Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35.849
1.
Behav Brain Res ; 468: 115035, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38703793

Parkinson's Disease is a progressive neurodegenerative disorder characterized by motor symptoms resulting from the loss of nigrostriatal dopaminergic neurons. Kisspeptins (KPs) are a family of neuropeptides that are encoded by the Kiss-1 gene, which exert their physiological effects through interaction with the GPR54 receptor. In the current investigation, we investigated the prospective protective effects of central KP-54 treatments on nigrostriatal dopaminergic neurons and consequent motor performance correlates in 6-hydroxydopamine (6-OHDA)-lesioned rats. Male adult Sprague Dawley rats underwent stereotaxic injection of 6-OHDA into the right medial forebrain bundle to induce hemiparkinsonism. Following surgery, rats received chronic central treatments of nasal or intracerebroventricular KP-54 (logarithmically increasing doses) for seven consecutive days. Motor performance was evaluated seven days post-surgery utilizing the open field test and catalepsy test. The levels of dopamine in the striatum were determined with mass spectrometry. Immunohistochemical analysis was conducted to assess the immunoreactivities of tyrosine hydroxylase (TH) and the GPR54 in the substantia nigra. The dose-response curve revealed a median effective dose value of ≈3 nmol/kg for both central injections. Due to its non-invasive and effective nature, nasal administration was utilized in the second phase of our study. Chronic administration of KP-54 (3nmol/kg, nasally) significantly protected 6-OHDA-induced motor deficits. Nasal KP-54 attenuated the loss of nigrostriatal dopaminergic neurons induced by 6-OHDA. Additionally, significant correlations were observed between motor performance and nigrostriatal dopamine levels. Immunohistochemical analysis demonstrated the localization of the GPR54 within TH-positive nigral cells. These findings suggest the potential efficacy of central KP-54 on motor impairments in hemiparkinsonism.


Administration, Intranasal , Corpus Striatum , Dopamine , Dopaminergic Neurons , Kisspeptins , Oxidopamine , Parkinsonian Disorders , Rats, Sprague-Dawley , Substantia Nigra , Animals , Male , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Dopamine/metabolism , Oxidopamine/pharmacology , Rats , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Kisspeptins/administration & dosage , Kisspeptins/pharmacology , Kisspeptins/metabolism , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Disease Models, Animal , Motor Activity/drug effects , Tyrosine 3-Monooxygenase/metabolism
2.
Behav Brain Res ; 469: 115051, 2024 Jul 09.
Article En | MEDLINE | ID: mdl-38777263

Both dopamine (DA) and serotonin (5-HT) play key roles in numerous functions including motor control, stress response and learning. So far, there is scarce or conflicting evidence about the effects of 5-HT1A and 5-HT2A receptor (R) agonists and antagonists on recognition memory in the rat. This also holds for their effect on cerebral DA as well as 5-HT release. In the present study, we assessed the effects of the 5-HT1AR agonist 8-OH-DPAT and antagonist WAY100,635 and the 5-HT2AR agonist DOI and antagonist altanserin (ALT) on rat behaviors. Moreover, we investigated their impact on monoamine efflux by measuring monoamine transporter binding in various regions of the rat brain. After injection of either 8-OH-DPAT (3 mg/kg), WAY100,635 (0.4 mg/kg), DOI (0.1 mg/kg), ALT (1 mg/kg) or the respective vehicle (saline, DMSO), rats underwent an object and place recognition memory test in the open field. Upon the assessment of object exploration, motor/exploratory parameters and feces excretion, rats were administered the monoamine transporter radioligand N-o-fluoropropyl-2b-carbomethoxy-3b-(4-[123I]iodophenyl)-nortropane ([123I]-FP-CIT; 8.9 ± 2.6 MBq) into the tail vein. Regional radioactivity accumulations in the rat brain were determined post mortem. Compared vehicle, administration of 8-OH-DPAT impaired memory for place, decreased rearing behavior, and increased ambulation as well as head-shoulder movements. DOI administration led to a reduction in rearing behavior but an increase in head-shoulder motility relative to vehicle. Feces excretion was diminished after ALT relative to vehicle. Dopamine transporter (DAT) binding was increased in the caudateputamen (CP), but decreased in the nucleus accumbens (NAC) after 8-OH-DPAT relative to vehicle. Moreover, DAT binding was decreased in the NAC after ALT relative to vehicle. Findings indicate that 5-HT1AR inhibition and 5-HT2AR activation may impair memory for place. Furthermore, results imply associations not only between recognition memory, motor/exploratory behavior and emotionality but also between the respective parameters and the levels of available DA in CP and NAC.


Dopamine Plasma Membrane Transport Proteins , Exploratory Behavior , Recognition, Psychology , Animals , Dopamine Plasma Membrane Transport Proteins/metabolism , Male , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Rats , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/drug effects , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Motor Activity/drug effects , Motor Activity/physiology , Brain/metabolism , Brain/drug effects , Emotions/drug effects , Emotions/physiology , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology , Rats, Wistar
3.
Eur J Pharmacol ; 975: 176635, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38734296

