Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.801
1.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822367

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Co-Repressor Proteins , Interleukin-10 , Mice, Knockout , Microglia , Neuroinflammatory Diseases , PPAR gamma , Signal Transduction , Animals , Male , Mice , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Depression/metabolism , Depression/etiology , Interleukin-10/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neuroinflammatory Diseases/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/physiology , Signal Transduction/drug effects
2.
Sci Adv ; 10(23): eadn8963, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38838144

Nucleoporins, the components of nuclear pore complexes (NPCs), can play cell type- and tissue-specific functions. Yet, the physiological roles and mechanisms of action for most NPC components have not yet been established. We report that Nup358, a nucleoporin linked to several myeloid disorders, is required for the developmental progression of early myeloid progenitors. We found that Nup358 ablation in mice results in the loss of myeloid-committed progenitors and mature myeloid cells and the accumulation of myeloid-primed multipotent progenitors (MPPs) in bone marrow. Accumulated MPPs in Nup358 knockout mice are greatly restricted to megakaryocyte/erythrocyte-biased MPP2, which fail to progress into committed myeloid progenitors. Mechanistically, we found that Nup358 is required for histone deacetylase 3 (HDAC3) nuclear import and function in MPP2 cells and established that this nucleoporin regulates HDAC3 nuclear translocation in a SUMOylation-independent manner. Our study identifies a critical function for Nup358 in myeloid-primed MPP2 differentiation and uncovers an unexpected role for NPCs in the early steps of myelopoiesis.


Cell Differentiation , Histone Deacetylases , Mice, Knockout , Nuclear Pore Complex Proteins , Animals , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/genetics , Mice , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Myeloid Progenitor Cells/metabolism , Myeloid Progenitor Cells/cytology , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Multipotent Stem Cells/metabolism , Multipotent Stem Cells/cytology , Myeloid Cells/metabolism , Myeloid Cells/cytology , Sumoylation , Myelopoiesis/genetics
3.
PeerJ ; 12: e17197, 2024.
Article En | MEDLINE | ID: mdl-38708341

Waterborne transmission of the bacterium Legionella pneumophila has emerged as a major cause of severe nosocomial infections of major public health impact. The major route of transmission involves the uptake of aerosolized bacteria, often from the contaminated hot water systems of large buildings. Public health regulations aimed at controlling the mesophilic pathogen are generally concerned with acute pasteurization and maintaining high temperatures at the heating systems and throughout the plumbing of hot water systems, but L. pneumophila is often able to survive these treatments due to both bacterium-intrinsic and environmental factors. Previous work has established an experimental evolution system to model the observations of increased heat resistance in repeatedly but unsuccessfully pasteurized L. pneumophila populations. Here, we show rapid fixation of novel alleles in lineages selected for resistance to heat shock and shifts in mutational profile related to increases in the temperature of selection. Gene-level and nucleotide-level parallelisms between independently-evolving lineages show the centrality of the DnaJ/DnaK chaperone system in the heat resistance of L. pneumophila. Inference of epistatic interactions through reverse genetics shows an unexpected interaction between DnaJ/DnaK and the polyhydroxybutyrate-accumulation energy storage mechanism used by the species to survive long-term starvation in low-nutrient environments.


Heat-Shock Response , Legionella pneumophila , Legionella pneumophila/genetics , Heat-Shock Response/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hot Temperature , Evolution, Molecular
4.
World J Microbiol Biotechnol ; 40(6): 195, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722426

Bacillus subtilis is regarded as a promising microbial expression system in bioengineering due to its high stress resistance, nontoxic, low codon preference and grow fast. The strain has a relatively efficient expression system, as it has at least three protein secretion pathways and abundant molecular chaperones, which guarantee its expression ability and compatibility. Currently, many proteins are expressed in Bacillus subtilis, and their application prospects are broad. Although Bacillus subtilis has great advantages compared with other prokaryotes related to protein expression and secretion, it still faces deficiencies, such as low wild-type expression, low product activity, and easy gene loss, which limit its large-scale application. Over the years, many researchers have achieved abundant results in the modification of Bacillus subtilis expression systems, especially the optimization of promoters, expression vectors, signal peptides, transport pathways and molecular chaperones. An optimal vector with a suitable promoter strength and other regulatory elements could increase protein synthesis and secretion, increasing industrial profits. This review highlights the research status of optimization strategies related to the expression system of Bacillus subtilis. Moreover, research progress on its application as a food-grade expression system is also presented, along with some future modification and application directions.


