Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.674
Filter
1.
Cell Mol Life Sci ; 81(1): 284, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967794

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignancy that occurs worldwide and is generally associated with poor prognosis. The development of resistance to targeted therapies such as sorafenib is a major challenge in clinical cancer treatment. In the present study, Ten-eleven translocation protein 1 (TET1) was found to be highly expressed in sorafenib-resistant HCC cells and knockdown of TET1 can substantially improve the therapeutic effect of sorafenib on HCC, indicating the potential important roles of TET1 in sorafenib resistance in HCC. Mechanistic studies determined that TET1 and Yes-associated protein 1 (YAP1) synergistically regulate the promoter methylation and gene expression of DNA repair-related genes in sorafenib-resistant HCC cells. RNA sequencing indicated the activation of DNA damage repair signaling was extensively suppressed by the TET1 inhibitor Bobcat339. We also identified TET1 as a direct transcriptional target of YAP1 by promoter analysis and chromatin-immunoprecipitation assays in sorafenib-resistant HCC cells. Furthermore, we showed that Bobcat339 can overcome sorafenib resistance and synergized with sorafenib to induce tumor eradication in HCC cells and mouse models. Finally, immunostaining showed a positive correlation between TET1 and YAP1 in clinical samples. Our findings have identified a previously unrecognized molecular pathway underlying HCC sorafenib resistance, thus revealing a promising strategy for cancer therapy.


Subject(s)
Adaptor Proteins, Signal Transducing , Carcinoma, Hepatocellular , DNA Repair , Drug Resistance, Neoplasm , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Proto-Oncogene Proteins , Sorafenib , Transcription Factors , YAP-Signaling Proteins , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic/drug effects , Animals , DNA Repair/drug effects , DNA Repair/genetics , YAP-Signaling Proteins/metabolism , Mice , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice, Nude , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Hippo Signaling Pathway , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , DNA Methylation/drug effects
2.
Microb Cell Fact ; 23(1): 177, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879507

ABSTRACT

BACKGROUND: Heme-incorporating peroxygenases are responsible for electron transport in a multitude of organisms. Yet their application in biocatalysis is hindered due to their challenging recombinant production. Previous studies suggest Komagataella phaffi to be a suitable production host for heme-containing enzymes. In addition, co-expression of helper proteins has been shown to aid protein folding in yeast. In order to facilitate recombinant protein expression for an unspecific peroxygenase (AnoUPO), we aimed to apply a bi-directionalized expression strategy with Komagataella phaffii. RESULTS: In initial screenings, co-expression of protein disulfide isomerase was found to aid the correct folding of the expressed unspecific peroxygenase in K. phaffi. A multitude of different bi-directionalized promoter combinations was screened. The clone with the most promising promoter combination was scaled up to bioreactor cultivations and compared to a mono-directional construct (expressing only the peroxygenase). The strains were screened for the target enzyme productivity in a dynamic matter, investigating both derepression and mixed feeding (methanol-glycerol) for induction. Set-points from bioreactor screenings, resulting in the highest peroxygenase productivity, for derepressed and methanol-based induction were chosen to conduct dedicated peroxygenase production runs and were analyzed with RT-qPCR. Results demonstrated that methanol-free cultivation is superior over mixed feeding in regard to cell-specific enzyme productivity. RT-qPCR analysis confirmed that mixed feeding resulted in high stress for the host cells, impeding high productivity. Moreover, the bi-directionalized construct resulted in a much higher specific enzymatic activity over the mono-directional expression system. CONCLUSIONS: In this study, we demonstrate a methanol-free bioreactor production strategy for an unspecific peroxygenase, yet not shown in literature. Hence, bi-directionalized assisted protein expression in K. phaffii, cultivated under derepressed conditions, is indicated to be an effective production strategy for heme-containing oxidoreductases. This very production strategy might be opening up further opportunities for biocatalysis.