BACKGROUND: Degeneration of the nigrostriatal dopaminergic pathway has been seen as a significant cause of movement disability in Parkinson's disease (PD) patients. However, the exact reason for these degenerative changes has remained obscure. In recent years, incretins have been neuroprotective in various pathologies. In the current study, we have investigated the neuroprotective potential of alogliptin (Alo), a dipeptidyl peptidase-IV (DPP-IV) inhibitor, in a lipopolysaccharide (LPS) induced experimental model of PD. EXPERIMENTAL APPROACH: LPS (5µg/5 µl) was infused intranigrally to induce PD in experimental rats. Post-LPS infusion, these animals were treated with Alo for 21 days in three successive dosages of 10, 20, and 40 mg/kg/day/per oral. The study is well supported with the determinations of motor functions biochemical, neurochemical, and histological analysis. KEY RESULTS: Intranigral infusion of LPS in rats produced motor deficit. It was accompanied by oxidative stress, elevation in neuroinflammatory cytokines, altered neurochemistry, and degenerative changes in the striatal brain region. While Alo abrogated LPS-induced biochemical/neurochemical alterations, improved motor functions, and preserved neuronal morphology in LPS-infused rats. CONCLUSION: The observed neuroprotective potential of Alo may be due to its antioxidant and anti-inflammatory actions and its ability to modulate monoaminergic signals. Nonetheless, current findings suggest that improving the availability of incretins through DPP-IV inhibition is a promising strategy for treating Parkinson's disease.


Dipeptidyl-Peptidase IV Inhibitors , Lipopolysaccharides , Neuroprotective Agents , Oxidative Stress , Piperidines , Uracil , Animals , Uracil/analogs & derivatives , Uracil/pharmacology , Uracil/therapeutic use , Piperidines/pharmacology , Piperidines/therapeutic use , Male , Rats , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Oxidative Stress/drug effects , Rats, Wistar , Disease Models, Animal , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Cytokines/metabolism , Motor Activity/drug effects , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology
4.
Environ Res ; 252(Pt 1): 118872, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38580001

BACKGROUND: Per- and polyfluoroalkyl substance (PFAS) exposures may negatively impact bone mineral accrual, but little is known about potential mitigators of this relation. We assessed whether associations of PFAS and their mixture with bone mineral content (BMC) in adolescence were modified by diet and physical activity. METHODS: We included 197 adolescents enrolled in a prospective pregnancy and birth cohort in Cincinnati, Ohio (2003-2006). At age 12 years, we collected serum for PFAS measurements and used dual-energy x-ray absorptiometry to measure BMC. We calculated dietary calcium intake and Health Eating Index (HEI) scores from repeated 24-h dietary recalls, physical activity scores using the Physical Activity Questionnaire for Older Children (PAQ-C), and average moderate to vigorous physical activity (MVPA) based on accelerometry. We estimated covariate-adjusted differences in BMC z-scores per interquartile range (IQR) increase of individual PFAS concentrations using linear regression and per simultaneous IQR increase in all four PFAS using g-computation. We evaluated effect measure modification (EMM) using interaction terms between each modifier and PFAS. RESULTS: Higher serum perfluorooctanoic acid, perfluorooctanesulfonic acid, and perfluorononanoic acid concentrations and the PFAS mixture were associated with lower BMC z-scores. An IQR increase in all PFAS was associated with a 0.27 (-0.54, 0.01) lower distal radius BMC z-score. Associations with lower BMC were generally stronger among adolescents classified as < median for calcium intake, HEI scores, or MVPA compared to those ≥ median. The difference in distal radius BMC z-score per IQR increase in all PFAS was -0.38 (-0.72, -0.04) for those with

Bone Density , Diet , Fluorocarbons , Humans , Female , Fluorocarbons/blood , Male , Bone Density/drug effects , Child , Adolescent , Environmental Pollutants/blood , Prospective Studies , Ohio , Alkanesulfonic Acids/blood , Exercise , Motor Activity/drug effects
5.
BMC Neurol ; 24(1): 143, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678195

BACKGROUND: Spasticity can significantly affect a patient's quality of life, caregiver satisfaction, and the financial burden on the healthcare system. Baclofen is one of only a few options for treating spasticity. The purpose of this study is to investigate the impact of intrathecal baclofen (ITB) therapy on severe40.23 spasticity and motor function in patients with cerebral palsy. METHODS: We conducted a systematic review in PubMed, Scopus, Ovid, and the Cochrane Library in accordance with the PRISMA guidelines. We included studies based on eligibility criteria that included desired participants (cerebral palsy patients with spasticity), interventions (intrathecal baclofen), and outcomes (the Ashworth scales and the Gross Motor Function Measure [GMFM]). The within-group Cohen's d standardized mean differences (SMD) were analyzed using the random effect model. RESULTS: We screened 768 papers and included 19 in the severity of spasticity section and 6 in the motor function section. The pre-intervention average spasticity score (SD) was 3.2 (0.78), and the post-intervention average score (SD) was 1.9 (0.72), showing a 40.25% reduction. The SMD for spasticity reduction was - 1.7000 (95% CI [-2.1546; -1.2454], p-value < 0.0001), involving 343 patients with a weighted average age of 15.78 years and a weighted average baclofen dose of 289 µg/day. The SMD for the MAS and Ashworth Scale subgroups were - 1.7845 (95% CI [-2.8704; -0.6986]) and - 1.4837 (95% CI [-1.8585; -1.1088]), respectively. We found no relationship between the participants' mean age, baclofen dose, measurement time, and the results. The pre-intervention average GMFM (SD) was 40.03 (26.01), and the post-intervention average score (SD) was 43.88 (26.18), showing a 9.62% increase. The SMD for motor function using GMFM was 0.1503 (95% CI [0.0784; 0.2223], p-value = 0.0030), involving 117 patients with a weighted average age of 13.63 and a weighted average baclofen dose of 203 µg/day. In 501 ITB implantations, 203 medical complications were reported, including six new-onset seizures (2.96% of medical complications), seven increased seizure frequency (3.45%), 33 infections (16.26%), eight meningitis (3.94%), and 16 cerebrospinal fluid leaks (7.88%). Delivery system complications, including 75 catheter and pump complications, were also reported. CONCLUSION: Despite the risk of complications, ITB has a significant impact on the reduction of spasticity. A small but statistically significant improvement in motor function was also noted in a group of patients.