Bacillus subtilis , Bacterial Proteins , Promoter Regions, Genetic , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Genetic Vectors , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Protein Sorting Signals/genetics
5.
Nat Commun ; 15(1): 3736, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744818

The E3 SUMO ligase PIAS2 is expressed at high levels in differentiated papillary thyroid carcinomas but at low levels in anaplastic thyroid carcinomas (ATC), an undifferentiated cancer with high mortality. We show here that depletion of the PIAS2 beta isoform with a transcribed double-stranded RNA-directed RNA interference (PIAS2b-dsRNAi) specifically inhibits growth of ATC cell lines and patient primary cultures in vitro and of orthotopic patient-derived xenografts (oPDX) in vivo. Critically, PIAS2b-dsRNAi does not affect growth of normal or non-anaplastic thyroid tumor cultures (differentiated carcinoma, benign lesions) or cell lines. PIAS2b-dsRNAi also has an anti-cancer effect on other anaplastic human cancers (pancreas, lung, and gastric). Mechanistically, PIAS2b is required for proper mitotic spindle and centrosome assembly, and it is a dosage-sensitive protein in ATC. PIAS2b depletion promotes mitotic catastrophe at prophase. High-throughput proteomics reveals the proteasome (PSMC5) and spindle cytoskeleton (TUBB3) to be direct targets of PIAS2b SUMOylation at mitotic initiation. These results identify PIAS2b-dsRNAi as a promising therapy for ATC and other aggressive anaplastic carcinomas.


Mitosis , Protein Inhibitors of Activated STAT , Humans , Protein Inhibitors of Activated STAT/metabolism , Protein Inhibitors of Activated STAT/genetics , Animals , Cell Line, Tumor , Mice , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , RNA Interference , Spindle Apparatus/metabolism , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Xenograft Model Antitumor Assays , Proteasome Endopeptidase Complex/metabolism , Sumoylation , Carcinoma/genetics , Carcinoma/metabolism , Carcinoma/pathology , Female
6.
Nat Commun ; 15(1): 4132, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755165

The regulated release of chemical messengers is crucial for cell-to-cell communication; abnormalities in which impact coordinated human body function. During vesicular secretion, multiple SNARE complexes assemble at the release site, leading to fusion pore opening. How membrane fusion regulators act on heterogeneous SNARE populations to assemble fusion pores in a timely and synchronized manner, is unknown. Here, we demonstrate the role of SNARE chaperones Munc13-1 and Munc18-1 in rescuing individual nascent fusion pores from their diacylglycerol lipid-mediated inhibitory states. At the onset of membrane fusion, Munc13-1 clusters multiple SNARE complexes at the release site and synchronizes release events, while Munc18-1 stoichiometrically interacts with trans-SNARE complexes to enhance N- to C-terminal zippering. When both Munc proteins are present simultaneously, they differentially access dynamic trans-SNARE complexes to regulate pore properties. Overall, Munc proteins' direct action on fusion pore assembly indicates their role in controlling quantal size during vesicular secretion.


Membrane Fusion , Munc18 Proteins , Nerve Tissue Proteins , SNARE Proteins , Munc18 Proteins/metabolism , Munc18 Proteins/genetics , SNARE Proteins/metabolism , SNARE Proteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Animals , Humans , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Rats
7.
Nano Lett ; 24(20): 6078-6083, 2024 May 22.
Article En | MEDLINE | ID: mdl-38723608

Gamma-prefoldin (γPFD), a unique chaperone found in the extremely thermophilic methanogen Methanocaldococcus jannaschii, self-assembles into filaments in vitro, which so far have been observed using transmission electron microscopy and cryo-electron microscopy. Utilizing three-dimensional stochastic optical reconstruction microscopy (3D-STORM), here we achieve ∼20 nm resolution by precisely locating individual fluorescent molecules, hence resolving γPFD ultrastructure both in vitro and in vivo. Through CF647 NHS ester labeling, we first demonstrate the accurate visualization of filaments and bundles with purified γPFD. Next, by implementing immunofluorescence labeling after creating a 3xFLAG-tagged γPFD strain, we successfully visualize γPFD in M. jannaschii cells. Through 3D-STORM and two-color STORM imaging with DNA, we show the widespread distribution of filamentous γPFD structures within the cell. These findings provide valuable insights into the structure and localization of γPFD, opening up possibilities for studying intriguing nanoscale components not only in archaea but also in other microorganisms.