Subject(s)
Bioreactors , Mixed Function Oxygenases , Promoter Regions, Genetic , Recombinant Proteins , Saccharomycetales , Saccharomycetales/genetics , Saccharomycetales/metabolism , Saccharomycetales/enzymology , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Methanol/metabolism
3.
PeerJ ; 12: e17553, 2024.
Article in English | MEDLINE | ID: mdl-38938609

ABSTRACT

Background: White-rot fungi and bacteria communities are unique ecosystems with different types of symbiotic interactions occurring during wood decomposition, such as cooperation, mutualism, nutritional competition, and antagonism. The role of chitin-active lytic polysaccharide monooxygenases (LPMOs) in these symbiotic interactions is the subject of this study. Method: In this study, bioinformatics tools were used to analyze the sequence and structure of putative LPMOs mined by hidden Markov model (HMM) profiles from the bacterial metagenomic DNA database of collected humus samples around white-rot fungi in Cuc Phuong primary forest, Vietnam. Two genes encoding putative LPMOs were expressed in E. coli and purified for enzyme activity assay. Result: Thirty-one full-length proteins annotated as putative LPMOs according to HMM profiles were confirmed by amino acid sequence comparison. The comparison results showed that although the amino acid sequences of the proteins were very different, they shared nine conserved amino acids, including two histidine and one phenylalanine that characterize the H1-Hx-Yz motif of the active site of bacterial LPMOs. Structural analysis of these proteins revealed that they are multidomain proteins with different functions. Prediction of the catalytic domain 3-D structure of these putative LPMOs using Alphafold2 showed that their spatial structures were very similar in shape, although their protein sequences were very different. The results of testing the activity of proteins GL0247266 and GL0183513 show that they are chitin-active LPMOs. Prediction of the 3-D structures of these two LPMOs using Alphafold2 showed that GL0247266 had five functional domains, while GL0183513 had four functional domains, two of which that were similar to the GbpA_2 and GbpA_3 domains of protein GbpA of Vibrio cholerae bacteria. The GbpA_2 - GbpA_3 complex was also detected in 11 other proteins. Based on the structural characteristics of functional domains, it is possible to hypothesize the role of chitin-active GbpA-like LPMOs in the relationship between fungal and bacterial communities coexisting on decomposing trees in primary forests.


Subject(s)
Mixed Function Oxygenases , Vietnam , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Forests , Chitin/metabolism , Metagenomics , Metagenome , Amino Acid Sequence
4.
Biotechnol Adv ; 73: 108374, 2024.
Article in English | MEDLINE | ID: mdl-38729229

ABSTRACT

Indigo is a natural dye extensively used in the global textile industry. However, the conventional synthesis of indigo using toxic compounds like aniline, formaldehyde, and hydrogen cyanide has led to environmental pollution and health risks for workers. This method also faces growing economic, sustainability, and environmental challenges. To address these issues, the concept of bio-indigo or indigo biosynthesis has been proposed as an alternative to aniline-based indigo synthesis. Among various enzymes, Flavin-containing Monooxygenases (FMOs) have shown promise in achieving a high yield of bio-indigo. However, the industrialization of indigo biosynthesis still encounters several challenges. This review focuses on the historical development of indigo biosynthesis mediated by FMOs. It highlights several factors that have hindered industrialization, including the use of unsuitable chassis (Escherichia coli), the toxicity of indole, the high cost of the substrate L-tryptophan, the water-insolubility of the product indigo, the requirement of reducing reagents such as sodium dithionite, and the relatively low yield and high cost compared to chemical synthesis. Additionally, this paper summarizes various strategies to enhance the yield of indigo synthesized by FMOs, including redundant sequence deletion, semi-rational design, cheap precursor research, NADPH regeneration, large-scale fermentation, and enhancement of water solubility of indigo.


Subject(s)
Indigo Carmine , Indigo Carmine/metabolism , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Oxygenases/metabolism , Oxygenases/genetics , Coloring Agents/chemistry , Coloring Agents/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
5.
Chembiochem ; 25(13): e202400328, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38742991

ABSTRACT

Baeyer-Villiger monooxygenases belong to a family of flavin-binding proteins that catalyze the Baeyer-Villiger (BV) oxidation of ketones to produce lactones or esters, which are important intermediates in pharmaceuticals or sustainable materials. Phenylacetone monooxygenase (PAMO) from Thermobifida fusca with moderate thermostability catalyzes the oxidation of aryl ketone substrates, but is limited by high specificity and narrow substrate scope. In the present study, we applied loop optimization by loop swapping followed by focused saturation mutagenesis in order to evolve PAMO mutants capable of catalyzing the regioselective BV oxidation of cyclohexanone and cyclobutanone derivatives with formation of either normal or abnormal esters or lactones. We further modulated PAMO to increase enantioselectivity. Crystal structure studies indicate that rotation occurs in the NADP-binding domain and that the high B-factor region is predominantly distributed in the catalytic pocket residues. Computational analyses further revealed dynamic character in the catalytic pocket and reshaped hydrogen bond interaction networks, which is more favorable for substrate binding. Our study provides useful insights for studying enzyme-substrate adaptations.


