Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35.258
1.
PLoS One ; 19(5): e0300227, 2024.
Article En | MEDLINE | ID: mdl-38696419

Aging is associated with a wide range of physiological and behavioral changes in many species. Zebrafish, like humans, rodents, and birds, exhibits gradual senescence, and thus may be a useful model organism for identifying evolutionarily conserved mechanisms related to aging. Here, we compared behavior in the novel tank test of young (6-month-old) and middle aged (12-month-old) zebrafish from two strains (TL and TU) and both sexes. We find that this modest age difference results in a reduction in locomotor activity in male fish. We also found that background strain modulated the effects of age on predator avoidance behaviors related to anxiety: older female TL fish increased bottom dwelling whereas older male TU fish decreased thigmotaxis. Although there were no consistent effects of age on either short-term (within session) or long-term (next day) habituation to the novel tank, strain affected the habituation response. TL fish tended to increase their distance from the bottom of the tank whereas TU fish had no changes in bottom distance but instead tended to increase thigmotaxis. Our findings support the use of zebrafish for the study of how age affects locomotion and how genetics interacts with age and sex to alter exploratory and emotional behaviors in response to novelty.


Aging , Zebrafish , Animals , Zebrafish/physiology , Female , Male , Aging/physiology , Behavior, Animal/physiology , Locomotion/physiology , Motor Activity/physiology , Exploratory Behavior/physiology
2.
BMC Geriatr ; 24(1): 452, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783168

PURPOSE: The purpose of this study was to produce a valid and reliable Persian version of the Rapid Assessment of Physical Activity (RAPA) questionnaire, which previously has been shown to be valid and reliable for assessing physical activity among older adults. METHODS: Permission was obtained from the scale developer, who provided a copy of the the Linguistic Validation of the RAPA Qestionnaire, which utilizes a forward-backward translation methodology. Content validity, face validity, and construct validity of the questionnaire were then determined. Comparison of known groups (older adults with more or less than 50% balance confidence) was used to assess construct validity and the Leiden-Padua (LEIPAD) quality of life questionnaire were used to assess convergent validity. Three hundred older adults, who were members of the Qom retirement centers, participated in the study. Thirty participants completed the RAPA twice with a one-week interval to determine test-retest reliability. RESULTS: Results of comparisons of known groups showed that the mean RAPA score of the older people with greater balance confidence was significantly higher. Significant correlations between most of the scores obtained from both RAPA and the LEIPAD questionnaires confirmed the convergent validity of the questionnaire. Intraclass Correlation Coefficient (ICC) was as high as 0.94 showing that the test-retest reliability was good. CONCLUSION: This study showed the Persian RAPA is a reliable and valid instrument for measuring physical activity among older individuals in both research and clinical contexts.


Motor Activity , Humans , Male , Female , Surveys and Questionnaires/standards , Aged , Reproducibility of Results , Middle Aged , Motor Activity/physiology , Translations , Aged, 80 and over , Language , Exercise/physiology , Time Factors , Iran
3.
Med Eng Phys ; 128: 104154, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697881

Brain-computer interfaces (BCIs) are used to understand brain functioning and develop therapies for neurological and neurodegenerative disorders. Therefore, BCIs are crucial in rehabilitating motor dysfunction and advancing motor imagery applications. For motor imagery, electroencephalogram (EEG) signals are used to classify the subject's intention of moving a body part without actually moving it. This paper presents a two-stage transformer-based architecture that employs handcrafted features and deep learning techniques to enhance the classification performance on benchmarked EEG signals. Stage-1 is built on parallel convolution based EEGNet, multi-head attention, and separable temporal convolution networks for spatiotemporal feature extraction. Further, for enhanced classification, in stage-2, additional features and embeddings extracted from stage-1 are used to train TabNet. In addition, a novel channel cluster swapping data augmentation technique is also developed to handle the issue of limited samples for training deep learning architectures. The developed two-stage architecture offered an average classification accuracy of 88.5 % and 88.3 % on the BCI Competition IV-2a and IV-2b datasets, respectively, which is approximately 3.0 % superior over similar recent reported works.


