Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.759
1.
J Vis ; 24(6): 4, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38842836

The interception (or avoidance) of moving objects is a common component of various daily living tasks; however, it remains unclear whether precise alignment of foveal vision with a target is important for motor performance. Furthermore, there has also been little examination of individual differences in visual tracking strategy and the use of anticipatory gaze adjustments. We examined the importance of in-flight tracking and predictive visual behaviors using a virtual reality environment that required participants (n = 41) to intercept tennis balls projected from one of two possible locations. Here, we explored whether different tracking strategies spontaneously arose during the task, and which were most effective. Although indices of closer in-flight tracking (pursuit gain, tracking coherence, tracking lag, and saccades) were predictive of better interception performance, these relationships were rather weak. Anticipatory gaze shifts toward the correct release location of the ball provided no benefit for subsequent interception. Nonetheless, two interceptive strategies were evident: 1) early anticipation of the ball's onset location followed by attempts to closely track the ball in flight (i.e., predictive strategy); or 2) positioning gaze between possible onset locations and then using peripheral vision to locate the moving ball (i.e., a visual pivot strategy). Despite showing much poorer in-flight foveal tracking of the ball, participants adopting a visual pivot strategy performed slightly better in the task. Overall, these results indicate that precise alignment of the fovea with the target may not be critical for interception tasks, but that observers can adopt quite varied visual guidance approaches.


Individuality , Motion Perception , Humans , Male , Female , Young Adult , Motion Perception/physiology , Adult , Psychomotor Performance/physiology , Fixation, Ocular/physiology , Virtual Reality , Saccades/physiology , Fovea Centralis/physiology , Eye Movements/physiology
2.
Nat Commun ; 15(1): 4779, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839782

Despite the profound implications of self-organization in animal groups for collective behaviors, understanding the fundamental principles and applying them to swarm robotics remains incomplete. Here we propose a heuristic measure of perception of motion salience (MS) to quantify relative motion changes of neighbors from first-person view. Leveraging three large bird-flocking datasets, we explore how this perception of MS relates to the structure of leader-follower (LF) relations, and further perform an individual-level correlation analysis between past perception of MS and future change rate of velocity consensus. We observe prevalence of the positive correlations in real flocks, which demonstrates that individuals will accelerate the convergence of velocity with neighbors who have higher MS. This empirical finding motivates us to introduce the concept of adaptive MS-based (AMS) interaction in swarm model. Finally, we implement AMS in a swarm of ~102 miniature robots. Swarm experiments show the significant advantage of AMS in enhancing self-organization of the swarm for smooth evacuations from confined environments.


Birds , Robotics , Animals , Birds/physiology , Motion Perception/physiology , Behavior, Animal/physiology , Motion , Flight, Animal/physiology , Social Behavior
3.
Invest Ophthalmol Vis Sci ; 65(5): 7, 2024 May 01.
Article En | MEDLINE | ID: mdl-38700875

Purpose: This study aimed to explore the underlying mechanisms of the observed visuomotor deficit in amblyopia. Methods: Twenty-four amblyopic (25.8 ± 3.8 years; 15 males) and 22 normal participants (25.8 ± 2.1 years; 8 males) took part in the study. The participants were instructed to continuously track a randomly moving Gaussian target on a computer screen using a mouse. In experiment 1, the participants performed the tracking task at six different target sizes. In experiments 2 and 3, they were asked to track a target with the contrast adjusted to individual's threshold. The tracking performance was represented by the kernel function calculated as the cross-correlation between the target and mouse displacements. The peak, latency, and width of the kernel were extracted and compared between the two groups. Results: In experiment 1, target size had a significant effect on the kernel peak (F(1.649, 46.170) = 200.958, P = 4.420 × 10-22). At the smallest target size, the peak in the amblyopic group was significantly lower than that in the normal group (0.089 ± 0.023 vs. 0.107 ± 0.020, t(28) = -2.390, P = 0.024) and correlated with the contrast sensitivity function (r = 0.739, P = 0.002) in the amblyopic eyes. In experiments 2 and 3, with equally visible stimuli, there were still differences in the kernel between the two groups (all Ps < 0.05). Conclusions: When stimulus visibility was compensated, amblyopic participants still showed significantly poorer tracking performance.