Subject(s)
Mixed Function Oxygenases , Protein Engineering , Thermobifida , Stereoisomerism , Substrate Specificity , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Thermobifida/enzymology , Thermobifida/metabolism , Oxidation-Reduction , Biocatalysis , Catalytic Domain , Models, Molecular
6.
Cell Signal ; 120: 111210, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38705503

ABSTRACT

Microglia mediated neuroinflammation is one of the major contributors to brain damage in cerebral ischemia reperfusion injury (CI/RI). Recently, RNA modification was found to contribute to the regulation of microglia polarization and the subsequent development of cerebral I/R neuroinflammation. Herein, we investigated the effect and mechanism of m5C RNA modification in the microglia induced CI/RI neuroinflammation. We found that the m5C RNA modification levels decreased in the primary microglia isolated from a mouse model of intraluminal middle cerebral artery occlusion/reperfusion (MCAO/R) and the BV2 microglial cells subjected to oxygen-glucose deprivation and reoxygenation (OGD/R), and this change was accompanied by an increase in the M1/M2 polarization ratio. Furthermore, the expression of m5C demethylase TET1 in microglia increased, which promoted M1 polarization but impeded M2 polarization. Mechanistically, the higher TET1 expression decreased the m5C modification level of RelB and enhanced its mRNA stability, which subsequently increased the M1/M2 polarization ratio. In conclusion, this study provides insight into the role of m5C RNA modification in the pathogenesis of cerebral I/R neuroinflammation and may deepen our understanding on clinical therapy targeting the TET1-RelB axis.


Subject(s)
Microglia , Neuroinflammatory Diseases , Proto-Oncogene Proteins , Reperfusion Injury , Transcription Factor RelB , Animals , Microglia/metabolism , Microglia/pathology , Transcription Factor RelB/metabolism , Transcription Factor RelB/genetics , Mice , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Proto-Oncogene Proteins/metabolism , Male , Mice, Inbred C57BL , Cell Polarity , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Brain Ischemia/metabolism , Brain Ischemia/pathology , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/complications , Disease Models, Animal , DNA-Binding Proteins
7.
Biochemistry ; 63(11): 1445-1459, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38779817

ABSTRACT

OxaD is a flavin-dependent monooxygenase (FMO) responsible for catalyzing the oxidation of an indole nitrogen atom, resulting in the formation of a nitrone. Nitrones serve as versatile intermediates in complex syntheses, including challenging reactions like cycloadditions. Traditional organic synthesis methods often yield limited results and involve environmentally harmful chemicals. Therefore, the enzymatic synthesis of nitrone-containing compounds holds promise for more sustainable industrial processes. In this study, we explored the catalytic mechanism of OxaD using a combination of steady-state and rapid-reaction kinetics, site-directed mutagenesis, spectroscopy, and structural modeling. Our investigations showed that OxaD catalyzes two oxidations of the indole nitrogen of roquefortine C, ultimately yielding roquefortine L. The reductive-half reaction analysis indicated that OxaD rapidly undergoes reduction and follows a "cautious" flavin reduction mechanism by requiring substrate binding before reduction can take place. This characteristic places OxaD in class A of the FMO family, a classification supported by a structural model featuring a single Rossmann nucleotide binding domain and a glutathione reductase fold. Furthermore, our spectroscopic analysis unveiled both enzyme-substrate and enzyme-intermediate complexes. Our analysis of the oxidative-half reaction suggests that the flavin dehydration step is the slow step in the catalytic cycle. Finally, through mutagenesis of the conserved D63 residue, we demonstrated its role in flavin motion and product oxygenation. Based on our findings, we propose a catalytic mechanism for OxaD and provide insights into the active site architecture within class A FMOs.


Subject(s)
Mixed Function Oxygenases , Nitrogen Oxides , Oxidation-Reduction , Nitrogen Oxides/metabolism , Nitrogen Oxides/chemistry , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Kinetics , Mutagenesis, Site-Directed , Flavins/metabolism , Flavins/chemistry , Models, Molecular , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Oxygenases
8.
Plant Physiol Biochem ; 212: 108738, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761544

