.


Cyclosporine , Lipopolysaccharides , MicroRNAs , Mitogen-Activated Protein Kinases , Humans , Cyclosporine/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Lipopolysaccharides/pharmacology , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Keratinocytes/metabolism , Keratinocytes/drug effects , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Gene Expression Profiling , Mitogen-Activated Protein Kinase Phosphatases/genetics , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Transcriptome/drug effects , Transcriptome/genetics , HaCaT Cells , Cell Line , Gene Expression Regulation/drug effects , Psoriasis/genetics , Psoriasis/drug therapy
14.
Plant Cell Rep ; 43(4): 102, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38499710

KEY MESSAGE: The transcriptomic, phenotypic and metabolomic analysis of transgenic plants overexpressing GhMPK31 in upland cotton revealed the regulation of H2O2 burst and the synthesis of defensive metabolites by GhMPK31. Mitogen-activated protein kinases (MAPKs) are a crucial class of protein kinases, which play an essential role in various biological processes in plants. Upland cotton (G. hirsutum) is the most widely cultivated cotton species with high economic value. To gain a better understanding of the role of the MAPK gene family, we conducted a comprehensive analysis of the MAPK gene family in cotton. In this study, a total of 55 GhMPK genes were identified from the whole genome of G. hirsutum. Through an investigation of the expression patterns under diverse stress conditions, we discovered that the majority of GhMPK family members demonstrated robust responses to abiotic stress, pathogen stress and pest stress. Furthermore, the overexpression of GhMPK31 in cotton leaves led to a hypersensitive response (HR)-like cell death phenotype and impaired the defense capability of cotton against herbivorous insects. Transcriptome and metabolomics data analysis showed that overexpression of GhMPK31 enhanced the expression of H2O2-related genes and reduced the accumulation of defensive related metabolites. The direct evidence of GhMPK31 interacting with GhRBOHB (H2O2-generating protein) were found by Y2H, BiFC, and LCI. Therefore, we propose that the increase of H2O2 content caused by overexpression of GhMPK31 resulted in HR-like cell death in cotton leaves while reducing the accumulation of defensive metabolites, ultimately leading to a decrease in the defense ability of cotton against herbivorous insects. This study provides valuable insights into the function of MAPK genes in plant resistance to herbivorous insects.


Gossypium , Hydrogen Peroxide , Gossypium/metabolism , Hydrogen Peroxide/metabolism , Gene Expression Profiling , Transcriptome , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny
15.
Plant Cell Environ ; 47(7): 2510-2525, 2024 Jul.
Article En | MEDLINE | ID: mdl-38514902

The micronutrient iron plays a crucial role in the growth and development of plants, necessitating meticulous regulation for its absorption by plants. Prior research has demonstrated that the transcription factor MxZR3.1 restricts iron absorption in apple rootstocks; however, the precise mechanism by which MxZR3.1 contributes to the regulation of iron homoeostasis in apple rootstocks remains unexplored. Here, MxMPK3-2, a protein kinase, was discovered to interact with MxZR3.1. Y2H, bimolecular fluorescence complementation and pull down experiments were used to confirm the interaction. Phosphorylation and cell semi-degradation tests have shown that MxZR3.1 can be used as a substrate of MxMPK3-2, which leads to the MxZR3.1 protein being more stable. In addition, through tobacco transient transformation (LUC and GUS) experiments, it was confirmed that MxZR3.1 significantly inhibited the activity of the MxHA2 promoter, while MxMPK3-2 mediated phosphorylation at the Ser94 site of MxZR3.1 further inhibited the activity of the MxHA2 promoter. It is tightly controlled to absorb iron during normal growth and development of apple rootstocks due to the regulatory effect of the MxMPK3-2-MxZR3.1 module on MxHA2 transcription level. Consequently, this research has revealed the molecular basis of how the MxMPK3-2-MxZR3.1 module in apple rootstocks controls iron homoeostasis by regulating the MxHA2 promoter's activity.


Homeostasis , Iron , Malus , Plant Proteins , Plant Roots , Malus/metabolism , Malus/genetics , Phosphorylation , Iron/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
16.
J Exp Bot ; 75(11): 3287-3299, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38457358

Kernel weight is a critical agronomic trait in maize production. Many genes are related to kernel weight but only a few of them have been applied to maize breeding and cultivation. Here, we identify a novel function of maize mitogen-activated protein kinase 6 (ZmMPK6) in the regulation of maize kernel weight. Kernel weight was reduced in zmmpk6 mutants and increased in ZmMPK6-overexpressing lines. In addition, starch granules, starch content, protein content, and grain-filling characteristics were also affected by the ZmMPK6 expression level. ZmMPK6 is mainly localized in the nucleus and cytoplasm, widely distributed across various tissues, and is expressed during kernel development, which is consistent with its role in kernel weight. Thus, these results provide new insights into the role of ZmMPK6, a mitogen-activated protein kinase, in maize kernel weight, and could be applied to further molecular breeding for kernel quality and yield in maize.