Amblyopia , Visual Acuity , Humans , Amblyopia/physiopathology , Male , Female , Adult , Young Adult , Visual Acuity/physiology , Psychophysics/methods , Motion Perception/physiology , Contrast Sensitivity/physiology , Eye Movements/physiology
4.
Multisens Res ; 37(2): 163-184, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38714313

The current investigation examined whether visual motion without continuous visual displacement could effectively induce self-motion perception (vection). Four-stroke apparent motions (4SAM) were employed in the experiments as visual inducers. The 4SAM pattern contained luminance-defined motion energy equivalent to the real motion pattern, and the participants perceived unidirectional motion according to the motion energy but without displacements (the visual elements flickered on the spot). The experiments revealed that the 4SAM stimulus could effectively induce vection in the horizontal, expanding, or rotational directions, although its strength was significantly weaker than that induced by the real-motion stimulus. This result suggests that visual displacement is not essential, and the luminance-defined motion energy and/or the resulting perceived motion of the visual inducer would be sufficient for inducing visual self-motion perception. Conversely, when the 4SAM and real-motion patterns were presented simultaneously, self-motion perception was mainly determined in accordance with real motion, suggesting that the real-motion stimulus is a predominant determinant of vection. These research outcomes may be worthy of considering the perceptual and neurological mechanisms underlying self-motion perception.


Motion Perception , Photic Stimulation , Humans , Motion Perception/physiology , Male , Female , Adult , Young Adult , Rotation , Visual Perception/physiology
5.
Cereb Cortex ; 34(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38706138

Perceptual decision-making is affected by uncertainty arising from the reliability of incoming sensory evidence (perceptual uncertainty) and the categorization of that evidence relative to a choice boundary (categorical uncertainty). Here, we investigated how these factors impact the temporal dynamics of evidence processing during decision-making and subsequent metacognitive judgments. Participants performed a motion discrimination task while electroencephalography was recorded. We manipulated perceptual uncertainty by varying motion coherence, and categorical uncertainty by varying the angular offset of motion signals relative to a criterion. After each trial, participants rated their desire to change their mind. High uncertainty impaired perceptual and metacognitive judgments and reduced the amplitude of the centro-parietal positivity, a neural marker of evidence accumulation. Coherence and offset affected the centro-parietal positivity at different time points, suggesting that perceptual and categorical uncertainty affect decision-making in sequential stages. Moreover, the centro-parietal positivity predicted participants' metacognitive judgments: larger predecisional centro-parietal positivity amplitude was associated with less desire to change one's mind, whereas larger postdecisional centro-parietal positivity amplitude was associated with greater desire to change one's mind, but only following errors. These findings reveal a dissociation between predecisional and postdecisional evidence processing, suggesting that the CPP tracks potentially distinct cognitive processes before and after a decision.


Decision Making , Electroencephalography , Judgment , Metacognition , Humans , Male , Female , Decision Making/physiology , Young Adult , Metacognition/physiology , Adult , Uncertainty , Judgment/physiology , Motion Perception/physiology , Brain/physiology , Photic Stimulation/methods , Visual Perception/physiology
6.
J Vis ; 24(5): 4, 2024 May 01.
Article En | MEDLINE | ID: mdl-38722274

Image differences between the eyes can cause interocular discrepancies in the speed of visual processing. Millisecond-scale differences in visual processing speed can cause dramatic misperceptions of the depth and three-dimensional direction of moving objects. Here, we develop a monocular and binocular continuous target-tracking psychophysics paradigm that can quantify such tiny differences in visual processing speed. Human observers continuously tracked a target undergoing Brownian motion with a range of luminance levels in each eye. Suitable analyses recover the time course of the visuomotor response in each condition, the dependence of visual processing speed on luminance level, and the temporal evolution of processing differences between the eyes. Importantly, using a direct within-observer comparison, we show that continuous target-tracking and traditional forced-choice psychophysical methods provide estimates of interocular delays that agree on average to within a fraction of a millisecond. Thus, visual processing delays are preserved in the movement dynamics of the hand. Finally, we show analytically, and partially confirm experimentally, that differences between the temporal impulse response functions in the two eyes predict how lateral target motion causes misperceptions of motion in depth and associated tracking responses. Because continuous target tracking can accurately recover millisecond-scale differences in visual processing speed and has multiple advantages over traditional psychophysics, it should facilitate the study of temporal processing in the future.