Brain-Computer Interfaces , Electroencephalography , Signal Processing, Computer-Assisted , Humans , Imagination/physiology , Deep Learning , Motor Activity/physiology , Movement , Neural Networks, Computer
4.
Cell Rep ; 43(5): 114199, 2024 May 28.
Article En | MEDLINE | ID: mdl-38728138

Implantable electrode arrays are powerful tools for directly interrogating neural circuitry in the brain, but implementing this technology in the spinal cord in behaving animals has been challenging due to the spinal cord's significant motion with respect to the vertebral column during behavior. Consequently, the individual and ensemble activity of spinal neurons processing motor commands remains poorly understood. Here, we demonstrate that custom ultraflexible 1-µm-thick polyimide nanoelectronic threads can conduct laminar recordings of many neuronal units within the lumbar spinal cord of unrestrained, freely moving mice. The extracellular action potentials have high signal-to-noise ratio, exhibit well-isolated feature clusters, and reveal diverse patterns of activity during locomotion. Furthermore, chronic recordings demonstrate the stable tracking of single units and their functional tuning over multiple days. This technology provides a path for elucidating how spinal circuits compute motor actions.


Electrodes, Implanted , Spinal Cord , Animals , Spinal Cord/physiology , Mice , Action Potentials/physiology , Motor Activity/physiology , Neurons/physiology , Locomotion/physiology , Mice, Inbred C57BL , Male
5.
Ecol Evol Physiol ; 97(2): 97-117, 2024.
Article En | MEDLINE | ID: mdl-38728689

AbstractHow traits at multiple levels of biological organization evolve in a correlated fashion in response to directional selection is poorly understood, but two popular models are the very general "behavior evolves first" (BEF) hypothesis and the more specific "morphology-performance-behavior-fitness" (MPBF) paradigm. Both acknowledge that selection often acts relatively directly on behavior and that when behavior evolves, other traits will as well but most with some lag. However, this proposition is exceedingly difficult to test in nature. Therefore, we studied correlated responses in the high-runner (HR) mouse selection experiment, in which four replicate lines have been bred for voluntary wheel-running behavior and compared with four nonselected control (C) lines. We analyzed a wide range of traits measured at generations 20-24 (with a focus on new data from generation 22), coinciding with the point at which all HR lines were reaching selection limits (plateaus). Significance levels (226 P values) were compared across trait types by ANOVA, and we used the positive false discovery rate to control for multiple comparisons. This meta-analysis showed that, surprisingly, the measures of performance (including maximal oxygen consumption during forced exercise) showed no evidence of having diverged between the HR and C lines, nor did any of the life history traits (e.g., litter size), whereas body mass had responded (decreased) at least as strongly as wheel running. Overall, results suggest that the HR lines of mice had evolved primarily by changes in motivation rather than performance ability at the time they were reaching selection limits. In addition, neither the BEF model nor the MPBF model of hierarchical evolution provides a particularly good fit to the HR mouse selection experiment.


Selection, Genetic , Animals , Mice , Biological Evolution , Running/physiology , Running/psychology , Behavior, Animal/physiology , Male , Female , Motor Activity/physiology , Physical Conditioning, Animal/physiology
6.
J Neuroeng Rehabil ; 21(1): 82, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769565

BACKGROUND: Assessments of arm motor function are usually based on clinical examinations or self-reported rating scales. Wrist-worn accelerometers can be a good complement to measure movement patterns after stroke. Currently there is limited knowledge of how accelerometry correlate to clinically used scales. The purpose of this study was therefore to evaluate the relationship between intermittent measurements of wrist-worn accelerometers and the patient's progression of arm motor function assessed by routine clinical outcome measures during a rehabilitation period. METHODS: Patients enrolled in in-hospital rehabilitation following a stroke were invited. Included patients were asked to wear wrist accelerometers for 24 h at the start (T1) and end (T2) of their rehabilitation period. On both occasions arm motor function was assessed by the modified Motor Assessment Scale (M_MAS) and the Motor Activity Log (MAL). The recorded accelerometry was compared to M_MAS and MAL. RESULTS: 20 patients were included, of which 18 completed all measurements and were therefore included in the final analysis. The resulting Spearman's rank correlation coefficient showed a strong positive correlation between measured wrist acceleration in the affected arm and M-MAS and MAL values at T1, 0.94 (p < 0.05) for M_MAS and 0.74 (p < 0.05) for the MAL values, and a slightly weaker positive correlation at T2, 0.57 (p < 0.05) for M_MAS and 0.46 - 0.45 (p = 0.06) for the MAL values. However, no correlation was seen for the difference between the two sessions. CONCLUSIONS: The results confirm that the wrist acceleration can differentiate between the affected and non-affected arm, and that there is a positive correlation between accelerometry and clinical measures. Many of the patients did not change their M-MAS or MAL scores during the rehabilitation period, which may explain why no correlation was seen for the difference between measurements during the rehabilitation period. Further studies should include continuous accelerometry throughout the rehabilitation period to reduce the impact of day-to-day variability.


