Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.528
1.
ACS Sens ; 9(6): 3433-3443, 2024 Jun 28.
Article En | MEDLINE | ID: mdl-38872232

The development of a portable, low-cost sensor capable of accurately detecting H2S gas in exhaled human breath at room temperature is highly anticipated in the fields of human health assessment and food spoilage evaluation. However, achieving outstanding gas sensing performance and applicability for flexible room-temperature operation with parts per billion H2S gas sensors still poses technical challenges. To address this issue, this study involves the in situ growth of MoS2 nanosheets on the surface of In2O3 fibers to construct a p-n heterojunction. The In2O3@MoS2-2 sensor exhibits a high response of 460.61 to 50 ppm of H2S gas at room temperature, which is 19.5 times higher than that of the pure In2O3 sensor and 322.1 times higher than that of pure MoS2. The In2O3@MoS2-2 also demonstrates a minimum detection limit of 3 ppb and maintains a stable response to H2S gas even after being bent 50 times at a 60° angle. These exceptional gas sensing properties are attributed to the increase in oxygen vacancies and chemisorbed oxygen on In2O3@MoS2-2 nanofibers as well as the formation of the p-n heterojunction, which modulates the heterojunction barrier. Furthermore, in this study, we successfully applied the In2O3@MoS2-2 sensor for oral disease and detection of food spoilage conditions, thereby providing new design insights for the development of portable exhaled gas sensors and gas sensors for evaluating food spoilage conditions at room temperature.


Breath Tests , Hydrogen Sulfide , Limit of Detection , Molybdenum , Temperature , Humans , Hydrogen Sulfide/analysis , Breath Tests/methods , Breath Tests/instrumentation , Molybdenum/chemistry , Disulfides/chemistry , Indium/chemistry , Sulfides/chemistry
2.
ACS Appl Mater Interfaces ; 16(24): 30648-30657, 2024 Jun 19.
Article En | MEDLINE | ID: mdl-38843092

Organic and inorganic hybrid field-effect transistors (FETs), utilizing layered molybdenum diselenide (MoSe2) and an organic semiconductor poly(3-hexylthiophene) (P3HT), are presented for biosensing applications. A new hybrid device structure that combines organic (P3HT) and inorganic (MoSe2) components is showcased for accurate and selective bioanalyte detection in human bodily fluids to overcome 2D-transition metal dichalcogenides (TMDs) nonspecific interactions. This hybrid structure utilizes organic and inorganic semiconductors' high surface-to-volume ratio, carrier transport, and conductivity for biosensing. Ammonia concentrations in saliva and plasma are closely linked to physiological and pathological conditions of the human body. A highly sensitive hybrid FET biosensor detects total ammonia (NH4+ and NH3) from 0.5 µM to 1 mM concentrations, with a detection limit of 0.65 µM in human bodily fluids. The sensor's ammonia specificity in artificial saliva against interfering species is showcased. Furthermore, the fabricated hybrid FET device exhibits a stable and repeatable response to ammonia in both saliva and plasma, achieving a remarkable response level of 2300 at a 1 mM concentration of ammonia, surpassing existing literature by 10-fold. This hybrid FET biosensing platform holds significant promise for developing a precise tool for the real-time monitoring of ammonia concentrations in human biological fluids, offering potential applications in point-of-care diagnostics.


Ammonia , Biosensing Techniques , Saliva , Transistors, Electronic , Ammonia/analysis , Humans , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Saliva/chemistry , Saliva/metabolism , Thiophenes/chemistry , Molybdenum/chemistry , Limit of Detection , Semiconductors
3.
Anal Chem ; 96(24): 10074-10083, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38848224