ABSTRACT

In the realm of ornamental horticulture, crape myrtle (Lagerstroemia indica) stands out for its aesthetic appeal, attributed largely to its vibrant flowers and distinctive branching architecture. This study embarked on a comprehensive exploration of the gibberellin oxidase (GAox) gene family in crape myrtle, illuminating its pivotal role in regulating GA levels, a key determinant of plant developmental processes. We identified and characterized 36 LiGAox genes, subdivided into GA2ox, GA3ox, GA20ox, and GAox-like subgroups, through genomic analyses. These genes' evolutionary trajectories were delineated, revealing significant gene expansions attributed to segmental duplication events. Functional analyses highlighted the divergent expression patterns of LiGAox genes across different crape myrtle varieties, associating them with variations in flower color and branching architecture. Enzymatic activity assays on selected LiGA2ox enzymes exhibited pronounced GA2 oxidase activity, suggesting a potential regulatory role in GA biosynthesis. Our findings offered a novel insight into the molecular underpinnings of GA-mediated growth and development in L. indica, providing a foundational framework for future genetic enhancements aimed at optimizing ornamental traits.


Subject(s)
Gene Expression Regulation, Plant , Mixed Function Oxygenases , Plant Proteins , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gibberellins/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/anatomy & histology , Flowers/enzymology , Phylogeny
9.
Biotechnol J ; 19(5): e2300664, 2024 May.
Article in English | MEDLINE | ID: mdl-38719620

ABSTRACT

CYP116B5 is a class VII P450 in which the heme domain is linked to a FMN and 2Fe2S-binding reductase. Our laboratory has proved that the CYP116B5 heme domain (CYP116B5-hd) is capable of catalyzing the oxidation of substrates using H2O2. Recently, the Molecular Lego approach was applied to join the heme domain of CYP116B5 to sarcosine oxidase (SOX), which provides H2O2 in-situ by the sarcosine oxidation. In this work, the chimeric self-sufficient fusion enzyme CYP116B5-SOX was heterologously expressed, purified, and characterized for its functionality by absorbance and fluorescence spectroscopy. Differential scanning calorimetry (DSC) experiments revealed a TM of 48.4 ± 0.04 and 58.3 ± 0.02°C and a enthalpy value of 175,500 ± 1850 and 120,500 ± 1350 cal mol-1 for the CYP116B5 and SOX domains respectively. The fusion enzyme showed an outstanding chemical stability in presence of up to 200 mM sarcosine or 5 mM H2O2 (4.4 ± 0.8 and 11.0 ± 2.6% heme leakage respectively). Thanks to the in-situ H2O2 generation, an improved kcat/KM for the p-nitrophenol conversion was observed (kcat of 20.1 ± 0.6 min-1 and KM of 0.23 ± 0.03 mM), corresponding to 4 times the kcat/KM of the CYP116B5-hd. The aim of this work is the development of an engineered biocatalyst to be exploited in bioremediation. In order to tackle this challenge, an E. coli strain expressing CYP116B5-SOX was employed to exploit this biocatalyst for the oxidation of the wastewater contaminating-drug tamoxifen. Data show a 12-fold increase in tamoxifen N-oxide production-herein detected for the first time as CYP116B5 metabolite-compared to the direct H2O2 supply, equal to the 25% of the total drug conversion.


Subject(s)
Biodegradation, Environmental , Cytochrome P-450 Enzyme System , Escherichia coli , Hydrogen Peroxide , Sarcosine Oxidase , Hydrogen Peroxide/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Sarcosine Oxidase/metabolism , Sarcosine Oxidase/genetics , Sarcosine Oxidase/chemistry , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/chemistry , Oxidation-Reduction , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Sarcosine/metabolism , Sarcosine/analogs & derivatives
10.
Sci Rep ; 14(1): 10586, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719951

ABSTRACT

Carotenoids play essential roles in plant growth and development and provide plants with a tolerance to a series of abiotic stresses. In this study, the function and biological significance of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase, which are responsible for the modification of the tetraterpene skeleton procedure, were isolated from Lycium chinense and analyzed. The overexpression of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase promoted the accumulation of total carotenoids and photosynthesis enhancement, reactive oxygen species scavenging activity, and proline content of tobacco seedlings after exposure to the salt stress. Furthermore, the expression of the carotenoid biosynthesis genes and stress-related genes (ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and pyrroline-5-carboxylate reductase) were detected and showed increased gene expression level, which were strongly associated with the carotenoid content and reactive oxygen species scavenging activity. After exposure to salt stress, the endogenous abscisic acid content was significantly increased and much higher than those in control plants. This research contributes to the development of new breeding aimed at obtaining stronger salt tolerance plants with increased total carotenoids and vitamin A content.