Methanocaldococcus , Molecular Chaperones , Molecular Chaperones/chemistry , Archaeal Proteins/chemistry , Archaeal Proteins/ultrastructure , Microscopy, Fluorescence/methods , Imaging, Three-Dimensional/methods
8.
PeerJ ; 12: e17336, 2024.
Article En | MEDLINE | ID: mdl-38784397

Background: Urinary tract infections (UTIs) are very common worldwide. According to their symptomatology, these infections are classified as pyelonephritis, cystitis, or asymptomatic bacteriuria (AB). Approximately 75-95% of UTIs are caused by uropathogenic Escherichia coli (UPEC), which is an extraintestinal bacterium that possesses virulence factors for bacterial adherence and invasion in the urinary tract. In addition, UPEC possesses type 6 secretion systems (T6SS) as virulence mechanisms that can participate in bacterial competition and in bacterial pathogenicity. UPEC UMN026 carries three genes, namely, ECUMN_0231, ECUMN_0232, and ECUMN_0233, which encode three uncharacterized proteins related to the T6SS that are conserved in strains from phylogroups B2 and D and have been proposed as biomarkers of UTIs. Aim: To analyze the frequency of the ECUMN_0231, ECUMN_0232, ECUMN_0233, and vgrG genes in UTI isolates, as well as their expression in Luria Bertani (LB) medium and urine; to determine whether these genes are related to UTI symptoms or bacterial competence and to identify functional domains on the putative proteins. Methods: The frequency of the ECUMN and vgrG genes in 99 clinical isolates from UPEC was determined by endpoint PCR. The relationship between gene presence and UTI symptomatology was determined using the chi2 test, with p < 0.05 considered to indicate statistical significance. The expression of the three ECUMN genes and vgrG was analyzed by RT-PCR. The antibacterial activity of strain UMN026 was determined by bacterial competence assays. The identification of functional domains and the docking were performed using bioinformatic tools. Results: The ECUMN genes are conserved in 33.3% of clinical isolates from patients with symptomatic and asymptomatic UTIs and have no relationship with UTI symptomatology. Of the ECUMN+ isolates, only five (15.15%, 5/33) had the three ECUMN and vgrG genes. These genes were expressed in LB broth and urine in UPEC UMN026 but not in all the clinical isolates. Strain UMN026 had antibacterial activity against UPEC clinical isolate 4014 (ECUMN-) and E. faecalis but not against isolate 4012 (ECUMN+). Bioinformatics analysis suggested that the ECUMN genes encode a chaperone/effector/immunity system. Conclusions: The ECUMN genes are conserved in clinical isolates from symptomatic and asymptomatic patients and are not related to UTI symptoms. However, these genes encode a putative chaperone/effector/immunity system that seems to be involved in the antibacterial activity of strain UMN026.


Escherichia coli Infections , Escherichia coli Proteins , Molecular Chaperones , Urinary Tract Infections , Uropathogenic Escherichia coli , Uropathogenic Escherichia coli/immunology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/pathogenicity , Humans , Urinary Tract Infections/microbiology , Urinary Tract Infections/immunology , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/immunology , Escherichia coli Proteins/metabolism , Female , Virulence Factors/genetics , Virulence Factors/immunology , Male , Middle Aged , Adult
9.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731820

A significant number of patients with genetic epilepsy do not obtain seizure freedom, despite developments in new antiseizure drugs, suggesting a need for novel therapeutic approaches. Many genetic epilepsies are associated with misfolded mutant proteins, including GABRG2(Q390X)-associated Dravet syndrome, which we have previously shown to result in intracellular accumulation of mutant GABAA receptor γ2(Q390X) subunit protein. Thus, a potentially promising therapeutic approach is modulation of proteostasis, such as increasing endoplasmic reticulum (ER)-associated degradation (ERAD). To that end, we have here identified an ERAD-associated E3 ubiquitin ligase, HRD1, among other ubiquitin ligases, as a strong modulator of wildtype and mutant γ2 subunit expression. Overexpressing HRD1 or knockdown of HRD1 dose-dependently reduced the γ2(Q390X) subunit. Additionally, we show that zonisamide (ZNS)-an antiseizure drug reported to upregulate HRD1-reduces seizures in the Gabrg2+/Q390X mouse. We propose that a possible mechanism for this effect is a partial rescue of surface trafficking of GABAA receptors, which are otherwise sequestered in the ER due to the dominant-negative effect of the γ2(Q390X) subunit. Furthermore, this partial rescue was not due to changes in ER chaperones BiP and calnexin, as total expression of these chaperones was unchanged in γ2(Q390X) models. Our results here suggest that leveraging the endogenous ERAD pathway may present a potential method to degrade neurotoxic mutant proteins like the γ2(Q390X) subunit. We also demonstrate a pharmacological means of regulating proteostasis, as ZNS alters protein trafficking, providing further support for the use of proteostasis regulators for the treatment of genetic epilepsies.