Numerous high-performance nanotechnologies have been developed, but their practical applications are largely restricted by the nanomaterials' low stabilities and high operation complexity in aqueous substrates. Herein, we develop a simple and high-reliability hydrogel-based nanotechnology based on the in situ formation of Au nanoparticles in molybdenum disulfide (MoS2)-doped agarose (MoS2/AG) hydrogels for electrophoresis-integrated microplate protein recognition. After the incubation of MoS2/AG hydrogels in HAuCl4 solutions, MoS2 nanosheets spontaneously reduce Au ions, and the hydrogels are remarkably stained with the color of as-synthetic plasmonic Au hybrid nanomaterials (Au staining). Proteins can precisely mediate the morphologies and optical properties of Au/MoS2 heterostructures in the hydrogels. Consequently, Au staining-based protein recognition is exhibited, and hydrogels ensure the comparable stabilities and sensitivities of protein analysis. In comparison to the fluorescence imaging and dye staining, enhanced sensitivity and recognition performances of proteins are implemented by Au staining. In Au staining, exfoliated MoS2 semiconductors directly guide the oriented growth of plasmonic Au nanostructures in the presence of formaldehyde, showing environment-friendly features. The Au-stained hydrogels merge the synthesis and recognition applications of plasmonic Au nanomaterials. Significantly, the one-step incubation of the electrophoretic hydrogels leads to high simplicity of operation, largely challenging those multiple-step Ag staining routes which were performed with high complexity and formaldehyde toxicity. Due to its toxic-free, simple, and sensitive merits, the Au staining integrated with electrophoresis-based separation and microplate-based high-throughput measurements exhibits highly promising and improved practicality of those developing nanotechnologies and largely facilitates in-depth understanding of biological information.


Disulfides , Gold , Hydrogels , Molybdenum , Molybdenum/chemistry , Disulfides/chemistry , Gold/chemistry , Hydrogels/chemistry , Metal Nanoparticles/chemistry , Electrophoresis , Proteins/analysis , Proteins/chemistry
4.
J Nanobiotechnology ; 22(1): 337, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38886712

BACKGROUND: Molybdenum disulfide (MoS2) has excellent physical and chemical properties. Further, chiral MoS2 (CMS) exhibits excellent chiroptical and enantioselective effects, and the enantioselective properties of CMS have been studied for the treatment of neurodegenerative diseases. Intriguingly, left- and right-handed materials have different effects on promoting the differentiation of neural stem cells into neurons. However, the effect of the enantioselectivity of chiral materials on peripheral nerve regeneration remains unclear. METHODS: In this study, CMS@bacterial cellulose (BC) scaffolds were fabricated using a hydrothermal approach. The CMS@BC films synthesized with L-2-amino-3-phenyl-1-propanol was defined as L-CMS. The CMS@BC films synthesized with D-2-amino-3-phenyl-1-propanol was defined as D-CMS. The biocompatibility of CMS@BC scaffolds and their effect on Schwann cells (SCs) were validated by cellular experiments. In addition, these scaffolds were implanted in rat sciatic nerve defect sites for three months. RESULTS: These chiral scaffolds displayed high hydrophilicity, good mechanical properties, and low cytotoxicity. Further, we found that the L-CMS scaffolds were superior to the D-CMS scaffolds in promoting SCs proliferation. After three months, the scaffolds showed good biocompatibility in vivo, and the nerve conducting velocities of the L-CMS and D-CMS scaffolds were 51.2 m/s and 26.8 m/s, respectively. The L-CMS scaffolds showed a better regenerative effect than the D-CMS scaffolds. Similarly, the sciatic nerve function index and effects on the motor and electrophysiological functions were higher for the L-CMS scaffolds than the D-CMS scaffolds. Finally, the axon diameter and myelin sheath thickness of the regenerated nerves were improved in the L-CMS group. CONCLUSION: We found that the CMS@BC can promote peripheral nerve regeneration, and in general, the L-CMS group exhibited superior repair performance. Overall, the findings of this study reveal that CMS@BC can be used as a chiral nanomaterial nerve scaffold for peripheral nerve repair.


Cellulose , Disulfides , Molybdenum , Nerve Regeneration , Schwann Cells , Tissue Scaffolds , Nerve Regeneration/drug effects , Animals , Rats , Tissue Scaffolds/chemistry , Disulfides/chemistry , Disulfides/pharmacology , Schwann Cells/drug effects , Molybdenum/chemistry , Molybdenum/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Cellulose/analogs & derivatives , Rats, Sprague-Dawley , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Sciatic Nerve/drug effects , Sciatic Nerve/physiology , Cell Proliferation/drug effects , Tissue Engineering/methods , Male , Peripheral Nerve Injuries , Stereoisomerism
5.
Anal Methods ; 16(24): 3867-3877, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38828675