Motion Perception , Psychophysics , Vision, Binocular , Humans , Motion Perception/physiology , Psychophysics/methods , Vision, Binocular/physiology , Photic Stimulation/methods , Adult , Depth Perception/physiology , Male , Vision, Monocular/physiology , Female , Young Adult , Reaction Time/physiology
7.
Transl Psychiatry ; 14(1): 201, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714650

Bi-stable stimuli evoke two distinct perceptual interpretations that alternate and compete for dominance. Bi-stable perception is thought to be driven at least in part by mutual suppression between distinct neural populations that represent each percept. Abnormal visual perception has been observed among people with psychotic psychopathology (PwPP), and there is evidence to suggest that these visual deficits may depend on impaired neural suppression in the visual cortex. However, it is not yet clear whether bi-stable visual perception is abnormal among PwPP. Here, we examined bi-stable perception in a visual structure-from-motion task using a rotating cylinder illusion in a group of 65 PwPP, 44 first-degree biological relatives, and 43 healthy controls. Data from a 'real switch' task, in which physical depth cues signaled real switches in rotation direction were used to exclude individuals who did not show adequate task performance. In addition, we measured concentrations of neurochemicals, including glutamate, glutamine, and γ-amino butyric acid (GABA), involved in excitatory and inhibitory neurotransmission. These neurochemicals were measured non-invasively in the visual cortex using 7 tesla MR spectroscopy. We found that PwPP and their relatives showed faster bi-stable switch rates than healthy controls. Faster switch rates also correlated with significantly higher psychiatric symptom levels, specifically disorganization, across all participants. However, we did not observe any significant relationships across individuals between neurochemical concentrations and SFM switch rates. Our results are consistent with a reduction in suppressive neural processes during structure-from-motion perception in PwPP, and suggest that genetic liability for psychosis is associated with disrupted bi-stable perception.


Psychotic Disorders , Visual Cortex , Visual Perception , Humans , Male , Female , Adult , Psychotic Disorders/physiopathology , Visual Cortex/physiopathology , Visual Perception/physiology , Young Adult , Motion Perception/physiology , Magnetic Resonance Spectroscopy , Middle Aged
8.
BMC Biol ; 22(1): 120, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783286

BACKGROUND: Threat and individual differences in threat-processing bias perception of stimuli in the environment. Yet, their effect on perception of one's own (body-based) self-motion in space is unknown. Here, we tested the effects of threat on self-motion perception using a multisensory motion simulator with concurrent threatening or neutral auditory stimuli. RESULTS: Strikingly, threat had opposite effects on vestibular and visual self-motion perception, leading to overestimation of vestibular, but underestimation of visual self-motions. Trait anxiety tended to be associated with an enhanced effect of threat on estimates of self-motion for both modalities. CONCLUSIONS: Enhanced vestibular perception under threat might stem from shared neural substrates with emotional processing, whereas diminished visual self-motion perception may indicate that a threatening stimulus diverts attention away from optic flow integration. Thus, threat induces modality-specific biases in everyday experiences of self-motion.


Motion Perception , Humans , Motion Perception/physiology , Male , Female , Adult , Young Adult , Visual Perception/physiology , Fear , Anxiety/psychology , Acoustic Stimulation
9.
Exp Brain Res ; 242(6): 1469-1479, 2024 Jun.
Article En | MEDLINE | ID: mdl-38695940

Ocular torsion and vertical divergence reflect the brain's sensorimotor integration of motion through the vestibulo-ocular reflex (VOR) and the optokinetic reflex (OKR) to roll rotations. Torsion and vergence however express different response patterns depending on several motion variables, but research on their temporal dynamics remains limited. This study investigated the onset times of ocular torsion (OT) and vertical vergence (VV) during visual, vestibular, and visuovestibular motion, as well as their relative decay rates following prolonged optokinetic stimulations. Temporal characteristics were retrieved from three separate investigations where the level of visual clutter and acceleration were controlled. Video eye-tracking was used to retrieve the eye-movement parameters from a total of 41 healthy participants across all trials. Ocular torsion consistently initiated earlier than vertical vergence, particularly evident under intensified visual information density, and higher clutter levels were associated with more balanced decay rates. Additionally, stimulation modality and accelerations affected the onsets of both eye movements, with visuovestibular motion triggering earlier responses compared to vestibular motion, and increased accelerations leading to earlier onsets for both movements. The present study showed that joint visuovestibular responses produced more rapid onsets, indicating a synergetic sensorimotor process. It also showed that visual content acted as a fusional force during the decay period, and imposed greater influence over the torsional onset compared to vergence. Acceleration, by contrast, did not affect the temporal relationship between the two eye movements. Altogether, these findings provide insights into the sensorimotor integration of the vestibulo-ocular and optokinetic reflex arcs.