Baclofen , Cerebral Palsy , Injections, Spinal , Muscle Relaxants, Central , Muscle Spasticity , Baclofen/administration & dosage , Humans , Muscle Spasticity/drug therapy , Muscle Spasticity/etiology , Cerebral Palsy/drug therapy , Cerebral Palsy/complications , Injections, Spinal/methods , Muscle Relaxants, Central/administration & dosage , Muscle Relaxants, Central/therapeutic use , Treatment Outcome , Severity of Illness Index , Motor Activity/drug effects , Motor Activity/physiology
6.
Pharmacol Biochem Behav ; 239: 173770, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636813

The population of most countries in the world is increasing and understanding risk factors that can influence the health of the older population is critical. Older adults consume alcohol often in a risky, binge manner. Previous work has demonstrated that aged rats are more sensitive to many of the effects of acute ethanol. In the current project aged, adult, and adolescent female and male rats were tested on the elevated plus maze and open field following either a 1.0 g/kg alcohol injection or a saline injection. We report sex- and age-dependent effects whereas aged female rats, but not aged male rats, showed an increased anxiolytic effect of alcohol in the elevated plus maze while aged male rats, but not aged female rats, showed increased stimulatory movement in the open field. In addition, significant age effects were found for both female and male rats. It is proposed that the sex- and age-dependent effects reported in the current studies may be due to differential levels of alcohol-induced allopregnanolone for the anxiolytic effects and differential levels of alcohol-induced dopamine for the stimulatory effects. The current work provides insights into factors influencing alcohol consumption in older adults.


Aging , Anti-Anxiety Agents , Ethanol , Motor Activity , Animals , Male , Female , Rats , Ethanol/administration & dosage , Ethanol/pharmacology , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/administration & dosage , Aging/psychology , Motor Activity/drug effects , Behavior, Animal/drug effects , Anxiety/psychology , Anxiety/drug therapy , Age Factors , Sex Characteristics , Maze Learning/drug effects , Sex Factors
7.
Brain Res ; 1834: 148904, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38561086

1-(Phenylselanyl)-2-(p-tolyl)indolizine (MeSeI) is a selenoindolizine with an antidepressant-like effect in mice by regulation of the serotonergic system. This study investigated the involvement of dopaminergic and noradrenergic systems in the antidepressant-like action of MeSeI. For this purpose, Swiss male mice were pretreated with different antagonists, after 15 min, the MeSeI was administrated by intragastric (i.g.) via; after 30 min, the mouse behavior was assessed in the forced swimming test (FST). The action of MeSeI on the activity of monoamine oxidase (MAO) was determined. The pretreatment of mice with haloperidol (0.05 mg/kg, intraperitoneally, i.p.; non-selective dopamine receptor antagonist), sulpiride (50 mg/kg, i.p.; D2 receptor antagonist), yohimbine (1 mg/kg, i.p.; α2 receptor antagonist), and propranolol (2 mg/kg, i.p.; non-selective ß receptor antagonist), inhibited the anti-immobility action of MeSeI (50 mg/kg, i.g.) in the FST. This blocking effect was not observed when SCH23390 (0.01 mg/kg, i.p.; D1 receptor antagonist), and prazosin (1 mg/kg, i.p.; α1 receptor antagonist) were administered. The coadministration of subeffective doses of bupropion (3 mg/kg. i.g.; dopamine and noradrenaline reuptake inhibitor) and MeSeI (0.5 mg/kg. i.g.) reduced the immobility time in the FST. Furthermore, MeSeI inhibited MAO-A and B activities in vitro and ex vivo tests. These results suggest that MeSeI exerts its antidepressant-like effect via regulation of the D2, α2, and ß1 receptors and the inhibition of MAO-A and B activities. Molecular docking investigations corroborated these results. This study provides comprehensive insights into the antidepressant-like mechanism of MeSeI in mice, suggesting its potential as a novel antidepressant candidate.


Antidepressive Agents , Dopamine , Monoamine Oxidase , Organoselenium Compounds , Animals , Male , Mice , Antidepressive Agents/pharmacology , Organoselenium Compounds/pharmacology , Monoamine Oxidase/metabolism , Monoamine Oxidase/drug effects , Dopamine/metabolism , Dopamine Antagonists/pharmacology , Swimming , Norepinephrine/metabolism , Receptors, Dopamine/metabolism , Receptors, Dopamine/drug effects , Depression/drug therapy , Depression/metabolism , Motor Activity/drug effects
8.
ACS Chem Neurosci ; 15(9): 1738-1754, 2024 May 01.
Article En | MEDLINE | ID: mdl-38613458