A Ti3C2Tx/MoS2/MWCNT@rGONR nanocomposite was prepared for the first time for building a sensitive electrochemical aptasening platform to simultaneously detect kanamycin (Kana) and chloramphenicol (Cap). Owing to their accordion-like structure, rich surface groups, and high charge mobility, Ti3C2Tx/MoS2/MWCNT@rGONR composites provided a spacious covalent immobilization surface and a better electrochemical aptasensing platform. The aptamers of Kana and Cap used in sensors enhance the selectivity. Furthermore, TiP, an ion exchanger, was used for loading more different metal ions functioning as labels to form a sandwich-type sensor together with Ti3C2Tx/MoS2/MWCNT@rGONR, improving the electrochemical sensitivity and obtaining a highly distinguishable signal readout. Under the optimized conditions, the sensor has good detection limits of 0.135 nmol L-1 and 0.173 nmol L-1 for Kana and Cap, respectively, at the same linearity concentration of 0.5-2500 nmol L-1. Finally, it was successfully applied for detection in milk and fish meat, and the results were compared with the standard method HPLC, indicating its great potential for food safety monitoring.


Aptamers, Nucleotide , Biosensing Techniques , Chloramphenicol , Electrochemical Techniques , Food Contamination , Kanamycin , Milk , Titanium , Chloramphenicol/analysis , Chloramphenicol/chemistry , Kanamycin/analysis , Kanamycin/chemistry , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Titanium/chemistry , Animals , Milk/chemistry , Food Contamination/analysis , Biosensing Techniques/methods , Molybdenum/chemistry , Limit of Detection , Nanotubes, Carbon/chemistry , Graphite/chemistry , Nanocomposites/chemistry , Food Analysis/methods , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Fishes , Disulfides
6.
Nano Lett ; 24(25): 7764-7773, 2024 Jun 26.
Article En | MEDLINE | ID: mdl-38864366

Inducing immunogenic cell death (ICD) during photothermal therapy (PTT) has the potential to effectively trigger photothermal immunotherapy (PTI). However, ICD induced by PTT alone is often limited by inefficient PTT, low immunogenicity of tumor cells, and a dysregulated redox microenvironment. Herein, we develop MoSe2 nanosheets with high-percentage metallic 1T phase and rich exposed active Mo centers through phase and defect engineering of MoSe2 as an effective nanoagent for PTI. The metallic 1T phase in MoSe2 nanosheets endows them with strong PTT performance, and the abundant exposed active Mo centers endow them with high activity for glutathione (GSH) depletion. The MoSe2-mediated high-performance PTT synergizing with efficient GSH depletion facilitates the release of tumor-associated antigens to induce robust ICD, thus significantly enhancing checkpoint blockade immunotherapy and activating systemic immune response in mouse models of colorectal cancer and triple-negative metastatic breast cancer.


Immunotherapy , Molybdenum , Photothermal Therapy , Animals , Mice , Immunotherapy/methods , Humans , Molybdenum/chemistry , Female , Cell Line, Tumor , Nanostructures/chemistry , Nanostructures/therapeutic use , Glutathione/chemistry , Glutathione/metabolism , Colorectal Neoplasms/therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Immunogenic Cell Death/drug effects , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Infrared Rays , Selenium/chemistry , Selenium/therapeutic use , Phototherapy/methods
7.
ACS Nano ; 18(25): 16184-16198, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38864540

Drug-resistant bacterial infections pose a serious threat to human health; thus, there is an increasingly growing demand for nonantibiotic strategies to overcome drug resistance in bacterial infections. Mild photothermal therapy (PTT), as an attractive antibacterial strategy, shows great potential application due to its good biocompatibility and ability to circumvent drug resistance. However, its efficiency is limited by the heat resistance of bacteria. Herein, Cu2O@MoS2, a nanocomposite, was constructed by the in situ growth of Cu2O nanoparticles (NPs) on the surface of MoS2 nanosheets, which provided a controllable photothermal therapeutic effect of MoS2 and the intrinsic catalytic properties of Cu2O NPs, achieving a synergistic effect to eradicate multidrug-resistant bacteria. Transcriptome sequencing (RNA-seq) results revealed that the antibacterial process was related to disrupting the membrane transport system, phosphorelay signal transduction system, oxidative stress response system, as well as the heat response system. Animal experiments indicated that Cu2O@MoS2 could effectively treat wounds infected with methicillin-resistant Staphylococcus aureus. In addition, satisfactory biocompatibility made Cu2O@MoS2 a promising antibacterial agent. Overall, our results highlight the Cu2O@MoS2 nanocomposite as a promising solution to combating resistant bacteria without inducing the evolution of antimicrobial resistance.