Subject(s)
Carotenoids , Gene Expression Regulation, Plant , Lycium , Nicotiana , Plant Proteins , Salt Tolerance , Carotenoids/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Salt Tolerance/genetics , Lycium/genetics , Lycium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Reactive Oxygen Species/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Photosynthesis/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Abscisic Acid/metabolism
11.
BMC Plant Biol ; 24(1): 384, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724935

ABSTRACT

BACKGROUND: Semi-dwarfing alleles are used widely in cereals to confer improved lodging resistance and assimilate partitioning. The most widely deployed semi-dwarfing alleles in rice and barley encode the gibberellin (GA)-biosynthetic enzyme GA 20-OXIDASE2 (GA20OX2). The hexaploid wheat genome carries three homoeologous copies of GA20OX2, and because of functional redundancy, loss-of-function alleles of a single homoeologue would not be selected in wheat breeding programmes. Instead, approximately 70% of wheat cultivars carry gain-of-function mutations in REDUCED HEIGHT 1 (RHT1) genes that encode negative growth regulators and are degraded in response to GA. Semi-dwarf Rht-B1b or Rht-D1b alleles encode proteins that are insensitive to GA-mediated degradation. However, because RHT1 is expressed ubiquitously these alleles have pleiotropic effects that confer undesirable traits in some environments. RESULTS: We have applied reverse genetics to combine loss-of-function alleles in all three homoeologues of wheat GA20OX2 and its paralogue GA20OX1 and evaluated their performance in three years of field trials. ga20ox1 mutants exhibited a mild height reduction (approximately 3%) suggesting GA20OX1 plays a minor role in stem elongation in wheat. ga20ox2 mutants have reduced GA1 content and are 12-32% shorter than their wild-type segregants, comparable to the effect of the Rht-D1b 'Green Revolution' allele. The ga20ox2 mutants showed no significant negative effects on yield components in the spring wheat variety 'Cadenza'. CONCLUSIONS: Our study demonstrates that chemical mutagenesis can expand genetic variation in polyploid crops to uncover novel alleles despite the difficulty in identifying appropriate mutations for some target genes and the negative effects of background mutations. Field experiments demonstrate that mutations in GA20OX2 reduce height in wheat, but it will be necessary to evaluate the effect of these alleles in different genetic backgrounds and environments to determine their value in wheat breeding as alternative semi-dwarfing alleles.


Subject(s)
Phenotype , Plant Proteins , Triticum , Triticum/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Mutation , Oryza/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Alleles , Gibberellins/metabolism , Genes, Plant
12.
Appl Microbiol Biotechnol ; 108(1): 320, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709366

ABSTRACT

The unspecific peroxygenase (UPO) from Cyclocybe aegerita (AaeUPO) can selectively oxidize C-H bonds using hydrogen peroxide as an oxygen donor without cofactors, which has drawn significant industrial attention. Many studies have made efforts to enhance the overall activity of AaeUPO expressed in Komagataella phaffii by employing strategies such as enzyme-directed evolution, utilizing appropriate promoters, and screening secretion peptides. Building upon these previous studies, the objective of this study was to further enhance the expression of a mutant of AaeUPO with improved activity (PaDa-I) by increasing the gene copy number, co-expressing chaperones, and optimizing culture conditions. Our results demonstrated that a strain carrying approximately three copies of expression cassettes and co-expressing the protein disulfide isomerase showed an approximately 10.7-fold increase in volumetric enzyme activity, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. After optimizing the culture conditions, the volumetric enzyme activity of this strain further increased by approximately 48.7%, reaching 117.3 U/mL. Additionally, the purified catalytic domain of PaDa-I displayed regioselective hydroxylation of R-2-phenoxypropionic acid. The results of this study may facilitate the industrial application of UPOs. KEY POINTS: • The secretion of the catalytic domain of PaDa-I can be significantly enhanced through increasing gene copy numbers and co-expressing of protein disulfide isomerase. • After optimizing the culture conditions, the volumetric enzyme activity can reach 117.3 U/mL, using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as the substrate. • The R-2-phenoxypropionic acid can undergo the specific hydroxylation reaction catalyzed by catalytic domain of PaDa-I, resulting in the formation of R-2-(4-hydroxyphenoxy)propionic acid.