Iboga alkaloids, also known as coronaridine congeners, have shown promise in the treatment of alcohol and opioid use disorders. The objective of this study was to evaluate the effects of catharanthine and 18-methoxycoronaridine (18-MC) on dopamine (DA) transmission and cholinergic interneurons in the mesolimbic DA system, nicotine-induced locomotor activity, and nicotine-taking behavior. Utilizing ex vivo fast-scan cyclic voltammetry (FSCV) in the nucleus accumbens core of male mice, we found that catharanthine or 18-MC differentially inhibited evoked DA release. Catharanthine inhibition of evoked DA release was significantly reduced by both α4 and α6 nicotinic acetylcholine receptors (nAChRs) antagonists. Additionally, catharanthine substantially increased DA release more than vehicle during high-frequency stimulation, although less potently than an α4 nAChR antagonist, which confirms previous work with nAChR antagonists. Interestingly, while catharanthine slowed DA reuptake measured via FSCV ex vivo, it also increased extracellular DA in striatal dialysate from anesthetized mice in vivo in a dose-dependent manner. Superfusion of catharanthine or 18-MC inhibited the firing rate of striatal cholinergic interneurons in a concentration dependent manner, which are known to potently modulate presynaptic DA release. Catharanthine or 18-MC suppressed acetylcholine currents in oocytes expressing recombinant rat α6/α3ß2ß3 or α6/α3ß4 nAChRs. In behavioral experiments using male Sprague-Dawley rats, systemic administration of catharanthine or 18-MC blocked nicotine enhancement of locomotor activity. Importantly, catharanthine attenuated nicotine self-administration in a dose-dependent manner while having no effect on food reinforcement. Lastly, administration of catharanthine and nicotine together greatly increased head twitch responses, indicating a potential synergistic hallucinogenic effect. These findings demonstrate that catharanthine and 18-MC have similar, but not identical effects on striatal DA dynamics, striatal cholinergic interneuron activity and nicotine psychomotor effects.


Dopamine Plasma Membrane Transport Proteins , Dopamine , Ibogaine , Ibogaine/analogs & derivatives , Nicotine , Receptors, Nicotinic , Animals , Dopamine/metabolism , Male , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/drug effects , Nicotine/pharmacology , Ibogaine/pharmacology , Mice , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/drug effects , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Mice, Inbred C57BL , Nicotinic Antagonists/pharmacology , Oocytes/drug effects , Nicotinic Agonists/pharmacology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Self Administration , Xenopus laevis , Interneurons/drug effects , Interneurons/metabolism , Dose-Response Relationship, Drug , Motor Activity/drug effects
9.
Physiol Behav ; 280: 114548, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38615729

Corn and soybean oils are among the most frequently used vehicles for water-insoluble compounds in toxicological studies. These two vegetable oils are nutrients and may induce some biological effects on animals that might interfere with the experimental results. However, their chronic effects on a developing brain have not been reported. This study aims to evaluate the neurobehavioral and brain biochemical effects of both oils on male and female Swiss albino mice. Pregnant female mice were exposed to 1 µl/g/d of either tap water, corn oil (CO), or soybean oil (SO) from early gestation (GD1) until weaning then offspring mice were exposed to the same treatment regimen until adulthood (PND70). Our results showed that developmental exposure to both oils induced body weight changes in offspring mice. In addition, we detected some behavioral abnormalities where both oil-treated groups showed a significant decrease in locomotor activity and greater levels of anxiety behavior. Moreover, our results suggest that continuous exposure to these oils may alter motor coordination, spatial memory and induce depression-like behavior in adult mice. These alterations were accompanied by increased malondialdehyde, superoxide dismutase, and glutathione peroxidase activities in specific brain regions. Together, these data suggest that exposure to CO and SO as vehicles in developmental studies may interfere with the behavioral response and brain redox homeostasis in offspring mice.


Brain , Corn Oil , Oxidative Stress , Prenatal Exposure Delayed Effects , Soybean Oil , Animals , Female , Corn Oil/administration & dosage , Oxidative Stress/drug effects , Mice , Pregnancy , Male , Prenatal Exposure Delayed Effects/chemically induced , Brain/drug effects , Brain/metabolism , Brain/growth & development , Glutathione Peroxidase/metabolism , Body Weight/drug effects , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism , Motor Activity/drug effects , Behavior, Animal/drug effects , Anxiety/chemically induced , Maze Learning/drug effects , Pharmaceutical Vehicles
10.
Biomed Pharmacother ; 174: 116526, 2024 May.
Article En | MEDLINE | ID: mdl-38574621

Spinocerebellar ataxia type 1 (SCA1) is a debilitating neurodegenerative disorder of the cerebellum and brainstem. Memantine has been proposed as a potential treatment for SCA1. It blocks N-methyl-D-aspartate (NMDA) receptors on neurons, reduces excitotoxicity and decreases neurodegeneration in Alzheimer models. However, in cerebellar neurodegenerative diseases, the potential value of memantine is still unclear. We investigated the effects of memantine on motor performance and synaptic transmission in the cerebellum in a mouse model where mutant ataxin 1 is specifically targeted to glia. Lentiviral vectors (LVV) were used to express mutant ataxin 1 selectively in Bergmann glia (BG). In mice transduced with the mutant ataxin 1, chronic treatment with memantine improved motor activity during initial tests, presumably due to preserved BG and Purkinje cell (PC) morphology and numbers. However, mice were unable to improve their rota rod scores during next days of training. Memantine also compromised improvement in the rota rod scores in control mice upon repetitive training. These effects may be due to the effects of memantine on plasticity (LTD suppression) and NMDA receptor modulation. Some effects of chronically administered memantine persisted even after its wash-out from brain slices. Chronic memantine reduced morphological signs of neurodegeneration in the cerebellum of SCA1 model mice. This resulted in an apparent initial reduction of ataxic phenotype, but memantine also affected cerebellar plasticity and ultimately compromised motor learning. We speculate that that clinical application of memantine in SCA1 might be hampered by its ability to suppress NMDA-dependent plasticity in cerebellar cortex.