Anti-Bacterial Agents , Copper , Disulfides , Infrared Rays , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Molybdenum , Nanocomposites , Molybdenum/chemistry , Molybdenum/pharmacology , Disulfides/chemistry , Disulfides/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Copper/chemistry , Copper/pharmacology , Nanocomposites/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Animals , Mice , Photothermal Therapy , Humans
8.
ACS Appl Bio Mater ; 7(6): 3841-3853, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38836520

One of the gut-derived uremic toxins 4-ethylphenyl sulfate (4-EPS) exhibits significantly elevated plasma levels in chronic kidney diseases and autism, and its early quantification in bodily fluids is important. Therefore, the development of rapid and sensitive technologies for 4-EPS detection is of significant importance for clinical diagnosis. In the current work, the synthesis of a molecularly imprinted biopolymer (MIBP) carrying 4-EPS specific cavities only using the biopolymer polydopamine (PDA) and molybdenum disulfide (MoS2) nanosheets has been reported. The fabricated electrode was prepared using screen-printed carbon electrodes on a polyvinyl chloride substrate. The synthesized material was characterized using several techniques, and electrochemical studies were performed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The DPV technique for the electrochemical sensing of 4-EPS using the fabricated sensor (PDA@MoS2-MIBP) determined a sensitivity of 0.012 µA/ng mL/cm2 and a limit of detection of 30 ng/mL in a broad linear range of 1-2200 ng/mL. Also, the interferent study was performed to evaluate the selectivity of the fabricated sensor along with the control and stability study. Moreover, the performance of the sensor was evaluated in the spiked urine sample, and a comparison was made with the data obtained by ultraperformance liquid chromatography-tandem mass spectroscopy.


Disulfides , Electrochemical Techniques , Materials Testing , Molecular Imprinting , Molybdenum , Molybdenum/chemistry , Disulfides/chemistry , Polymers/chemistry , Polymers/chemical synthesis , Nanostructures/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Particle Size , Indoles/chemistry , Biopolymers/chemistry , Humans , Sulfhydryl Compounds
9.
Nanotechnology ; 35(36)2024 Jun 17.
Article En | MEDLINE | ID: mdl-38838648

Ascorbic acid (AA), known as vitamin C, is a vital bioactive compound that plays a crucial role in several metabolic processes, including the synthesis of collagen and neurotransmitters, the removal of harmful free radicals, and the uptake of iron by cells in the human intestines. As a result, there is an absolute need for a highly selective, sensitive, and economically viable sensing platform for AA detection. Herein, we demonstrate a Pt-decorated MoS2for efficient detection of an AA biosensor. MoS2hollow rectangular structures were synthesized using an easy and inexpensive chemical vapor deposition approach to meet the increasing need for a reliable detection platform. The synthesized MoS2hollow rectangular structures are characterized through field effect scanning electron microscopy (FESEM), energy-dispersive spectroscopy elemental mapping, Raman spectroscopy, and x-ray photoelectron spectroscopy. We fabricate a chemiresistive biosensor based on Pt-decorated MoS2that measures AA with great precision and high sensitivity. The experiments were designed to evaluate the response of the Pt-decorated MoS2biosensor in the presence and absence of AA, and selectivity was evaluated for a variety of biomolecules, and it was observed to be very selective towards AA. The Pt-MoS2device had a higher response of 125% against 1 mM concentration of AA biomolecules, when compared to that of all other devices and 2.2 times higher than that of the pristine MoS2device. The outcomes of this study demonstrate the efficacy of Pt-decorated MoS2as a promising material for AA detection. This research contributes to the ongoing efforts to enhance our capabilities in monitoring and detecting AA, fostering advancements in environmental, biomedical, and industrial applications.


Ascorbic Acid , Biosensing Techniques , Disulfides , Molybdenum , Platinum , Ascorbic Acid/analysis , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Disulfides/chemistry , Molybdenum/chemistry , Platinum/chemistry , Humans , Spectrum Analysis, Raman/methods
10.
ACS Sens ; 9(6): 2979-2988, 2024 Jun 28.
Article En | MEDLINE | ID: mdl-38818754

The development of a highly selective and trace-level gas sensing platform for detecting hydrogen sulfide (H2S) remains a formidable challenge. To solve this problem, Co-Mo multimetal oxide semiconductors are rationally tailored by employing metal organic frameworks (MOFs) as self-sacrificial templates. The MOF-derived Co3O4/ß-CoMoO4 based gas sensors displays high sensitivity (Rg/Ra = 22) to 10 ppm of H2S and ultralow limit of detection (10 ppb H2S). The formation of p-p heterojunction and multivalence states of Mo play a crucial role in electron transfer and oxygen adsorption. A sensor array constructed from four Co3O4/ß-CoMoO4 materials with different Co/Mo ratios demonstrates a superior selective discrimination of H2S from other VOCs and malodorous gases by principal component analysis (PCA). Besides, a H2S gas sensing and alarming platform was designed for monitoring the environment contaminated with H2S. This finding provides a feasible approach for the discovery of highly efficient gas sensors to monitor environmental H2S concentration.