Endoplasmic Reticulum , Epilepsies, Myoclonic , Proteolysis , Receptors, GABA-A , Epilepsies, Myoclonic/metabolism , Epilepsies, Myoclonic/genetics , Receptors, GABA-A/metabolism , Receptors, GABA-A/genetics , Animals , Endoplasmic Reticulum/metabolism , Mice , Humans , Seizures, Febrile/metabolism , Seizures, Febrile/genetics , Endoplasmic Reticulum-Associated Degradation , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Mutation , HEK293 Cells , Endoplasmic Reticulum Chaperone BiP/metabolism
10.
Proc Natl Acad Sci U S A ; 121(19): e2403049121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38691587

Molecular chaperones assist in protein refolding by selectively binding to proteins in their nonnative states. Despite progress in creating artificial chaperones, these designs often have a limited range of substrates they can work with. In this paper, we present molecularly imprinted flexible polymer nanoparticles (nanoMIPs) designed as customizable biomimetic chaperones. We used model proteins such as cytochrome c, laccase, and lipase to screen polymeric monomers and identify the most effective formulations, offering tunable charge and hydrophobic properties. Utilizing a dispersed phase imprinting approach, we employed magnetic beads modified with destabilized whole-protein as solid-phase templates. This process involves medium exchange facilitated by magnetic pulldowns, resulting in the synthesis of nanoMIPs featuring imprinted sites that effectively mimic chaperone cavities. These nanoMIPs were able to selectively refold denatured enzymes, achieving up to 86.7% recovery of their activity, significantly outperforming control samples. Mechanistic studies confirmed that nanoMIPs preferentially bind denatured rather than native enzymes, mimicking natural chaperone interactions. Multifaceted analyses support the functionality of nanoMIPs, which emulate the protective roles of chaperones by selectively engaging with denatured proteins to inhibit aggregation and facilitate refolding. This approach shows promise for widespread use in protein recovery within biocatalysis and biomedicine.


Molecular Chaperones , Nanoparticles , Polymers , Protein Denaturation , Nanoparticles/chemistry , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Polymers/chemistry , Protein Refolding , Protein Folding , Cytochromes c/chemistry , Cytochromes c/metabolism , Laccase/chemistry , Laccase/metabolism , Lipase/chemistry , Lipase/metabolism
11.
Cells ; 13(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38727263

Cellular and organismic copper (Cu) homeostasis is regulated by Cu transporters and Cu chaperones to ensure the controlled uptake, distribution and export of Cu ions. Many of these processes have been extensively investigated in mammalian cell culture, as well as in humans and in mammalian model organisms. Most of the human genes encoding proteins involved in Cu homeostasis have orthologs in the model organism, Caenorhabditis elegans (C. elegans). Starting with a compilation of human Cu proteins and their orthologs, this review presents an overview of Cu homeostasis in C. elegans, comparing it to the human system, thereby establishing the basis for an assessment of the suitability of C. elegans as a model to answer mechanistic questions relating to human Cu homeostasis.


Caenorhabditis elegans , Copper , Homeostasis , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Copper/metabolism , Animals , Humans , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Molecular Chaperones/metabolism
12.
J Transl Med ; 22(1): 497, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796413