Accelerometry , Arm , Stroke Rehabilitation , Humans , Accelerometry/instrumentation , Male , Female , Middle Aged , Aged , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Arm/physiopathology , Arm/physiology , Wrist/physiology , Wearable Electronic Devices , Motor Activity/physiology , Adult , Stroke/physiopathology , Stroke/diagnosis , Aged, 80 and over
7.
Exp Brain Res ; 242(6): 1495-1505, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704771

Post-error slowing (PES), the tendency to slow down a behavioral response after a previous error, has typically been investigated during simple cognitive tasks using response time as a measure of PES magnitude. More recently, PES was investigated during a single reach-to-grasp task to determine where post-error adjustments are employed in a more ecological setting. Kinematic analyses in the previous study detected PES during pre-movement planning and within the grasping component of movement execution. In the current study (N = 22), we increased the cognitive demands of a reach-to-grasp task by adding a choice between target and distractor locations to further explore PES, and other post-error adjustments, under different task conditions. We observed a significant main effect of task condition on overall reaction time (RT); however, it did not significantly impact PES or other post-error adjustments. Nonetheless, the results of this study suggest post-error adjustment is a flexible process that can be observed during pre-movement planning and within the onset and magnitude of the reaching component, as well as in the magnitudes of the grasping component. Considering the sum of the results in the context of existing literature, we conclude that the findings add support to a functional account of error reactivity, such that post-error adjustments are implemented intentionally to improve performance.


Hand Strength , Psychomotor Performance , Reaction Time , Humans , Psychomotor Performance/physiology , Male , Female , Adult , Young Adult , Reaction Time/physiology , Hand Strength/physiology , Biomechanical Phenomena/physiology , Movement/physiology , Motor Activity/physiology
8.
Sci Rep ; 14(1): 12132, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802497

The striatum plays a crucial role in providing input to the basal ganglia circuit and is implicated in the pathological process of Parkinson's disease (PD). Disruption of the dynamic equilibrium in the basal ganglia loop can be attributed to the abnormal functioning of the medium spiny neurons (MSNs) within the striatum, potentially acting as a trigger for PD. Exercise has been shown to mitigate striatal neuronal dysfunction through neuroprotective and neurorestorative effects and to improve behavioral deficits in PD model mice. In addition, this effect is offset by the activation of MSNs expressing dopamine D2 receptors (D2-MSNs). In the current study, we investigated the underlying neurobiological mechanisms of this effect. Our findings indicated that exercise reduces the power spectral density of the beta-band in the striatum and decreases the overall firing frequency of MSNs, particularly in the case of striatal D2-MSNs. These observations were consistent with the results of molecular biology experiments, which revealed that aerobic training specifically enhanced the expression of striatal dopamine D2 receptors (D2R). Taken together, our results suggest that aerobic training aimed at upregulating striatal D2R expression to inhibit the functional activity of D2-MSNs represents a potential therapeutic strategy for the amelioration of motor dysfunction in PD.


Corpus Striatum , Disease Models, Animal , Parkinson Disease , Physical Conditioning, Animal , Receptors, Dopamine D2 , Animals , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/genetics , Corpus Striatum/metabolism , Mice , Parkinson Disease/therapy , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Male , Neurons/metabolism , Mice, Inbred C57BL , Motor Activity/physiology , Medium Spiny Neurons
9.
Behav Brain Res ; 468: 115024, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38705283

Motor adaptations are responsible for recalibrating actions and facilitating the achievement of goals in a constantly changing environment. Once consolidated, the decay of motor adaptation is a process affected by available sensory information during deadaptation. However, the cortical response to task error feedback during the deadaptation phase has received little attention. Here, we explored changes in brain cortical responses due to feedback of task-related error during deadaptation. Twelve healthy volunteers were recruited for the study. Right hand movement and EEG were recorded during repetitive trials of a hand reaching movement. A visuomotor rotation of 30° was introduced to induce motor adaptation. Volunteers participated in two experimental sessions organized in baseline, adaptation, and deadaptation blocks. In the deadaptation block, the visuomotor rotation was removed, and visual feedback was only provided in one session. Performance was quantified using angle end-point error, averaged speed, and movement onset time. A non-parametric spatiotemporal cluster-level permutation test was used to analyze the EEG recordings. During deadaptation, participants experienced a greater error reduction when feedback of the cursor was provided. The EEG responses showed larger activity in the left centro-frontal parietal areas during the deadaptation block when participants received feedback, as opposed to when they did not receive feedback. Centrally distributed clusters were found for the adaptation and deadaptation blocks in the absence of visual feedback. The results suggest that visual feedback of the task-related error activates cortical areas related to performance monitoring, depending on the accessible sensory information.