Cobalt , Hydrogen Sulfide , Metal-Organic Frameworks , Molybdenum , Oxides , Semiconductors , Hydrogen Sulfide/analysis , Oxides/chemistry , Cobalt/chemistry , Metal-Organic Frameworks/chemistry , Molybdenum/chemistry , Limit of Detection
11.
J Mater Chem B ; 12(21): 5024-5038, 2024 May 29.
Article En | MEDLINE | ID: mdl-38712810

Composite materials can take advantages of the functional benefits of multiple pure nanomaterials to a greater degree than single nanomaterials alone. The UCNPs-MoS2 composite is a nano-application platform that combines upconversion luminescence and photothermal properties. Upconversion nanoparticles (UCNPs) are inorganic nanomaterials with long-wavelength excitation and short-wavelength tunable emission capabilities, and are able to effectively convert near-infrared (NIR) light into visible light for increased photostability. However, UCNPs have a low capacity for absorbing visible light, whereas MoS2 shows better absorption in the ultraviolet and visible regions. By integrating the benefits of UCNPs and MoS2, UCNPs-MoS2 nanocomposites can convert NIR light with a higher depth of detection into visible light for application with MoS2 through fluorescence resonance energy transfer (FRET), which compensates for the issues of MoS2's low tissue penetration light-absorbing wavelengths and expands its potential biological applications. Therefore, starting from the construction of UCNPs-MoS2 nanoplatforms, herein, we review the research progress in biological applications, including biosensing, phototherapy, bioimaging, and targeted drug delivery. Additionally, the current challenges and future development trends of UCNPs-MoS2 nanocomposites for biological applications are also discussed.


Disulfides , Molybdenum , Nanocomposites , Molybdenum/chemistry , Disulfides/chemistry , Nanocomposites/chemistry , Humans , Biosensing Techniques , Animals , Phototherapy/methods , Drug Delivery Systems
12.
Anal Methods ; 16(20): 3278-3286, 2024 May 23.
Article En | MEDLINE | ID: mdl-38738557

Dextromethorphan (DXM) is a widely utilized central antitussive agent, which is frequently abused by individuals seeking its recreational effect. But DXM overdose can cause some adverse effects, including brain damage, loss of consciousness, and cardiac arrhythmias, and hence its detection is significant. Herein, an electrochemical sensor based on a Cu-coordinated molecularly imprinted polymer (Cu-MIP) was fabricated for its detection. For constructing the sensor, nitrogen-doped carbon nanosheets (CCNs) were prepared through calcining chitin under an argon atmosphere, and molybdenum disulfide (MoS2) was allowed to grow on their surface. Subsequently, the obtained MoS2/CCNs composite was employed to modify a glassy carbon electrode (GCE), and the Cu-MIP was electrodeposited on the electrode in a Cu-1,10-phenanthroline (Cu-Phen) solution containing DXM, where Cu2+ played a role in facilitating electron transfer and binding DXM. Due to the large specific surface area, good electrocatalytic properties and recognition of the resulting composite, the resulting Cu-MIP/MoS2/CCNs/GCE showed high selectivity and sensitivity. Under optimized experimental conditions, the peak current of DXM and its concentration exhibited a good linear relationship over the concentration range of 0.1-100 µM, and the limit of detection (S/N = 3) was 0.02 µM. Furthermore, the electrochemical sensor presented good stability, and it was successfully used for the determination of DXM in pharmaceutical, human serum and urine samples.