Reflex, Vestibulo-Ocular , Humans , Adult , Male , Female , Reflex, Vestibulo-Ocular/physiology , Young Adult , Rotation , Eye Movements/physiology , Vestibule, Labyrinth/physiology , Motion Perception/physiology , Convergence, Ocular/physiology
10.
Elife ; 132024 May 29.
Article En | MEDLINE | ID: mdl-38809774

In the 'double-drift' illusion, local motion within a window moving in the periphery of the visual field alters the window's perceived path. The illusion is strong even when the eyes track a target whose motion matches the window so that the stimulus remains stable on the retina. This implies that the illusion involves the integration of retinal signals with non-retinal eye-movement signals. To identify where in the brain this integration occurs, we measured BOLD fMRI responses in visual cortex while subjects experienced the double-drift illusion. We then used a combination of univariate and multivariate decoding analyses to identify (1) which brain areas were sensitive to the illusion and (2) whether these brain areas contained information about the illusory stimulus trajectory. We identified a number of cortical areas that responded more strongly during the illusion than a control condition that was matched for low-level stimulus properties. Only in area hMT+ was it possible to decode the illusory trajectory. We additionally performed a number of important controls that rule out possible low-level confounds. Concurrent eye tracking confirmed that subjects accurately tracked the moving target; we were unable to decode the illusion trajectory using eye position measurements recorded during fMRI scanning, ruling out explanations based on differences in oculomotor behavior. Our results provide evidence for a perceptual representation in human visual cortex that incorporates extraretinal information.


Illusions , Magnetic Resonance Imaging , Motion Perception , Visual Cortex , Humans , Motion Perception/physiology , Female , Male , Visual Cortex/physiology , Visual Cortex/diagnostic imaging , Adult , Illusions/physiology , Eye Movements/physiology , Young Adult , Photic Stimulation , Brain Mapping , Brain/physiology , Brain/diagnostic imaging
11.
Sci Adv ; 10(22): eadk7214, 2024 May 31.
Article En | MEDLINE | ID: mdl-38809984

Fluctuations in the activity of sensory neurons often predict perceptual decisions. This connection can be quantified with a metric called choice probability (CP), and there is a longstanding debate about whether CP reflects a causal influence on decisions or an echo of decision-making activity elsewhere in the brain. Here, we show that CP can reflect a third variable, namely, the movement used to indicate the decision. In a standard visual motion discrimination task, neurons in the middle temporal (MT) area of primate cortex responded more strongly during trials that involved a saccade toward their receptive fields. This variability accounted for much of the CP observed across the neuronal population, and it arose through training. Moreover, pharmacological inactivation of MT biased behavioral responses away from the corresponding visual field locations. These results demonstrate that training on a task with fixed sensorimotor contingencies introduces movement-related activity in sensory brain regions and that this plasticity can shape the neural circuitry of perceptual decision-making.


Decision Making , Macaca mulatta , Visual Cortex , Animals , Visual Cortex/physiology , Decision Making/physiology , Male , Neurons/physiology , Movement/physiology , Motion Perception/physiology , Saccades/physiology , Photic Stimulation
12.
J Vis ; 24(5): 11, 2024 May 01.
Article En | MEDLINE | ID: mdl-38787570

Contextual modulation occurs for many aspects of high-level vision but is relatively unexplored for the perception of walking direction. In a recent study, we observed an effect of the temporal context on perceived walking direction. Here, we examined the spatial contextual modulation by measuring the perceived direction of a target point-light walker in the presence of two flanker walkers, one on each side. Experiment 1 followed a within-subjects design. Participants (n = 30) completed a spatial context task by judging the walking direction of the target in 13 different conditions: a walker alone in the center or with two flanking walkers either intact or scrambled at a flanker deviation of ±15°, ±30°, or ±45°. For comparison, participants completed an adaptation task where they reported the walking direction of a target after adaptation to ±30° walking direction. We found the expected repulsive effects in the adaptation task but attractive effects in the spatial context task. In Experiment 2 (n = 40), we measured the tuning of spatial contextual modulation across a wide range of flanker deviation magnitudes ranging from 15° to 165° in 15° intervals. Our results showed significant attractive effects across a wide range of flanker walking directions with the peak effect at around 30°. The assimilative versus repulsive effects of spatial contextual modulation and temporal adaptation suggest dissociable neural mechanisms, but they may operate on the same population of sensory channels coding for walking direction, as evidenced by similarity in the peak tuning across the walking direction of the inducers.