Adaptation, Physiological , Electroencephalography , Feedback, Sensory , Psychomotor Performance , Humans , Male , Female , Adult , Psychomotor Performance/physiology , Adaptation, Physiological/physiology , Young Adult , Feedback, Sensory/physiology , Cerebral Cortex/physiology , Hand/physiology , Movement/physiology , Motor Activity/physiology
11.
Behav Brain Res ; 469: 115062, 2024 Jul 09.
Article En | MEDLINE | ID: mdl-38768689

To conserve sequential behavior in relation to the topographic challenges of space, it is proposed that humans and nonhuman animals can organize behavior using different scaling principles. To deal with increases in linear distance, isochrony suggest that there is a corresponding increase in speed, whereas to deal with changes in curvature, speed is adjusted according to a power function. The present study investigates whether these principles provide a framework for describing the organization of mouse behavior in a variety of standard experimental tasks. The structure of movement was examined in ambulation during open field exploration; manipulation in a string-pulling task, in which a string is advanced hand over hand to retrieve food; and rung-walking, in which the limbs successively step from rung to rung on a horizontal ladder. Both principles were found to be conserved in the organization of mouse behavior across scales of movement. These principles provide novel measures of the temporal and geometric features of movement in the mouse and insights into how the temporal and geometric features of movement are conserved within different species.


Exploratory Behavior , Animals , Mice , Male , Exploratory Behavior/physiology , Mice, Inbred C57BL , Movement/physiology , Motor Activity/physiology , Locomotion/physiology , Behavior, Animal/physiology , Walking/physiology
12.
Behav Brain Res ; 469: 115051, 2024 Jul 09.
Article En | MEDLINE | ID: mdl-38777263

Both dopamine (DA) and serotonin (5-HT) play key roles in numerous functions including motor control, stress response and learning. So far, there is scarce or conflicting evidence about the effects of 5-HT1A and 5-HT2A receptor (R) agonists and antagonists on recognition memory in the rat. This also holds for their effect on cerebral DA as well as 5-HT release. In the present study, we assessed the effects of the 5-HT1AR agonist 8-OH-DPAT and antagonist WAY100,635 and the 5-HT2AR agonist DOI and antagonist altanserin (ALT) on rat behaviors. Moreover, we investigated their impact on monoamine efflux by measuring monoamine transporter binding in various regions of the rat brain. After injection of either 8-OH-DPAT (3 mg/kg), WAY100,635 (0.4 mg/kg), DOI (0.1 mg/kg), ALT (1 mg/kg) or the respective vehicle (saline, DMSO), rats underwent an object and place recognition memory test in the open field. Upon the assessment of object exploration, motor/exploratory parameters and feces excretion, rats were administered the monoamine transporter radioligand N-o-fluoropropyl-2b-carbomethoxy-3b-(4-[123I]iodophenyl)-nortropane ([123I]-FP-CIT; 8.9 ± 2.6 MBq) into the tail vein. Regional radioactivity accumulations in the rat brain were determined post mortem. Compared vehicle, administration of 8-OH-DPAT impaired memory for place, decreased rearing behavior, and increased ambulation as well as head-shoulder movements. DOI administration led to a reduction in rearing behavior but an increase in head-shoulder motility relative to vehicle. Feces excretion was diminished after ALT relative to vehicle. Dopamine transporter (DAT) binding was increased in the caudateputamen (CP), but decreased in the nucleus accumbens (NAC) after 8-OH-DPAT relative to vehicle. Moreover, DAT binding was decreased in the NAC after ALT relative to vehicle. Findings indicate that 5-HT1AR inhibition and 5-HT2AR activation may impair memory for place. Furthermore, results imply associations not only between recognition memory, motor/exploratory behavior and emotionality but also between the respective parameters and the levels of available DA in CP and NAC.