Carbon , Copper , Dextromethorphan , Disulfides , Electrochemical Techniques , Molecularly Imprinted Polymers , Molybdenum , Molybdenum/chemistry , Disulfides/chemistry , Dextromethorphan/analysis , Dextromethorphan/chemistry , Dextromethorphan/urine , Copper/chemistry , Electrochemical Techniques/methods , Carbon/chemistry , Molecularly Imprinted Polymers/chemistry , Chitin/chemistry , Humans , Limit of Detection , Electrodes , Antitussive Agents/chemistry , Antitussive Agents/analysis , Antitussive Agents/urine
13.
Talanta ; 275: 126156, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38692048

The development of simple methods for the isolation and quantification of exosomes in biological samples is important. By using the typical two-dimensional (2D) nanomaterials, graphene oxide (GO), the present work first studied the interaction of liposomes with the nanocomposites formed by adsorbing HRP on the GO surface and found the presence of liposomes led to the release of HRP from the GO surface to the solution phase triggering the luminol-H2O2 chemiluminescence (CL) reaction to emit light. Benefiting from the similarity of exosomes to liposomes in both composition and morphology aspects, the GO-HRP nanocomposites with a mass ratio of 120:1 and 160:1 were employed for the quantitative detection of exosomes in 100-fold diluted serum samples. The whole detection process took about 15 min and as low as 3.2 × 102 particles µL-1 of exosomes could be sensitively detected. In addition to GO-HRP nanocomposites, the CL responses of other nanocomposites obtained from adsorbing HRP on other 2D nanomaterials such as layered MoS2 for exosomes were also tested. MoS2-HRP exhibited similar behavior and the LODs for the detection of exosomes were 5.8 × 102 particles µL-1. The proposed assays were a biomarker-independent quantitative method that achieved the quantification of exosomes in serum samples directly without an isolation process.


Exosomes , Graphite , Horseradish Peroxidase , Luminescent Measurements , Nanostructures , Exosomes/chemistry , Graphite/chemistry , Horseradish Peroxidase/chemistry , Luminescent Measurements/methods , Adsorption , Humans , Nanostructures/chemistry , Luminol/chemistry , Molybdenum/chemistry , Disulfides/chemistry , Hydrogen Peroxide/chemistry , Limit of Detection , Liposomes/chemistry , Nanocomposites/chemistry
14.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732078

This study aimed to synthesize molybdenum complexes coordinated with an aroyl hydrazone-type ligand (H2L), which was generated through the condensation of 2-hydroxy-5-nitrobenzaldehyde with benzhydrazide. The synthesis yielded two types of mononuclear complexes, specifically [MoO2(L)(MeOH)] and [MoO2(L)(H2O)], as well as a bipyridine-bridged dinuclear complex, [(MoO2(L))2(4,4'-bpy)]. Those entities were thoroughly characterized using a suite of analytical techniques, including attenuated total reflectance infrared spectroscopy (IR-ATR), elemental analysis (EA), thermogravimetric analysis (TGA), and single-crystal X-ray diffraction (SCXRD). Additionally, solid-state impedance spectroscopy (SS-IS) was employed to investigate the electrical properties of these complexes. The mononuclear complexes were tested as catalysts in the epoxidation of cyclooctene and the oxidation of linalool. Among these, the water-coordinated mononuclear complex, [MoO2(L)(H2O)], demonstrated superior electrical and catalytic properties. A novel contribution of this research lies in establishing a correlation between the electrical properties, structural features, and the catalytic efficiency of the complexes, marking this work as one of the pioneering studies in this area for molybdenum coordination complexes, to the best of our knowledge.


Benzaldehydes , Coordination Complexes , Molybdenum , Oxidation-Reduction , Molybdenum/chemistry , Catalysis , Coordination Complexes/chemistry , Benzaldehydes/chemistry , Semiconductors
15.
Bioresour Technol ; 401: 130761, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692370

Cr (VI) is a common heavy metal pollutant in electroplating wastewater. This study introduces the liquid-phase product from the hydrothermal reaction of coffee grounds (CGHCL) into the synthesis process of molybdenum disulfide, assisting in the fabrication of an intercalated, expanded core-shell structured molybdenum disulfide adsorbent (C-MoS2), designed for the adsorption and reduction of Cr (VI) from electroplating wastewater. The addition of CGHCL significantly enhances the adsorption performance of MoS2. Furthermore, C-MoS2 exhibits exceedingly high removal efficiency and excellent regenerative capability for Cr (VI)-containing electroplating wastewater. The core-shell structure effectively minimizes molybdenum leaching to the greatest extent, while the oleophobic interface is unaffected by oily substances in water, and the expanded interlayer structure ensures the long-term stability of C-MoS2 in air (90 days). This study provides a viable pathway for the resource utilization of biomass and the application of molybdenum disulfide-based materials in wastewater treatment.