Plant Proteins , Seeds , Zea mays , Zea mays/genetics , Zea mays/growth & development , Zea mays/metabolism , Zea mays/enzymology , Plant Proteins/metabolism , Plant Proteins/genetics , Seeds/growth & development , Seeds/genetics , Seeds/metabolism , Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics
17.
J Agric Food Chem ; 72(10): 5185-5196, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38427575

Mitogen-activated protein kinase (MAPK) cascades and raffinose have been observed to increase in plants exposed to cold. However, it remains elusive whether and how MAPK regulates raffinose synthesis under cold stress. Here, overexpression of SlMAPK3 promoted the accumulation of galactinol and raffinose under cold stress, while CRISPR/Cas9-mediated mutants showed the opposite results. Moreover, SlMAPK3 promoted the expression of SlWRKY46 at low temperatures and interacted with SlWRKY46 protein. Overexpression of SlWRKY46 enhanced cold resistance. Furthermore, SlWRKY46 directly bound to the promoter of SlGols1 to enhance its expression and promoted the accumulation of raffinose. Virus-induced gene-silencing (VIGS)-mediated knockdown of SlGols1 remarkably elevated cold sensitivity and reduced raffinose content. Meanwhile, exogenous supplementation of raffinose could improve the cold tolerance of tomato plants. Thus, our data indicates that SlMAPK3 modulates cold resistance by regulating raffinose content and SlWRKY46 expression. SlWRKY46 also promotes the accumulation of raffinose by inducing the expression of SlGols1.


Solanum lycopersicum , Raffinose/metabolism , Plant Proteins/metabolism , Cold Temperature , Mitogen-Activated Protein Kinases/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism
18.
Plant Cell ; 36(4): 963-986, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38301274

Soybean cyst nematode (SCN; Heterodera glycines Ichinohe), one of the most devastating soybean (Glycine max) pathogens, causes significant yield loss in soybean production. Nematode infection triggers plant defense responses; however, the components involved in the upstream signaling cascade remain largely unknown. In this study, we established that a mitogen-activated protein kinase (MAPK) signaling module, activated by nematode infection or wounding, is crucial for soybeans to establish SCN resistance. GmMPK3 and GmMPK6 directly interact with CDG1-LIKE1 (GmCDL1), a member of the receptor-like cytoplasmic kinase (RLCK) subfamily VII. These kinases phosphorylate GmCDL1 at Thr-372 to prevent its proteasome-mediated degradation. Functional analysis demonstrated that GmCDL1 positively regulates immune responses and promotes SCN resistance in soybeans. GmMPK3-mediated and GmMPK6-mediated phosphorylation of GmCDL1 enhances GmMPK3 and GmMPK6 activation and soybean disease resistance, representing a positive feedback mechanism. Additionally, 2 L-type lectin receptor kinases, GmLecRK02g and GmLecRK08g, associate with GmCDL1 to initiate downstream immune signaling. Notably, our study also unveils the potential involvement of GmLecRKs and GmCDL1 in countering other soybean pathogens beyond nematodes. Taken together, our findings reveal the pivotal role of the GmLecRKs-GmCDL1-MAPK regulatory module in triggering soybean basal immune responses.


Nematode Infections , Tylenchoidea , Animals , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Glycine max/genetics , MAP Kinase Signaling System , Signal Transduction/genetics , Plant Diseases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism
19.
Fungal Genet Biol ; 171: 103874, 2024 03.
Article En | MEDLINE | ID: mdl-38307402

Aspergillus cristatus is a probiotic fungus known for its safety and abundant secondary metabolites, making it a promising candidate for various applications. However, limited progress has been made in researching A. cristatus due to challenges in genetic manipulation. The mitogen-activated protein kinase (MAPK) signaling pathway is involved in numerous physiological processes, but its specific role in A. cristatus remains unclear. In this study, we successfully developed an efficient polyethylene glycol (PEG)-mediated protoplast transformation method for A. cristatus, enabling us to investigate the function of Pmk1, Mpk1, and Hog1 in the MAPK signaling pathway. Our findings revealed that Pmk1, Mpk1, and Hog1 are crucial for sexual reproduction, melanin synthesis, and response to external stress in A. cristatus. Notably, the deletion of Pmk1, Mpk1, or Hog1 resulted in the loss of sexual reproduction capability in A. cristatus. Overall, this research on MAPK will contribute to the continued understanding of the reproductive strategy and melanin synthesis mechanism of A. cristatus.


Mitogen-Activated Protein Kinases , Saccharomyces cerevisiae Proteins , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Melanins/genetics , MAP Kinase Signaling System/genetics , Aspergillus/genetics , Aspergillus/metabolism , Phosphorylation , Saccharomyces cerevisiae Proteins/metabolism
20.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 62-66, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38372113

We aimed to explore the role of silymarin and mitogen-activated protein kinase (MAPK) pathway in the regulation of proliferation and invasion of non-small cell lung cancer cells. Non-small cell lung cancer cells were cultured and divided into groups and treated with drugs, and A blank control group was set up. The concentration of silymarin in the experimental group was 10 mg/L, 20 mg/L and 40 mg/L, respectively, which were recorded as groups A, B and C, and three repeated experiments were performed in each group. Absorbance (A value), survival rate and number of invasions were measured at 490 nm 24 h and 48 h after treatment, and the protein expression levels of MMP-2, MMP-9, p-p38, p-JNK and p-ERK 1/2 of cells in each group were detected. There were differences in the A value (control group > Group A > Group B > Group C), cell survival rate (control group < group A < group B < group C) and the number of cell invasions (control group > Group A > Group B > group C) at 24h and 48h among all groups (P<0.05). After 24h of administration, the mRNA expression of MMP-2 and MMP-9, P-P38 and P-JNK protein expression were significantly different among groups, and the control group was > group A > Group B > group C (P<0.05). There were no significant differences in protein expression levels of p38, JNK, ERK 1/2 and P-ERK 1/2 among all groups (P>0.05). Silymarin may inhibit the proliferation and invasion of non-small cell lung cancer cells by inhibiting the activity of MAPK pathway, and the higher the concentration, the more obvious the inhibition effect, which provides a basis for further research and treatment of non-small cell lung cancer.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Silymarin , Humans , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Silymarin/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Cell Proliferation , p38 Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System
...