Dopamine Plasma Membrane Transport Proteins , Exploratory Behavior , Recognition, Psychology , Animals , Dopamine Plasma Membrane Transport Proteins/metabolism , Male , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Rats , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/drug effects , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Motor Activity/drug effects , Motor Activity/physiology , Brain/metabolism , Brain/drug effects , Emotions/drug effects , Emotions/physiology , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology , Rats, Wistar
13.
J Neurophysiol ; 131(6): 1200-1212, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38718415

Localizing one's body parts is important for movement control and motor learning. Recent studies have shown that the precision with which people localize their hand places constraints on motor adaptation. Although these studies have assumed that hand localization remains equally precise across learning, we show that precision decreases rapidly during early motor learning. In three experiments, healthy young participants (n = 92) repeatedly adapted to a 45° visuomotor rotation for a cycle of two to four reaches, followed by a cycle of two to four reaches with veridical feedback. Participants either used an aiming strategy that fully compensated for the rotation (experiment 1), or always aimed directly at the target, so that adaptation was implicit (experiment 2). We omitted visual feedback for the last reach of each cycle, after which participants localized their unseen hand. We observed an increase in the variability of angular localization errors when subjects used a strategy to counter the visuomotor rotation (experiment 1). This decrease in precision was less pronounced in the absence of reaiming (experiment 2), and when subjects knew that they would have to localize their hand on the upcoming trial, and could thus focus on hand position (experiment 3). We propose that strategic reaiming decreases the precision of perceived hand position, possibly due to attention to vision rather than proprioception. We discuss how these dynamics in precision during early motor learning could impact on motor control and shape the interplay between implicit and strategy-based motor adaptation.NEW & NOTEWORTHY Recent studies indicate that the precision with which people localize their hand limits implicit visuomotor learning. We found that localization precision is not static, but decreases early during learning. This decrease is pronounced when people apply a reaiming strategy to compensate for a visuomotor perturbation and is partly resistant to allocation of attention to the hand. We propose that these dynamics in position sense during learning may influence how implicit and strategy-based motor adaption interact.


Adaptation, Physiological , Hand , Psychomotor Performance , Humans , Male , Female , Adaptation, Physiological/physiology , Hand/physiology , Adult , Psychomotor Performance/physiology , Young Adult , Visual Perception/physiology , Feedback, Sensory/physiology , Learning/physiology , Space Perception/physiology , Motor Activity/physiology , Proprioception/physiology , Rotation
14.
Physiol Meas ; 45(5)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38772402

Objective. Electroencephalography (EEG) is an important kind of bioelectric signal for measuring physiological activities of the brain, and motor imagery (MI) EEG has significant clinical application prospects. Convolutional neural network has become a mainstream algorithm for MI EEG classification, however lack of subject-specific data considerably restricts its decoding accuracy and generalization performance. To address this challenge, a novel transfer learning (TL) framework using auxiliary dataset to improve the MI EEG classification performance of target subject is proposed in this paper.Approach. We developed a multi-source deep domain adaptation ensemble framework (MSDDAEF) for cross-dataset MI EEG decoding. The proposed MSDDAEF comprises three main components: model pre-training, deep domain adaptation, and multi-source ensemble. Moreover, for each component, different designs were examined to verify the robustness of MSDDAEF.Main results. Bidirectional validation experiments were performed on two large public MI EEG datasets (openBMI and GIST). The highest average classification accuracy of MSDDAEF reaches 74.28% when openBMI serves as target dataset and GIST serves as source dataset. While the highest average classification accuracy of MSDDAEF is 69.85% when GIST serves as target dataset and openBMI serves as source dataset. In addition, the classification performance of MSDDAEF surpasses several well-established studies and state-of-the-art algorithms.Significance. The results of this study show that cross-dataset TL is feasible for left/right-hand MI EEG decoding, and further indicate that MSDDAEF is a promising solution for addressing MI EEG cross-dataset variability.


Electroencephalography , Signal Processing, Computer-Assisted , Electroencephalography/methods , Humans , Imagination/physiology , Deep Learning , Motor Activity/physiology , Algorithms , Brain/physiology
15.
BMC Public Health ; 24(1): 1283, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730396

BACKGROUND: Although prior studies have demonstrated that children with high levels of fundamental movement skill (FMS) are more active throughout the day, little is known about children's FMS and their physical activity (PA) during different segments of the school day (e.g., recess, lunch break, and physical education). The present study focused on FMS and moderate-to-vigorous PA (MVPA) during school day and identifies the association between children's FMS and MVPA during different segments of the school day in China. METHODS: A total of 322 children (boys n = 163, girls n = 159; Mage = 8.12, SD = 1.22 years) from four elementary schools involved in this study. Children's FMS and MVPA were measured using the Test of Gross Motor Development-2nd edition (TGMD-2) and hip-mounted accelerometers. Data such as height, weight, and socio-economic status (SES) were also obtained. Multilevel mixed regression models were used to examine the cross-sectional associations between FMS and MVPA. Models were adjusted for gender, age, standardized body mass index, and SES. RESULTS: Children engaged in 32.19 min of MVPA during the whole school day. Boys were more active than girls and had higher object-control skills competency. Locomotor skills were positively associated with children's long recess (B = 1.063) and short recess time (B = 1.502) MVPA. Object-control skills were positively correlated with children's MVPA time during long recess (B = 1.244) and physical education (PE) lessons (B = 1.171). CONCLUSION: The findings highlight the importance of developing both locomotor and object-control skills in elementary schools to lead more MVPA engagement during different segments of the school day.