Biomass , Chromium , Disulfides , Molybdenum , Wastewater , Water Purification , Molybdenum/chemistry , Disulfides/chemistry , Adsorption , Wastewater/chemistry , Water Purification/methods , Chromium/chemistry , Electroplating , Water Pollutants, Chemical , Solutions
16.
Biosens Bioelectron ; 257: 116345, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38692247

Nitrite (NO2-) is present in a variety of foods, but the excessive intake of NO2- can indirectly lead to carcinogenic, teratogenic, mutagenicity and other risks to the human body. Therefore, the detection of NO2- is crucial for maintaining human health. In this study, an integrated array sensor for NO2- detection is developed based on molybdenum single atom material (IMSMo-SAC) using high-resolution electrohydrodynamic (EHD) printing technology. The sensor comprises three components: a printed electrode array, multichannels designed on polydimethylsiloxane (PDMS) and an electronic signal process device with bluetooth. By utilizing Mo-SAC to facilitate electron transfer during the redox reaction, rapid and efficient detection of NO2- can be achieved. The sensor has a wide linear range of 0.1 µM-107.8 mM, a low detection limit of 33 nM and a high sensitivity of 0.637 mA-1mM-1 cm-2. Furthermore, employing this portable array sensor allows simultaneously measurements of NO2- concentrations in six different foods samples with acceptable recovery rates. This array sensor holds great potential for detecting of small molecules in various fields.


Biosensing Techniques , Equipment Design , Food Analysis , Limit of Detection , Molybdenum , Nitrites , Molybdenum/chemistry , Biosensing Techniques/instrumentation , Nitrites/analysis , Food Analysis/instrumentation , Humans , Dimethylpolysiloxanes/chemistry , Electrodes , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Food Contamination/analysis
17.
Environ Pollut ; 351: 124077, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38705447

In this paper, the S-scheme/Schottky heterojunction photocatalyst (CuInS2/Bi/Bi2MoO6, CIS/Bi/BMO) was successfully constructed via a facile in-situ solvothermal method, aimed at enhancing its photocatalytic performance. The results of the study on the photocatalytic degradation of diclofenac sodium (DCF) under simulated solar light irradiation revealed that the as-prepared composite exhibited remarkable catalytic efficiency in comparison to the pristine Bi2MoO6 and CuInS2. The plasmonic bismuth (Bi) was formed during the solvothermal process. Subsequently, CuInS2 and Bi were grown on the surface of Bi2MoO6 leading to forming CIS/BMO S-scheme heterojunction, along with a Schottky junction between Bi and Bi2MoO6. The use of ethylene glycol as a support was the main reason for the significant improvement in photocatalytic efficiency in the degradation of DCF. Moreover, the probable photocatalytic mechanisms for the degradation of DCF had been proposed based on the active species quenching experiments. The eleven degradation products were detected by HPLC-MS, and the degradation reaction pathway of DCF was deduced. Additionally, the CIS/Bi/BMO photocatalyst exhibited a consistently high removal rate after four cycles. This study proposes a new strategy for designing efficient S-scheme/Schottky heterojunction photocatalysts for solar energy conversion.


Bismuth , Copper , Diclofenac , Photolysis , Bismuth/chemistry , Diclofenac/chemistry , Catalysis , Copper/chemistry , Water Pollutants, Chemical/chemistry , Molybdenum/chemistry , Indium/chemistry , Photochemical Processes
18.
Sci Rep ; 14(1): 11206, 2024 05 16.
Article En | MEDLINE | ID: mdl-38755178

Contamination of soils by Molybdenum (Mo) has raised increasing concern worldwide. Both fulvic acid (FA) and humic acid (HA) possess numerous positive properties, such as large specific surface areas and microporous structure that facilitates the immobilization of the heavy metal in soils. Despite these characteristics, there have been few studies on the microbiology effects of FA and HA. Therefore, this study aimed to assess the Mo immobilization effects of FA and HA, as well as the associated changes in microbial community in Mo-contaminated soils (with application rates of 0%, 0.5% and 1.0%). The result of the incubation demonstrated a decrease in soil pH (from 8.23 ~ 8.94 to 8.05 ~ 8.77). Importantly, both FA and HA reduced the exchangeable fraction and reducible fraction of Mo in the soil, thereby transforming Mo into a more stable form. Furthermore, the application of FA and HA led to an increase in the relative abundance of Actinobacteriota and Firmicutes, resulting in alterations to the microbial community structure. However, it is worth noting that due to the differing structures and properties of FA and HA, these outcomes were not entirely consistent. In summary, the aging of FA and HA in soil enhanced their capacity to immobilization Mo as a soil amendment. This suggests that they have the potential to serve as effective amendments for the remediation of Mo-contaminated soils.