Disease Models, Animal , Memantine , Phenotype , Spinocerebellar Ataxias , Animals , Memantine/pharmacology , Spinocerebellar Ataxias/drug therapy , Spinocerebellar Ataxias/pathology , Mice , Ataxin-1/metabolism , Ataxin-1/genetics , Motor Activity/drug effects , Cerebellum/drug effects , Cerebellum/pathology , Cerebellum/metabolism , Purkinje Cells/drug effects , Purkinje Cells/pathology , Purkinje Cells/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Mice, Transgenic , Mice, Inbred C57BL , Neuroglia/drug effects , Neuroglia/pathology , Neuroglia/metabolism , Male , Neuronal Plasticity/drug effects
11.
Behav Pharmacol ; 35(4): 156-160, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38651975

Exposure to chronic caffeine during adolescence has been shown to produce decreased anxiety-like behaviors in rats as well as decreased immobility in the forced swim test (FST) suggesting an antidepressant-like effect. The effects of chronic caffeine on anxiety, however, have been found to be test-dependent and sexually dimorphic. In addition, decreased immobility in the FST has been argued to reflect a shift toward active coping behavior as opposed to an antidepressant-like effect. In order to further characterize the effects of adolescent caffeine exposure, the present experiment assessed the effects of caffeine on marble burying behavior in a two-zone marble burying task. There was no difference in the amount of time rats spent in the two zones failing to support a shift in coping strategy. Caffeine-exposed rats spent less time engaged in marble burying activity and buried slightly fewer marbles, suggesting an anxiolytic effect of caffeine. In addition, caffeine treated rats spent less time engaged in nondirected burying and slightly more time actively engaging with the marbles; however, these effects appeared to be sexually dimorphic as they were driven by larger changes in the females. Overall, these results support an anxiolytic effect of adolescent caffeine, with female behavior appearing to be more affected by caffeine than males.


Anxiety , Behavior, Animal , Caffeine , Animals , Caffeine/pharmacology , Caffeine/administration & dosage , Male , Anxiety/drug therapy , Female , Rats , Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Anti-Anxiety Agents/pharmacology , Rats, Sprague-Dawley , Motor Activity/drug effects
12.
Behav Neurosci ; 138(2): 108-124, 2024 Apr.
Article En | MEDLINE | ID: mdl-38661670

The cannabinoid system is being researched as a potential pharmaceutical target for a multitude of disorders. The present study examined the effect of indirect and direct cannabinoid agonists on mesolimbic dopamine release and related behaviors in C57BL/6J (B6) mice. The indirect cannabinoid agonist N-arachidonoyl serotonin (AA-5-HT) indirectly agonizes the cannabinoid system by preventing the metabolism of endocannabinoids through fatty acid amide hydrolase inhibition while also inhibiting transient receptor potential vanilloid Type 1 channels. Effects of AA-5-HT were compared with the direct cannabinoid receptor Type 1 agonist arachidonoyl-2'-chloroethylamide (ACEA). In Experiment 1, mice were pretreated with seven daily injections of AA-5-HT, ACEA, or vehicle prior to assessments of locomotor activity using open field (OF) testing and phasic dopamine release using in vivo fixed potential amperometry. Chronic exposure to AA-5-HT did not alter locomotor activity or mesolimbic dopamine functioning. Chronic exposure to ACEA decreased rearing and decreased phasic dopamine release while increasing the dopaminergic response to cocaine. In Experiment 2, mice underwent AA-5-HT, ACEA, or vehicle conditioned place preference, then saccharin preference testing, a measure commonly associated with anhedonia. Mice did not develop a conditioned place preference or aversion for AA-5-HT or ACEA, and repeated exposure to AA-5-HT or ACEA did not alter saccharin preference. Altogether, the findings suggest that neither of these drugs induce behaviors that are classically associated with abuse liability in mice; however, direct cannabinoid receptor Type 1 agonism may play more of a role in mediating mesolimbic dopamine functioning than indirect cannabinoid agonism. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Cannabinoid Receptor Agonists , Dopamine , Mice, Inbred C57BL , Animals , Dopamine/metabolism , Male , Mice , Cannabinoid Receptor Agonists/pharmacology , Serotonin/metabolism , Locomotion/drug effects , Behavior, Animal/drug effects , Arachidonic Acids/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Cocaine/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Motor Activity/drug effects
13.
Neurochem Int ; 176: 105743, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641026

Neonatal brain inflammation produced by intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) results in long-lasting brain dopaminergic injury and motor disturbances in adult rats. The goal of the present work is to investigate the effect of neonatal systemic LPS exposure (1 or 2 mg/kg, i.p. injection in postnatal day 5, P5, male rats)-induced dopaminergic injury to examine methamphetamine (METH)-induced behavioral sensitization as an indicator of drug addiction. On P70, subjects underwent a treatment schedule of 5 once daily subcutaneous (s.c.) administrations of METH (0.5 mg/kg) (P70-P74) to induce behavioral sensitization. Ninety-six hours following the 5th treatment of METH (P78), the rats received one dose of 0.5 mg/kg METH (s.c.) to reintroduce behavioral sensitization. Hyperlocomotion is a critical index caused by drug abuse, and METH administration has been shown to produce remarkable locomotor-enhancing effects. Therefore, a random forest model was used as the detector to extract the feature interaction patterns among the collected high-dimensional locomotor data. Our approaches identified neonatal systemic LPS exposure dose and METH-treated dates as features significantly associated with METH-induced behavioral sensitization, reinstated behavioral sensitization, and perinatal inflammation in this experimental model of drug addiction. Overall, the analysis suggests that the implementation of machine learning strategies is sensitive enough to detect interaction patterns in locomotor activity. Neonatal LPS exposure also enhanced METH-induced reduction of dopamine transporter expression and [3H]dopamine uptake, reduced mitochondrial complex I activity, and elevated interleukin-1ß and cyclooxygenase-2 concentrations in the P78 rat striatum. These results indicate that neonatal systemic LPS exposure produces a persistent dopaminergic lesion leading to a long-lasting change in the brain reward system as indicated by the enhanced METH-induced behavioral sensitization and reinstated behavioral sensitization later in life. These findings indicate that early-life brain inflammation may enhance susceptibility to drug addiction development later in life, which provides new insights for developing potential therapeutic treatments for drug addiction.