BACKGROUND: Inflammation and oxidative stress play an important role in the pathophysiology of inflammatory bowel disease (IBD). This study aimed to explore the effects of copper chaperone Antioxidant-1 (Atox1) on macrophages in a mouse model of intestinal inflammation. METHODS: A mouse model of TNBS-induced colitis was established and verified using the disease activity index. Atox1 conditional knockout mice were applied. The proportion of macrophages in colonic lamina propria mononuclear cells and ROS production were analyzed using flow cytometry. Inflammatory cytokines were measured using ELISA. Expression of macrophage M1/M2 polarization markers, p47phox, NLRP3, and Caspase-1 p20 was measured using quantitative RT-PCR and Western blotting. RESULTS: Atox1 expression was up-regulated in colon tissues of TNBS-induced colitis mice. Macrophages isolated from TNBS-induced colitis mice showed M1 polarization and nuclear translocation of Atox1. Inhibiting copper chaperone activity decreased p47phox, ROS production, and M1 polarization induced by CuCl2 in macrophages. TNBS induced up-regulation of inflammatory cytokines, M1 polarization markers, and p47phox expression in mice, an effect which was preempted by Atox1 knockout. Inflammatory cytokines and expression of M1 polarization markers, p47phox, NLRP3, Caspase-1 p20 were also increased in macrophages isolated from TNBS-induced colitis mice. These changes were alleviated in mice with Atox1 knockout. The effects of Atox1 on macrophage polarization were mediated via the ROS-NLRP3 inflammasome pathway. CONCLUSION: Atox1 plays a pro-inflammatory role, promotes M1 polarization of macrophages, and increases the concentrations of pro-inflammatory cytokines in intestinal tissue by regulating the ROS-NLRP3 inflammasome pathway. Atox1 is a potential therapeutic target in IBD.


Cell Polarity , Colitis , Inflammasomes , Inflammation , Macrophages , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Signal Transduction , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Macrophages/metabolism , Inflammasomes/metabolism , Colitis/pathology , Colitis/chemically induced , Colitis/metabolism , Inflammation/pathology , Inflammation/metabolism , Mice, Inbred C57BL , Molecular Chaperones/metabolism , Trinitrobenzenesulfonic Acid , Cytokines/metabolism , Intestines/pathology , Male , Mice
13.
Sci Rep ; 14(1): 12324, 2024 05 29.
Article En | MEDLINE | ID: mdl-38811604

In order to become bioactive, proteins must be translated and protected from aggregation during biosynthesis. The ribosome and molecular chaperones play a key role in this process. Ribosome-bound nascent chains (RNCs) of intrinsically disordered proteins and RNCs bearing a signal/arrest sequence are known to interact with ribosomal proteins. However, in the case of RNCs bearing foldable protein sequences, not much information is available on these interactions. Here, via a combination of chemical crosslinking and time-resolved fluorescence-anisotropy, we find that nascent chains of the foldable globin apoHmp1-140 interact with ribosomal protein L23 and have a freely-tumbling non-interacting N-terminal compact region comprising 63-94 residues. Longer RNCs (apoHmp1-189) also interact with an additional yet unidentified ribosomal protein, as well as with chaperones. Surprisingly, the apparent strength of RNC/r-protein interactions does not depend on nascent-chain sequence. Overall, foldable nascent chains establish and expand interactions with selected ribosomal proteins and chaperones, as they get longer. These data are significant because they reveal the interplay between independent conformational sampling and nascent-protein interactions with the ribosomal surface.


Protein Folding , Ribosomal Proteins , Ribosomes , Ribosomes/metabolism , Ribosomal Proteins/metabolism , Ribosomal Proteins/chemistry , Protein Binding , Molecular Chaperones/metabolism , Molecular Chaperones/chemistry , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Protein Biosynthesis , Models, Molecular , Protein Conformation , Humans
14.
Behav Brain Res ; 469: 115054, 2024 Jul 09.
Article En | MEDLINE | ID: mdl-38768687

Parkinsons disease (PD) is a chronic fast growing neurodegenerative disorder of Central Nervous System (CNS) characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and formation of Lewy bodies (LBs) which causes dopamine deficiency within basal ganglia leading to motor and non-motor manifestation. According to reports, many factors are responsible for pathogenesis of PD which includes environmental factors, genetic factors, and aging factors. Whereas death of dopaminergic neurons is also caused by oxidative stress, neuroinflammation, and autophagy disorder. Molecular chaperones/co-chaperones are proteins that binds to an unstable conformer of another protein and stabilizes it. Chaperones prevent incorrect interaction between non-native polypeptides which increases the yield but not the rate of reaction. The Bcl-2-associated athanogene (BAG) is a multifunctional group of proteins belonging to BAG family of co-chaperones. Recent studies demonstrates that chaperones interact with PD-related proteins. Co-chaperones like BAG family proteins regulate the function of chaperones. Molecular chaperones regulate the mitochondrial functions by interacting with the PD-related proteins associated with it. This review studies the contribution of chaperones and PD-related proteins in pathogenesis of PD aiming to provide an alternate molecular target for preventing the disease progression.