Space Perception , Walking , Humans , Walking/physiology , Male , Female , Adult , Young Adult , Space Perception/physiology , Motion Perception/physiology , Photic Stimulation/methods , Adaptation, Physiological/physiology
13.
J Vis ; 24(5): 10, 2024 May 01.
Article En | MEDLINE | ID: mdl-38787571

In previous studies, we found that tracking multiple objects involves anticipatory attention, especially in the linear direction, even when a target bounced against a wall. We also showed that active involvement, in which the wall was replaced by a controllable paddle, resulted in increased allocation of attention to the bounce direction. In the current experiments, we wanted to further investigate the potential influence of the valence of the heading of an object. In Experiments 1 and 2, participants were instructed to catch targets with a movable goal. In Experiment 3, participants were instructed to manipulate the permeability of a static wall in order to let targets either approach goals (i.e., green goals) or avoid goals (i.e., red goals). The results of Experiment 1 showed that probe detection ahead of a target that moved in the direction of the goal was higher as compared to probe detection in the direction of a no-goal area. Experiment 2 provided further evidence that the attentional highlighting found in the first experiment depends on the movement direction toward the goal. In Experiment 3, we found that not so much the positive (or neutral) valence (here, the green and no-goal areas) led to increased allocation of attention but rather a negative valence (here the red goals) led to a decreased allocation of attention.


Attention , Goals , Motion Perception , Humans , Attention/physiology , Female , Male , Young Adult , Adult , Motion Perception/physiology , Photic Stimulation/methods , Anticipation, Psychological/physiology
14.
Behav Brain Funct ; 20(1): 13, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789988

BACKGROUND: Macular degeneration of the eye is a common cause of blindness and affects 8% of the worldwide human population. In adult cats with bilateral lesions of the central retina, we explored the possibility that motion perception training can limit the associated degradation of the visual system. We evaluated how visual training affects behavioral performance and white matter structure. Recently, we proposed (Kozak et al. in Transl Vis Sci Technol 10:9, 2021) a new motion-acuity test for low vision patients, enabling full visual field functional assessment through simultaneous perception of shape and motion. Here, we integrated this test as the last step of a 10-week motion-perception training. RESULTS: Cats were divided into three groups: retinal-lesioned only and two trained groups, retinal-lesioned trained and control trained. The behavioral data revealed that trained cats with retinal lesions were superior in motion tasks, even when the difficulty relied only on acuity. 7 T-MRI scanning was done before and after lesioning at 5 different timepoints, followed by Fixel-Based and Fractional Anisotropy Analysis. In cats with retinal lesions, training resulted in a more localized and reduced percentage decrease in Fixel-Based Analysis metrics in the dLGN, caudate nucleus and hippocampus compared to untrained cats. In motion-sensitive area V5/PMLS, the significant decreases in fiber density were equally strong in retinal-lesioned untrained and trained cats, up to 40% in both groups. The only cortical area with Fractional Anisotropy values not affected by central retinal loss was area V5/PMLS. In other visual ROIs, the Fractional Anisotropy values increased over time in the untrained retinal lesioned group, whereas they decreased in the retinal lesioned trained group and remained at a similar level as in trained controls. CONCLUSIONS: Overall, our MRI results showed a stabilizing effect of motion training applied soon after central retinal loss induction on white matter structure. We propose that introducing early motion-acuity training for low vision patients, aimed at the intact and active retinal peripheries, may facilitate brain plasticity processes toward better vision.