Animals, Newborn , Lipopolysaccharides , Machine Learning , Methamphetamine , Animals , Methamphetamine/pharmacology , Methamphetamine/toxicity , Rats , Male , Lipopolysaccharides/toxicity , Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Encephalitis/chemically induced , Encephalitis/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/metabolism , Locomotion/drug effects , Locomotion/physiology , Female , Rats, Sprague-Dawley , Motor Activity/drug effects
14.
Drug Alcohol Depend ; 259: 111301, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38640863

BACKGROUND: The incidence of combination methamphetamine (METH)-opioid overdose has substantially increased in recent years. While agitation is uncommon after the naloxone (NLX) reversal of opioids, it is a major clinical concern in acute METH intoxication and can be physiologically antagonized by opioid-induced sedation. This study aimed to perform initial preclinical analysis of the safety and efficacy of dexmedetomidine (DEXMED) co-administered with NLX to attenuate METH-induced locomotor activity, as a rat model of agitation, after the reversal of fentanyl (FENT)-induced sedation. METHODS: Male Sprague Dawley rats were administered subcutaneous (SC) 0.1mg/kg FENT ± 1mg/kg METH. Fifteen min later, SC 0.1mg/kg NLX ± an increasing (0, 0.032, 0.056, and 0.1mg/kg) DEXMED dose was administered prior to the measurement of locomotor activity. After a washout period, the FENT ± METH and NLX ± DEXMED administration with the highest dose of DEXMED was administered for measurement of blood oxygen saturation and heart rate. RESULTS: After the NLX reversal of FENT-induced sedation, adjunct DEXMED substantially and significantly reduced METH-induced locomotor activity (p<0.05) at all doses tested. While the addition of DEXMED did not significantly reduce blood oxygenation in METH treated rats, it did so in the absence of METH. Also, DEXMED significantly reduced heart rate compared to non-DEXMED treated groups and resulted in further significant reductions in the animals not exposed to METH (p<0.05). CONCLUSIONS: These data provide preclinical evidence that DEXMED may be a safe and effective chemical restraint for METH-induced agitation after NLX opioid reversal.


Dexmedetomidine , Fentanyl , Methamphetamine , Naloxone , Rats, Sprague-Dawley , Animals , Dexmedetomidine/pharmacology , Dexmedetomidine/administration & dosage , Male , Methamphetamine/administration & dosage , Fentanyl/pharmacology , Fentanyl/administration & dosage , Rats , Naloxone/pharmacology , Naloxone/administration & dosage , Narcotic Antagonists/pharmacology , Narcotic Antagonists/administration & dosage , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Motor Activity/drug effects , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/administration & dosage , Heart Rate/drug effects , Dose-Response Relationship, Drug
15.
CNS Neurosci Ther ; 30(4): e14672, 2024 04.
Article En | MEDLINE | ID: mdl-38644561

AIMS: Motor abnormalities have been identified as one common symptom in patients with generalized tonic-clonic seizures (GTCS) inspiring us to explore the disease in a motor execution condition, which might provide novel insight into the pathomechanism. METHODS: Resting-state and motor-task fMRI data were collected from 50 patients with GTCS, including 18 patients newly diagnosed without antiepileptic drugs (ND_GTCS) and 32 patients receiving antiepileptic drugs (AEDs_GTCS). Motor activation and its association with head motion and cerebral gradients were assessed. Whole-brain network connectivity across resting and motor states was further calculated and compared between groups. RESULTS: All patients showed over-activation in the postcentral gyrus and the ND_GTCS showed decreased activation in putamen. Specifically, activation maps of ND_GTCS showed an abnormal correlation with head motion and cerebral gradient. Moreover, we detected altered functional network connectivity in patients within states and across resting and motor states by using repeated-measures analysis of variance. Patients did not show abnormal connectivity in the resting state, while distributed abnormal connectivity in the motor-task state. Decreased across-state network connectivity was also found in all patients. CONCLUSION: Convergent findings suggested the over-response of activation and connection of the brain to motor execution in GTCS, providing new clues to uncover motor susceptibility underlying the disease.