Subject(s)
Mixed Function Oxygenases , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Saccharomycetales/genetics , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Gene Dosage , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Gene Expression , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry
13.
Nat Commun ; 15(1): 3975, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729930

ABSTRACT

Oxidoreductases have evolved tyrosine/tryptophan pathways that channel highly oxidizing holes away from the active site to avoid damage. Here we dissect such a pathway in a bacterial LPMO, member of a widespread family of C-H bond activating enzymes with outstanding industrial potential. We show that a strictly conserved tryptophan is critical for radical formation and hole transference and that holes traverse the protein to reach a tyrosine-histidine pair in the protein's surface. Real-time monitoring of radical formation reveals a clear correlation between the efficiency of hole transference and enzyme performance under oxidative stress. Residues involved in this pathway vary considerably between natural LPMOs, which could reflect adaptation to different ecological niches. Importantly, we show that enzyme activity is increased in a variant with slower radical transference, providing experimental evidence for a previously postulated trade-off between activity and redox robustness.


Subject(s)
Bacterial Proteins , Mixed Function Oxygenases , Oxidation-Reduction , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Catalytic Domain , Tryptophan/metabolism , Polysaccharides/metabolism , Mutation , Oxidative Stress , Tyrosine/metabolism , Models, Molecular , Histidine/metabolism , Histidine/genetics
14.
J Hazard Mater ; 471: 134437, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38691934

ABSTRACT

Crude oil is a hazardous pollutant that poses significant and lasting harm to human health and ecosystems. In this study, Moesziomyces aphidis XM01, a biosurfactant mannosylerythritol lipids (MELs)-producing yeast, was utilized for crude oil degradation. Unlike most microorganisms relying on cytochrome P450, XM01 employed two extracellular unspecific peroxygenases, MaUPO.1 and MaUPO.2, with preference for polycyclic aromatic hydrocarbons (PAHs) and n-alkanes respectively, thus facilitating efficient crude oil degradation. The MELs produced by XM01 exhibited a significant emulsification activity of 65.9% for crude oil and were consequently supplemented in an "exogenous MELs addition" strategy to boost crude oil degradation, resulting in an optimal degradation ratio of 72.3%. Furthermore, a new and simple "pre-MELs production" strategy was implemented, achieving a maximum degradation ratio of 95.9%. During this process, the synergistic up-regulation of MaUPO.1, MaUPO.1 and the key MELs synthesis genes contributed to the efficient degradation of crude oil. Additionally, the phylogenetic and geographic distribution analysis of MaUPO.1 and MaUPO.1 revealed their wide occurrence among fungi in Basidiomycota and Ascomycota, with high transcription levels across global ocean, highlighting their important role in biodegradation of crude oil. In conclusion, M. aphidis XM01 emerges as a novel yeast for efficient and eco-friendly crude oil degradation.


Subject(s)
Biodegradation, Environmental , Glycolipids , Mixed Function Oxygenases , Petroleum , Surface-Active Agents , Petroleum/metabolism , Surface-Active Agents/metabolism , Surface-Active Agents/chemistry , Glycolipids/metabolism , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/chemistry , Alkanes/metabolism
15.
Appl Microbiol Biotechnol ; 108(1): 353, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819481

ABSTRACT

Hydroxyectoine is an important compatible solute that holds potential for development into a high-value chemical with broad applications. However, the traditional high-salt fermentation for hydroxyectoine production presents challenges in treating the high-salt wastewater. Here, we report the rational engineering of Halomonas salifodinae to improve the bioproduction of hydroxyectoine under lower-salt conditions. The comparative transcriptomic analysis suggested that the increased expression of ectD gene encoding ectoine hydroxylase (EctD) and the decreased expressions of genes responsible for tricarboxylic acid (TCA) cycle contributed to the increased hydroxyectoine production in H. salifodinae IM328 grown under high-salt conditions. By blocking the degradation pathway of ectoine and hydroxyectoine, enhancing the expression of ectD, and increasing the supply of 2-oxoglutarate, the engineered H. salifodinae strain HS328-YNP15 (ΔdoeA::PUP119-ectD p-gdh) produced 8.3-fold higher hydroxyectoine production than the wild-type strain and finally achieved a hydroxyectoine titer of 4.9 g/L in fed-batch fermentation without any detailed process optimization. This study shows the potential to integrate hydroxyectoine production into open unsterile fermentation process that operates under low-salinity and high-alkalinity conditions, paving the way for next-generation industrial biotechnology. KEY POINTS: • Hydroxyectoine production in H. salifodinae correlates with the salinity of medium • Transcriptomic analysis reveals the limiting factors for hydroxyectoine production • The engineered strain produced 8.3-fold more hydroxyectoine than the wild type.