Magnetic Resonance Imaging , Motion Perception , White Matter , Animals , White Matter/diagnostic imaging , White Matter/pathology , Cats , Magnetic Resonance Imaging/methods , Motion Perception/physiology , Retina/diagnostic imaging , Retina/physiopathology , Male , Female
15.
Nat Commun ; 15(1): 4003, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734715

Accurate perception and behavior rely on distinguishing sensory signals arising from unexpected events from those originating from our own voluntary actions. In the vestibular system, sensory input that is the consequence of active self-motion is canceled early at the first central stage of processing to ensure postural and perceptual stability. However, the source of the required cancellation signal was unknown. Here, we show that the cerebellum combines sensory and motor-related information to predict the sensory consequences of active self-motion. Recordings during attempted but unrealized head movements in two male rhesus monkeys, revealed that the motor-related signals encoded by anterior vermis Purkinje cells explain their altered sensitivity to active versus passive self-motion. Further, a model combining responses from ~40 Purkinje cells accounted for the cancellation observed in early vestibular pathways. These findings establish how cerebellar Purkinje cells predict sensory outcomes of self-movements, resolving a long-standing issue of sensory signal suppression during self-motion.


Macaca mulatta , Purkinje Cells , Animals , Purkinje Cells/physiology , Male , Head Movements/physiology , Cerebellum/physiology , Cerebellum/cytology , Vestibule, Labyrinth/physiology , Motion Perception/physiology
16.
J Vis ; 24(5): 15, 2024 May 01.
Article En | MEDLINE | ID: mdl-38814934

Temporal asynchrony is a cue for the perceptual segregation of spatial regions. Past research found attribute invariance of this phenomenon such that asynchrony induces perceptual segmentation regardless of the changing attribute type, and it does so even when asynchrony occurs between different attributes. To test the generality of this finding and obtain insights into the underlying computational mechanism, we compared the segmentation performance for changes in luminance, color, motion direction, and their combinations. Our task was to detect the target quadrant in which a periodic alternation in attribute was phase-delayed compared to the remaining quadrants. When stimulus elements made a square-wave attribute change, target detection was not clearly attribute invariant, being more difficult for motion direction change than for luminance or color changes and nearly impossible for the combination of motion direction and luminance or color. We suspect that waveform mismatch might cause anomalous behavior of motion direction since a square-wave change in motion direction is a triangular-wave change in the spatial phase (i.e., a second-order change in the direction of the spatial phase change). In agreement with this idea, we found that the segregation performance was strongly affected by the waveform type (square wave, triangular wave, or their combination), and when this factor was controlled, the performance was nearly, though not perfectly, invariant against attribute type. The results were discussed with a model in which different visual attributes share a common asynchrony-based segmentation mechanism.


Motion Perception , Photic Stimulation , Space Perception , Humans , Motion Perception/physiology , Photic Stimulation/methods , Space Perception/physiology , Color Perception/physiology , Cues , Adult
17.
J Exp Psychol Gen ; 153(4): 1038-1052, 2024 Apr.
Article En | MEDLINE | ID: mdl-38587934

We often assume that travel direction is redundant with head direction, but from first principles, these two factors provide differing spatial information. Although head direction has been found to be a fundamental component of human navigation, it is unclear how self-motion signals for travel direction contribute to forming a travel trajectory. Employing a novel motion adaptation paradigm from visual neuroscience designed to preclude a contribution of head direction, we found high-level aftereffects of perceived travel direction, indicating that travel direction is a fundamental component of human navigation. Interestingly, we discovered a higher frequency of reporting perceived travel toward the adapted direction compared to a no-adapt control-an aftereffect that runs contrary to low-level motion aftereffects. This travel aftereffect was maintained after controlling for possible response biases and approaching effects, and it scaled with adaptation duration. These findings demonstrate the first evidence of how a pure travel direction signal might be represented in humans, independent of head direction. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Figural Aftereffect , Motion Perception , Humans , Motion , Motion Perception/physiology
18.
Sci Rep ; 14(1): 8707, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622201

In this study, we explored spatial-temporal dependencies and their impact on the tactile perception of moving objects. Building on previous research linking visual perception and human movement, we examined if an imputed motion mechanism operates within the tactile modality. We focused on how biological coherence between space and time, characteristic of human movement, influences tactile perception. An experiment was designed wherein participants were stimulated on their right palm with tactile patterns, either ambiguous (incongruent conditions) or non-ambiguous (congruent conditions) relative to a biological motion law (two-thirds power law) and asked to report perceived shape and associated confidence. Our findings reveal that introducing ambiguous tactile patterns (1) significantly diminishes tactile discrimination performance, implying motor features of shape recognition in vision are also observed in the tactile modality, and (2) undermines participants' response confidence, uncovering the accessibility degree of information determining the tactile percept's conscious representation. Analysis based on the Hierarchical Drift Diffusion Model unveiled the sensitivity of the evidence accumulation process to the stimulus's informational ambiguity and provides insight into tactile perception as predictive dynamics for reducing uncertainty. These discoveries deepen our understanding of tactile perception mechanisms and underscore the criticality of predictions in sensory information processing.