Brain , Magnetic Resonance Imaging , Rest , Seizures , Humans , Male , Female , Adult , Brain/physiopathology , Brain/diagnostic imaging , Rest/physiology , Young Adult , Seizures/physiopathology , Seizures/diagnostic imaging , Middle Aged , Brain Mapping , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology , Adolescent , Motor Activity/physiology , Motor Activity/drug effects
16.
Physiol Behav ; 281: 114552, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38614419

BACKGROUND: Recent research has highlighted the potential role of Helicobacter pylori in the pathogenesis of psychiatric disorders. This study aimed to evaluate the potential synergistic effects of an antidepressant drug and H. pylori eradication therapy in a mouse model. METHODS: Male C57BL/6 mice were divided into four groups: control, H. pylori infection, antidepressant treatment, and combined treatment. H. pylori infection was induced by oral gavage with a clinically relevant strain, and the antidepressant drug was administered via intraperitoneal injections. Behavioral tests including the forced swim test, sucrose preference test, and open field test were conducted to assess depressive-like behaviors and locomotor activity. RESULTS: The study demonstrated that H. pylori infection induced depressive-like behaviors in mice, as evidenced by increased immobility time in the forced swim test and reduced sucrose preference. Antidepressant treatment alone partially ameliorated these behavioral changes. Strikingly, the combined treatment of the antidepressant drug and H. pylori eradication therapy led to a significantly greater reduction in depressive-like behaviors compared to either treatment alone. Furthermore, the combined treatment group exhibited increased locomotor activity in the open field test, suggesting a potential improvement in overall psychomotor functioning. ELISA assays revealed alterations in inflammatory cytokines in the H. pylori-infected mice, which were partially attenuated by the combined treatment. CONCLUSION: The study provides novel evidence for the potential synergistic effects of an antidepressant drug and H. pylori eradication therapy in alleviating depressive-like behaviors in a mouse model.


Amitriptyline , Cytokines , Disease Models, Animal , Helicobacter Infections , Helicobacter pylori , Mice, Inbred C57BL , Animals , Male , Helicobacter Infections/drug therapy , Amitriptyline/pharmacology , Amitriptyline/administration & dosage , Cytokines/metabolism , Helicobacter pylori/drug effects , Depression/drug therapy , Mice , Antidepressive Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Synergism , Motor Activity/drug effects , Swimming
17.
Schizophr Res ; 267: 432-440, 2024 May.
Article En | MEDLINE | ID: mdl-38642484

Maternal immune activation (MIA) during pregnancy is known to increase the risk of development of schizophrenia in the offspring. Sex steroid hormone analogues have been proposed as potential antipsychotic treatments but the mechanisms of action involved remain unclear. Estrogen has been shown to alter N-methyl-d-aspartate (NMDA) receptor binding in the brain. We therefore studied the effect of chronic treatment with 17ß-estradiol, its isomer, 17α-estradiol, and the selective estrogen receptor modulator, raloxifene, on MIA-induced psychosis-like behaviour and the effect of the NMDA receptor antagonist, MK-801. Pregnant rats were treated with saline or the viral mimetic, poly(I:C), on gestational day 15. Adult female offspring were tested for changes in baseline prepulse inhibition (PPI) and the effects of acute treatment with MK-801 on PPI and locomotor activity. Poly(I:C) offspring had significantly lower baseline PPI compared to control offspring, and this effect was prevented by 17ß-estradiol and raloxifene, but not 17α-estradiol. MK-801 reduced PPI in control offspring but had no effect in poly(I:C) offspring treated with vehicle. Chronic treatment with 17ß-estradiol and raloxifene restored the effect of MK-801 on PPI. There were no effects of MIA or estrogenic treatment on MK-801 induced locomotor hyperactivity. These results show that MIA affects baseline PPI as well as NMDA receptor-mediated regulation of PPI in female rats, and strengthen the view that estrogenic treatment may have antipsychotic effects.


Disease Models, Animal , Dizocilpine Maleate , Estradiol , Poly I-C , Prenatal Exposure Delayed Effects , Prepulse Inhibition , Raloxifene Hydrochloride , Receptors, N-Methyl-D-Aspartate , Schizophrenia , Animals , Female , Estradiol/pharmacology , Raloxifene Hydrochloride/pharmacology , Schizophrenia/drug therapy , Schizophrenia/chemically induced , Pregnancy , Prepulse Inhibition/drug effects , Dizocilpine Maleate/pharmacology , Poly I-C/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Rats , Excitatory Amino Acid Antagonists/pharmacology , Male , Selective Estrogen Receptor Modulators/pharmacology , Estrogens/pharmacology , Motor Activity/drug effects
18.
J Stroke Cerebrovasc Dis ; 33(7): 107728, 2024 Jul.
Article En | MEDLINE | ID: mdl-38643942

OBJECTIVES: Subarachnoid haemorrhage (SAH) carries a high burden of morbidity and mortality. One in three patients develop vasospasm, which is associated with Delayed Cerebral Ischemia. The pathophysiology includes vasoconstrictor receptor upregulation in cerebral arteries. The protein kinase C - inhibitor RO-31-7549 reduces the expression of several vasoconstrictor receptors and normalizes cerebral blood flow in experimental SAH but functional and behavioural effects are unknown. This study was undertaken to analyse functional outcomes up to 14 days after experimental SAH. MATERIALS AND METHODS: 54 male rats were randomised to experimental SAH or sham, using the pre-chiasmatic, single injection model, and subsequent treatment or vehicle. 42 remained for final analysis. The animals were euthanized on day 14 or when reaching a humane endpoint. The primary endpoint was overall survival, defined as either spontaneous mortality or when reaching a predefined humane endpoint. The secondary outcomes were differences in the rotating pole test, weight, open field test, novel object recognition and qPCR of selected inflammatory markers. RESULTS: In the vehicle group 6/15 rats reached the humane endpoint of >20 % weight loss compared to 1/14 in the treatment group. This resulted in a significant reduced risk of early euthanasia due to >20 % weight loss of HR 0.15 (0.03-0.66, p = 0.04). Furthermore, the treatment group did significantly better on the rotating pole test, RR 0.64 (0.47-0.91, p = 0.02). CONCLUSION: RO-31-7549 improved outcomes in terms >20 % weight loss and rotating pole performance after experimental SAH and could be investigated.