Parkinson Disease , Humans , Parkinson Disease/metabolism , Animals , Molecular Chaperones/metabolism , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , Dopaminergic Neurons/metabolism
15.
Mol Biol Cell ; 35(7): ar98, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38809582

C. elegans undergo age-dependent declines in muscle organization and function, similar to human sarcopenia. The chaperone UNC-45 is required to fold myosin heads after translation and is likely used for refolding after thermally- or chemically-induced unfolding. UNC-45's TPR region binds HSP-90 and its UCS domain binds myosin heads. We observe early onset sarcopenia when UNC-45 is reduced at the beginning of adulthood. There is sequential decline of HSP-90, UNC-45, and MHC B myosin. A mutation in age-1 delays sarcopenia and loss of HSP-90, UNC-45, and myosin. UNC-45 undergoes age-dependent phosphorylation, and mass spectrometry reveals phosphorylation of six serines and two threonines, seven of which occur in the UCS domain. Additional expression of UNC-45 results in maintenance of MHC B myosin and suppression of A-band disorganization in old animals. Our results suggest that increased expression or activity of UNC-45 might be a strategy for prevention or treatment of sarcopenia.


Aging , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Molecular Chaperones , Myosins , Sarcomeres , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/metabolism , Aging/metabolism , Aging/physiology , Molecular Chaperones/metabolism , Myosins/metabolism , Sarcomeres/metabolism , Phosphorylation , HSP90 Heat-Shock Proteins/metabolism , Humans , Mutation , Muscle, Skeletal/metabolism
16.
Genes Dev ; 38(7-8): 336-353, 2024 May 21.
Article En | MEDLINE | ID: mdl-38744503

High levels of H2A.Z promote melanoma cell proliferation and correlate with poor prognosis. However, the role of the two distinct H2A.Z histone chaperone complexes SRCAP and P400-TIP60 in melanoma remains unclear. Here, we show that individual subunit depletion of SRCAP, P400, and VPS72 (YL1) results in not only the loss of H2A.Z deposition into chromatin but also a reduction of H4 acetylation in melanoma cells. This loss of H4 acetylation is particularly found at the promoters of cell cycle genes directly bound by H2A.Z and its chaperones, suggesting a coordinated regulation between H2A.Z deposition and H4 acetylation to promote their expression. Knockdown of each of the three subunits downregulates E2F1 and its targets, resulting in a cell cycle arrest akin to H2A.Z depletion. However, unlike H2A.Z deficiency, loss of the shared H2A.Z chaperone subunit YL1 induces apoptosis. Furthermore, YL1 is overexpressed in melanoma tissues, and its upregulation is associated with poor patient outcome. Together, these findings provide a rationale for future targeting of H2A.Z chaperones as an epigenetic strategy for melanoma treatment.


Cell Proliferation , Gene Expression Regulation, Neoplastic , Histones , Melanoma , Humans , Melanoma/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Histones/metabolism , Histones/genetics , Acetylation , Apoptosis/genetics , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/genetics
17.
PLoS One ; 19(5): e0303235, 2024.
Article En | MEDLINE | ID: mdl-38728287

Excitotoxicity represents the primary cause of neuronal death following spinal cord injury (SCI). While autophagy plays a critical and intricate role in SCI, the specific mechanism underlying the relationship between excitotoxicity and autophagy in SCI has been largely overlooked. In this study, we isolated primary spinal cord neurons from neonatal rats and induced excitotoxic neuronal injury by high concentrations of glutamic acid, mimicking an excitotoxic injury model. Subsequently, we performed transcriptome sequencing. Leveraging machine learning algorithms, including weighted correlation network analysis (WGCNA), random forest analysis (RF), and least absolute shrinkage and selection operator analysis (LASSO), we conducted a comprehensive investigation into key genes associated with spinal cord neuron injury. We also utilized protein-protein interaction network (PPI) analysis to identify pivotal proteins regulating key gene expression and analyzed key genes from public datasets (GSE2599, GSE20907, GSE45006, and GSE174549). Our findings revealed that six genes-Anxa2, S100a10, Ccng1, Timp1, Hspb1, and Lgals3-were significantly upregulated not only in vitro in neurons subjected to excitotoxic injury but also in rats with subacute SCI. Furthermore, Hspb1 and Lgals3 were closely linked to neuronal autophagy induced by excitotoxicity. Our findings contribute to a better understanding of excitotoxicity and autophagy, offering potential targets and a theoretical foundation for SCI diagnosis and treatment.