Humic Substances , Metals, Heavy , Soil Microbiology , Soil Pollutants , Humic Substances/analysis , Soil Pollutants/chemistry , Benzopyrans/chemistry , Benzopyrans/pharmacology , Molybdenum/chemistry , Soil/chemistry , Hydrogen-Ion Concentration , Bacteria/drug effects , Microbiota/drug effects
19.
ACS Appl Bio Mater ; 7(6): 4080-4092, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38771954

Cholesterol is essential in biological systems, and the level of cholesterol in the body of a person acts as a diagnostic marker for a variety of diseases. So, in this work, we fabricated an enzymatic electrochemical biosensor for cholesterol using cobalt ferrite@molybdenum disulfide/gold nanoparticles (CoFe2O4@MoS2/Au). The synthesized composite was used for the determination of cholesterol by voltametric methods. The electroactive material CoFe2O4@MoS2/Au was successfully verified from the physiochemical studies such as XRD, Raman, FT-IR, and XPS spectroscopy along with morphological FESEM and HRTEM characterization. CoFe2O4@MoS2/Au showed outstanding dispersion in the aqueous phase, a large effective area, good biological compatibility, and superior electronic conductivity. The microflower-like CoFe2O4@MoS2/Au was confirmed by scanning electron microscopy. The image of transmission electron microscopy showed decoration of gold nanoparticles on CoFe2O4@MoS2 surfaces. Furthermore, a one-step dip-coating technique was used to build the biosensor used for cholesterol detection. In addition to acting as an enabling matrix to immobilize cholesterol oxidase (ChOx), CoFe2O4@MoS2/Au contributes to an increase in electrical conductivity. The differential pulse voltammetry method was used for the quantitative measurement of cholesterol. The calibration curve for cholesterol was linear in the concentration range of 5 to 100 µM, with a low limit of detection of 0.09 µM and sensitivity of 0.194 µA µM-1 cm-2. Furthermore, the biosensor demonstrates good practicability, as it was also employed for identifying cholesterol in real samples with acceptable selectivity and stability.


Biosensing Techniques , Cholesterol Oxidase , Cholesterol , Cobalt , Disulfides , Electrochemical Techniques , Ferric Compounds , Gold , Metal Nanoparticles , Molybdenum , Particle Size , Cobalt/chemistry , Molybdenum/chemistry , Gold/chemistry , Cholesterol/analysis , Cholesterol/chemistry , Disulfides/chemistry , Metal Nanoparticles/chemistry , Cholesterol Oxidase/chemistry , Cholesterol Oxidase/metabolism , Ferric Compounds/chemistry , Materials Testing , Biocompatible Materials/chemistry , Humans , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism
20.
Colloids Surf B Biointerfaces ; 239: 113941, 2024 Jul.
Article En | MEDLINE | ID: mdl-38744079

The whey protein ß-lactoglobulin (ßLG) forms fibrils similar to the amyloid fibrils in the neurodegenerative diseases due to its higher predisposition of ß-sheets. This study shed light on the understanding different inorganic Keggin polyoxometalates (POMs) interaction with the protein ßLG fibrils. POMs such as Phosphomolybdic acid (PMA), silicomolybdic acid (SMA), tungstosilicic acid (TSA), and phosphotungstic acid (PTA) were used due to their inherent higher anionic charges. The interaction studies were monitored with fluorescence spectra and Thioflavin T assay for both the ßLG monomers and the fibrils initially to elucidate the binding ability of the POMs. The binding of POMs and ßLG is also demonstrated by molecular docking studies. Zeta potential studies showed the electrostatic mediated higher interactions of the POMs with the protein fibrils. Isothermal titration calorimetry (ITC) studies showed that the molybdenum containing POMs have higher affinity to the protein fibrils than the tungsten. This study could help understanding formation of food grade protein fibrils which have profound importance in food industries.


Lactoglobulins , Molecular Docking Simulation , Molybdenum , Static Electricity , Lactoglobulins/chemistry , Molybdenum/chemistry , Tungsten Compounds/chemistry , Amyloid/chemistry , Spectrometry, Fluorescence , Polyelectrolytes , Anions
...