Motion Perception , Touch Perception , Humans , Touch/physiology , Touch Perception/physiology , Visual Perception , Hand/physiology , Movement/physiology , Motion Perception/physiology
19.
J Vis ; 24(4): 21, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38656529

Conscious perception is preceded by long periods of unconscious processing. These periods are crucial for analyzing temporal information and for solving the many ill-posed problems of vision. An important question is what starts and ends these windows and how they may be interrupted. Most experimental paradigms do not offer the methodology required for such investigation. Here, we used the sequential metacontrast paradigm, in which two streams of lines, expanding from the center to the periphery, are presented, and participants are asked to attend to one of the motion streams. If several lines in the attended motion stream are offset, the offsets are known to integrate mandatorily and unconsciously, even if separated by up to 450 ms. Using this paradigm, we here found that external visual objects, such as an annulus, presented during the motion stream, do not disrupt mandatory temporal integration. Thus, if a window is started once, it appears to remain open even in the presence of disruptions that are known to interrupt visual processes normally. Further, we found that interrupting the motion stream with a gap disrupts temporal integration but does not terminate the overall unconscious processing window. Thus, while temporal integration is key to unconscious processing, not all stimuli in the same processing window are integrated together. These results strengthen the case for unconscious processing taking place in windows of sensemaking, during which temporal integration occurs in a flexible and perceptually meaningful manner.


Motion Perception , Photic Stimulation , Unconscious, Psychology , Humans , Motion Perception/physiology , Photic Stimulation/methods , Adult , Young Adult , Male , Female , Time Factors , Attention/physiology , Contrast Sensitivity/physiology
20.
J Vestib Res ; 34(2-3): 83-92, 2024.
Article En | MEDLINE | ID: mdl-38640182

BACKGROUND: Inertial self-motion perception is thought to depend primarily on otolith cues. Recent evidence demonstrated that vestibular perceptual thresholds (including inertial heading) are adaptable, suggesting novel clinical approaches for treating perceptual impairments resulting from vestibular disease. OBJECTIVE: Little is known about the psychometric properties of perceptual estimates of inertial heading like test-retest reliability. Here we investigate the psychometric properties of a passive inertial heading perceptual test. METHODS: Forty-seven healthy subjects participated across two visits, performing in an inertial heading discrimination task. The point of subjective equality (PSE) and thresholds for heading discrimination were identified for the same day and across day tests. Paired t-tests determined if the PSE or thresholds significantly changed and a mixed interclass correlation coefficient (ICC) model examined test-retest reliability. Minimum detectable change (MDC) was calculated for PSE and threshold for heading discrimination. RESULTS: Within a testing session, the heading discrimination PSE score test-retest reliability was good (ICC = 0. 80) and did not change (t(1,36) = -1.23, p = 0.23). Heading discrimination thresholds were moderately reliable (ICC = 0.67) and also stable (t(1,36) = 0.10, p = 0.92). Across testing sessions, heading direction PSE scores were moderately correlated (ICC = 0.59) and stable (t(1,46) = -0.44, p = 0.66). Heading direction thresholds had poor reliability (ICC = 0.03) and were significantly smaller at the second visit (t(1,46) = 2.8, p = 0.008). MDC for heading direction PSE ranged from 6-9 degrees across tests. CONCLUSION: The current results indicate moderate reliability for heading perception PSE and provide clinical context for interpreting change in inertial vestibular self-motion perception over time or after an intervention.


Motion Perception , Psychometrics , Humans , Male , Female , Adult , Psychometrics/methods , Psychometrics/standards , Psychometrics/instrumentation , Motion Perception/physiology , Reproducibility of Results , Young Adult , Middle Aged , Head Movements/physiology , Vestibule, Labyrinth/physiology
...