Behavior, Animal , Disease Models, Animal , Protein Kinase C , Protein Kinase Inhibitors , Rats, Sprague-Dawley , Subarachnoid Hemorrhage , Weight Loss , Animals , Subarachnoid Hemorrhage/physiopathology , Subarachnoid Hemorrhage/drug therapy , Male , Protein Kinase Inhibitors/pharmacology , Time Factors , Weight Loss/drug effects , Protein Kinase C/metabolism , Protein Kinase C/antagonists & inhibitors , Behavior, Animal/drug effects , Recovery of Function , Functional Status , Inflammation Mediators/metabolism , Motor Activity/drug effects , Indoles/pharmacology , Pyrazoles/pharmacology , Signal Transduction
19.
Article En | MEDLINE | ID: mdl-38636702

BACKGROUND: Reserpine (RES), a Vesicular Monoamine Transporter 2 (VMAT2) inhibitor agent, has been used in preclinical research for many years to create animal models for depression and to test experimental antidepressant strategies. Nevertheless, evidence of the potential use and validity of RES as a chronic pharmacological model for depression is lacking, and there are no comprehensive studies of the behavioral effects in conjunction with molecular outcomes. METHODS: Experiment 1. Following baseline behavior testing sensitive to depression-like phenotype and locomotion (Phase 1), 27 Sprague-Dawley (SD) rats received i.p. either vehicle solution (0.0 mg/kg), low (0.2 mg/kg) or high (0.8 mg/kg) RES dose for 20 days using a pre-determined schedule and reassessed for behavioral phenotypes (Phase 2). After 10 days washout period, and a final behavioral assessment (Phase 3), the brains were collected 16 days after the last injection for mRNA-expression assessment. Experiment 2. In a similar timetable as in Experiment 1 but without the behavioral testing, 12 SD rats underwent repetitive dopamine D2/3 receptor PET scanning with [18F]DMFP following each Phase. The binding potential (BPND) of [18F]DMFP was quantified by kinetic analysis as a marker of striatal D2/3R availability. Weight and welfare were monitored throughout the study. RESULTS: Significant, dose-dependent weight loss and behavioral deficits including both motor (hypo-locomotion) and non-motor behavior (anhedonia, mild anxiety and reduced exploration) were found for both the low and high dose groups with significant decrease in D2R mRNA expression in the accumbal region for the low RES group after Phase 3. Both RES treated groups showed substantial increase in [18F]DMFP BPND (in line with dopamine depletion) during Phase 2 and 3 compared to baseline and Controls. CONCLUSIONS: The longitudinal design of the study demonstrated that chronic RES administration induced striatal dopamine depletion that persisted even after the wash-out period. However, the behavior phenotype observed were transient. The data suggest that RES administration can induce a rodent model for depression with mild face validity.


Depression , Disease Models, Animal , Positron-Emission Tomography , Rats, Sprague-Dawley , Reserpine , Animals , Reserpine/pharmacology , Male , Rats , Depression/chemically induced , Depression/metabolism , Behavior, Animal/drug effects , Receptors, Dopamine/metabolism , Dose-Response Relationship, Drug , Brain/metabolism , Brain/drug effects , Brain/diagnostic imaging , Vesicular Monoamine Transport Proteins/metabolism , Motor Activity/drug effects
20.
Neurosci Lett ; 832: 137801, 2024 May 29.
Article En | MEDLINE | ID: mdl-38685377

The continuous high intake of caffeinated products may harm CNS. Sodium benzoate (SB), broadly used for food preservation, may also have an impact. The current research studied the influence of caffeine and two doses of SB during adolescence period on behavior and brain alterations. Adolescent rats (90-120 gm) were exposed to vehicle, SB 100 and 400 mg/kg, p.o, caffeine (30 mg/kg, i.p), SB 100 or 400 + caffeine for 28 days. Locomotor performances were assessed by the open field, learning and memory were considered with novel object and y-maze, while anxiety was evaluated by light and dark as well as successive allays tests. The results showed that the motor activity of adolescent rats increased with each single treatment. Recognition memory was improved by SB100 and its combination with caffeine while working memory was reduced by SB (100 or 400) combination with caffeine compared with caffeine group. The anxiolytic effect of caffeine was reduced by SB co-treatment in either dose. Concerning biochemical study in the frontal cortex and hippocampus, oxidative biomarkers as well as Cholinesterase content were elevated due to SB400 + caffeine. Dopamine content was almost elevated by all treatments in both regions while GABA content was increased in the frontal cortex only. The obtained results pointed to histopathological changes as a result of brain oxidative stress and undesirable working memory consequences due to caffeine administration with SB, mostly the large dose. The outcomes propose new recommendations to evade the consolidation between processed nourishment and caffeinated beverages during adolescence.


Caffeine , Rats, Wistar , Sodium Benzoate , Animals , Sodium Benzoate/pharmacology , Caffeine/pharmacology , Male , Rats , Behavior, Animal/drug effects , Oxidative Stress/drug effects , Maze Learning/drug effects , Anxiety/chemically induced , Anxiety/psychology , Central Nervous System Stimulants/pharmacology , Motor Activity/drug effects , Brain/drug effects , Brain/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Dopamine/metabolism
...