Subject(s)
Amino Acids, Diamino , Fermentation , Halomonas , Metabolic Engineering , Halomonas/genetics , Halomonas/metabolism , Metabolic Engineering/methods , Amino Acids, Diamino/biosynthesis , Amino Acids, Diamino/metabolism , Amino Acids, Diamino/genetics , Citric Acid Cycle/genetics , Gene Expression Profiling , Sodium Chloride/metabolism , Salinity , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Ketoglutaric Acids/metabolism
16.
ACS Synth Biol ; 13(6): 1762-1772, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38815614

ABSTRACT

In this study, we designed an artificial pathway composed of tyramine ß-hydroxylase (TBH) and phenylethanolamine N-methyltransferase (PNMT) for the biosynthesis of both octopamine and synephrine. As most TBH and PNMT originate from eukaryotic animals and plants, the heterologous expression and identification of functional TBH and PNMT are critical for establishing the pathway in mode microorganisms like Escherichia coli. Here, three TBHs were evaluated, and only TBH from Drosophila melanogaster was successfully expressed in the soluble form in E. coli. Its expression was promoted by evaluating the effects of different expression strategies. The specific enzyme activity of TBH was optimized up to 229.50 U·g-1, and the first step in the biosynthetic pathway was successfully established and converted tyramine to synthesize 0.10 g/L of octopamine. Furthermore, the second step to produce synephrine from octopamine was developed by screening PNMT, enhancing enzyme activity, and optimizing reaction conditions, with a maximum synephrine production of 2.02 g/L. Finally, based on the optimization of the reaction conditions for each individual reaction, the one-pot cascade reaction for synthesizing synephrine from tyramine was constructed by combining the TBH and PNMT. The synthetic synephrine reached 30.05 mg/L with tyramine as substrate in the two-step enzyme cascade system. With further optimization and amplification, the titers of octopamine and synephrine were increased to 0.45 and 0.20 g/L, respectively, with tyramine as substrate. This work was the first achievement of the biosynthesis of octopamine and synephrine to date.


Subject(s)
Drosophila melanogaster , Escherichia coli , Mixed Function Oxygenases , Octopamine , Phenylethanolamine N-Methyltransferase , Synephrine , Octopamine/metabolism , Synephrine/metabolism , Animals , Drosophila melanogaster/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Phenylethanolamine N-Methyltransferase/metabolism , Phenylethanolamine N-Methyltransferase/genetics , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Tyramine/metabolism , Tyramine/biosynthesis , Biosynthetic Pathways , Metabolic Engineering/methods
17.
Front Immunol ; 15: 1293723, 2024.
Article in English | MEDLINE | ID: mdl-38690263

ABSTRACT

T cells must adapt to variations in tissue microenvironments; these adaptations include the degree of oxygen availability. The hypoxia-inducible factor (HIF) transcription factors control much of this adaptation, and thus regulate many aspects of T cell activation and function. The HIFs are in turn regulated by oxygen-dependent hydroxylases: both the prolyl hydroxylases (PHDs) which interact with the VHL tumour suppressor and control HIF turnover, and the asparaginyl hydroxylase known as the Factor inhibiting HIF (FIH), which modulates HIF transcriptional activity. To determine the role of this latter factor in T cell function, we generated T cell-specific FIH knockout mice. We found that FIH regulates T cell fate and function in a HIF-dependent manner and show that the effects of FIH activity occur predominantly at physiological oxygen concentrations. T cell-specific loss of FIH boosts T cell cytotoxicity, augments T cell expansion in vivo, and improves anti-tumour immunotherapy in mice. Specifically inhibiting FIH in T cells may therefore represent a promising strategy for cancer immunotherapy.


Subject(s)
Cell Differentiation , Mice, Knockout , Animals , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Lymphocyte Activation/immunology , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Mice, Inbred C57BL
18.
Adv Sci (Weinh) ; 11(24): e2308349, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582522

ABSTRACT

Customizable and number-tunable enzyme delivery nanocarriers will be useful in tumor therapy. Herein, a phage vehicle, T4-Lox-DNA-Fe (TLDF), which adeptly modulates enzyme numbers using phage display technology to remodel the tumor microenvironment (TME) is presented. Regarding the demand for lactic acid in tumors, each phage is engineered to display 720 lactate oxidase (Lox), contributing to the depletion of lactic acid to restructure the tumor's energy metabolism. The phage vehicle incorporated dextran iron (Fe) with Fenton reaction capabilities. H2O2 is generated through the Lox catalytic reaction, amplifying the H2O2 supply for dextran iron-based chemodynamic therapy (CDT). Drawing inspiration from the erythropoietin (EPO) biosynthetic process, an EPO enhancer is constructed to impart the EPO-Keap1 plasmid (DNA) with tumor hypoxia-activated functionality, disrupting the redox homeostasis of the TME. Lox consumes local oxygen, and positive feedback between the Lox and the plasmid promotes the expression of kelch ECH Associated Protein 1 (Keap1). Consequently, the downregulation of the antioxidant transcription factor Nrf2, in synergy with CDT, amplifies the oxidative killing effect, leading to tumor suppression of up to 78%. This study seamlessly integrates adaptable T4 phage vehicles with bio-intelligent plasmids, presenting a promising approach for tumor therapy.