Autophagy , Galectin 3 , Machine Learning , Neurons , Animals , Rats , Galectin 3/metabolism , Galectin 3/genetics , Glutamic Acid/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neurons/metabolism , Protein Interaction Maps , Rats, Sprague-Dawley , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/genetics
18.
J Phys Chem B ; 128(22): 5336-5343, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38780400

Copper, an essential metal for various cellular processes, requires tight regulation to prevent cytotoxicity. Intracellular pathways crucial for maintaining optimal copper levels involve soluble and membrane transporters, namely, metallochaperones and P-type ATPases, respectively. In this study, we used a simulation workflow based on free-energy perturbation (FEP) theory and parallel bias metadynamics (PBMetaD) to predict the Cu(I) exchange mechanism between the human Cu(I) chaperone, Atox1, and one of its two physiological partners, ATP7A. ATP7A, also known as the Menkes disease protein, is a transmembrane protein and one of the main copper-transporting ATPases. It pumps copper into the trans-Golgi network for the maturation of cuproenzymes and is also essential for the efflux of excess copper across the plasma membrane. In this analysis, we utilized the nuclear magnetic resonance (NMR) structure of the Cu(I)-mediated complex between Atox1 and the first soluble domain of the Menkes protein (Mnk1) as a starting point. Independent free-energy simulations were conducted to investigate the dissociation of both Atox1 and Mnk1. The calculations revealed that the two dissociations require free energy values of 6.3 and 6.2 kcal/mol, respectively, following a stepwise dissociation mechanism.


Copper Transport Proteins , Copper-Transporting ATPases , Copper , Metallochaperones , Molecular Chaperones , Molecular Dynamics Simulation , Copper/chemistry , Copper/metabolism , Copper Transport Proteins/chemistry , Copper Transport Proteins/metabolism , Humans , Metallochaperones/chemistry , Metallochaperones/metabolism , Copper-Transporting ATPases/chemistry , Copper-Transporting ATPases/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Thermodynamics , Protein Multimerization
19.
Vet Res ; 55(1): 60, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750480

Bacterial ClpB is an ATP-dependent disaggregate that belongs to the Hsp100/Clp family and facilitates bacterial survival under hostile environmental conditions. Streptococcus agalactiae, which is regarded as the major bacterial pathogen of farmed Nile tilapia (Oreochromis niloticus), is known to cause high mortality and large economic losses. Here, we report a ClpB homologue of S. agalactiae and explore its functionality. S. agalactiae with a clpB deletion mutant (∆clpB) exhibited defective tolerance against heat and acidic stress, without affecting growth or morphology under optimal conditions. Moreover, the ΔclpB mutant exhibited reduced intracellular survival in RAW264.7 cells, diminished adherence to the brain cells of tilapia, increased sensitivity to leukocytes from the head kidney of tilapia and whole blood killing, and reduced mortality and bacterial loads in a tilapia infection assay. Furthermore, the reduced virulence of the ∆clpB mutant was investigated by transcriptome analysis, which revealed that deletion of clpB altered the expression levels of multiple genes that contribute to the stress response as well as certain metabolic pathways. Collectively, our findings demonstrated that ClpB, a molecular chaperone, plays critical roles in heat and acid stress resistance and virulence in S. agalactiae. This finding provides an enhanced understanding of the functionality of this ClpB homologue in gram-positive bacteria and the survival strategy of S. agalactiae against immune clearance during infection.


Bacterial Proteins , Fish Diseases , Streptococcal Infections , Streptococcus agalactiae , Stress, Physiological , Streptococcus agalactiae/physiology , Streptococcus agalactiae/pathogenicity , Streptococcus agalactiae/genetics , Virulence , Animals , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Fish Diseases/microbiology , Cichlids , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mice , RAW 264.7 Cells
20.
Adv Clin Chem ; 121: 270-333, 2024.
Article En | MEDLINE | ID: mdl-38797543

Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.


Autophagy , Neurodegenerative Diseases , Proteasome Endopeptidase Complex , Proteostasis , Humans , Neurodegenerative Diseases/metabolism , Proteasome Endopeptidase Complex/metabolism , Molecular Chaperones/metabolism , Animals , Ubiquitin/metabolism
...