Subject(s)
Plasmids , Tumor Microenvironment , Animals , Plasmids/genetics , Mice , Humans , Tumor Microenvironment/drug effects , Neoplasms/therapy , Neoplasms/genetics , Neoplasms/drug therapy , Disease Models, Animal , Erythropoietin/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Nanoparticles/chemistry , Bacteriophages/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Cell Line, Tumor
19.
Epigenetics ; 19(1): 2337142, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38583183

ABSTRACT

Deregulation of ten-eleven Translocation protein 1 (TET1) is commonly reported to induce imbalances in gene expression and subsequently to colorectal cancer development (CRC). On the other hand, vitamin C (VitC) improves the prognosis of colorectal cancer by reprogramming the cancer epigenome and limiting chemotherapeutic drug resistance events. In this study, we aimed to characterize TET1-specific subcellular compartments and evaluate the effect of VitC on TET1 compartmentalization in colonic tumour cells. We demonstrated that TET1 is concentrated in coarse nuclear bodies (NB) and 5-hydroxymethylcytosine (5hmC) in foci in colorectal cancer cells (HCT116, Caco-2, and HT-29). To our knowledge, this is the first report of a novel intracellular localization profile of TET1 and its demethylation marker, 5hmC, in CRC cells. Interestingly, we found that TET1-NBs frequently interacted with Cajal bodies, but not with promyelocytic leukaemia (PML) bodies. In addition, we report that VitC treatment of HCT116 cells induces 5hmC foci biogenesis and triggers 5hmC marks to form active complexes with nuclear body components, including both Cajal and PML proteins. Our data highlight novel NB-concentrating TET1 in CRC cells and demonstrate that VitC modulates TET1-NBs' interactions with other nuclear structures. These findings reveal novel TET1-dependent cellular functions and potentially provide new insights for CRC management.


Subject(s)
Ascorbic Acid , Colorectal Neoplasms , Humans , Caco-2 Cells , Ascorbic Acid/pharmacology , Promyelocytic Leukemia Nuclear Bodies , DNA Methylation , Nuclear Bodies , Vitamins , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mixed Function Oxygenases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
20.
Arch Microbiol ; 206(5): 236, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676717

ABSTRACT

Lignocellulolytic enzymes from a novel Myceliophthora verrucosa (5DR) strain was found to potentiate the efficacy of benchmark cellulase during saccharification of acid/alkali treated bagasse by ~ 2.24 fold, indicating it to be an important source of auxiliary enzymes. The De-novo sequencing and analysis of M. verrucosa genome (31.7 Mb) revealed to encode for 7989 putative genes, representing a wide array of CAZymes (366) with a high proportions of auxiliary activity (AA) genes (76). The LC/MS QTOF based secretome analysis of M. verrucosa showed high abundance of glycosyl hydrolases and AA proteins with cellobiose dehydrogenase (CDH) (AA8), being the most prominent auxiliary protein. A gene coding for lytic polysaccharide monooxygenase (LPMO) was expressed in Pichia pastoris and CDH produced by M. verrucosa culture on rice straw based solidified medium were purified and characterized. The mass spectrometry of LPMO catalyzed hydrolytic products of avicel showed the release of both C1/C4 oxidized products, indicating it to be type-3. The lignocellulolytic cocktail comprising of in-house cellulase produced by Aspergillus allahabadii strain spiked with LPMO & CDH exhibited enhanced and better hydrolysis of mild alkali deacetylated (MAD) and unwashed acid pretreated rice straw slurry (UWAP), when compared to Cellic CTec3 at high substrate loading rate.


Subject(s)
Biomass , Fungal Proteins , Genome, Fungal , Lignin , Saccharomycetales , Sordariales , Lignin/metabolism , Sordariales/genetics , Sordariales/enzymology , Sordariales/metabolism , Hydrolysis , Fungal Proteins/genetics , Fungal Proteins/metabolism , Carbohydrate Dehydrogenases/metabolism , Carbohydrate Dehydrogenases/genetics , Cellulose/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Cellulase/metabolism , Cellulase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...