Motor Skills , Schools , Humans , Female , Male , Child , China , Motor Skills/physiology , Cross-Sectional Studies , Exercise , Accelerometry , Motor Activity/physiology , Physical Education and Training
16.
J Integr Neurosci ; 23(5): 106, 2024 May 24.
Article En | MEDLINE | ID: mdl-38812384

BACKGROUND: The accuracy of decoding fine motor imagery (MI) tasks remains relatively low due to the dense distribution of active areas in the cerebral cortex. METHODS: To enhance the decoding of unilateral fine MI activity in the brain, a weight-optimized EEGNet model is introduced that recognizes six types of MI for the right upper limb, namely elbow flexion/extension, wrist pronation/supination and hand opening/grasping. The model is trained with augmented electroencephalography (EEG) data to learn deep features for MI classification. To address the sensitivity issue of the initial model weights to classification performance, a genetic algorithm (GA) is employed to determine the convolution kernel parameters for each layer of the EEGNet network, followed by optimization of the network weights through backpropagation. RESULTS: The algorithm's performance on the three joint classification is validated through experiment, achieving an average accuracy of 87.97%. The binary classification recognition rates for elbow joint, wrist joint, and hand joint are respectively 93.92%, 90.2%, and 94.64%. Thus, the product of the two-step accuracy value is obtained as the overall capability to distinguish the six types of MI, reaching an average accuracy of 81.74%. Compared to commonly used neural networks and traditional algorithms, the proposed method outperforms and significantly reduces the average error of different subjects. CONCLUSIONS: Overall, this algorithm effectively addresses the sensitivity of network parameters to initial weights, enhances algorithm robustness and improves the overall performance of MI task classification. Moreover, the method is applicable to other EEG classification tasks; for example, emotion and object recognition.


Electroencephalography , Imagination , Neural Networks, Computer , Upper Extremity , Humans , Electroencephalography/methods , Upper Extremity/physiology , Imagination/physiology , Adult , Deep Learning , Motor Activity/physiology , Young Adult , Male , Machine Learning
17.
BMC Neurol ; 24(1): 143, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678195

BACKGROUND: Spasticity can significantly affect a patient's quality of life, caregiver satisfaction, and the financial burden on the healthcare system. Baclofen is one of only a few options for treating spasticity. The purpose of this study is to investigate the impact of intrathecal baclofen (ITB) therapy on severe40.23 spasticity and motor function in patients with cerebral palsy. METHODS: We conducted a systematic review in PubMed, Scopus, Ovid, and the Cochrane Library in accordance with the PRISMA guidelines. We included studies based on eligibility criteria that included desired participants (cerebral palsy patients with spasticity), interventions (intrathecal baclofen), and outcomes (the Ashworth scales and the Gross Motor Function Measure [GMFM]). The within-group Cohen's d standardized mean differences (SMD) were analyzed using the random effect model. RESULTS: We screened 768 papers and included 19 in the severity of spasticity section and 6 in the motor function section. The pre-intervention average spasticity score (SD) was 3.2 (0.78), and the post-intervention average score (SD) was 1.9 (0.72), showing a 40.25% reduction. The SMD for spasticity reduction was - 1.7000 (95% CI [-2.1546; -1.2454], p-value < 0.0001), involving 343 patients with a weighted average age of 15.78 years and a weighted average baclofen dose of 289 µg/day. The SMD for the MAS and Ashworth Scale subgroups were - 1.7845 (95% CI [-2.8704; -0.6986]) and - 1.4837 (95% CI [-1.8585; -1.1088]), respectively. We found no relationship between the participants' mean age, baclofen dose, measurement time, and the results. The pre-intervention average GMFM (SD) was 40.03 (26.01), and the post-intervention average score (SD) was 43.88 (26.18), showing a 9.62% increase. The SMD for motor function using GMFM was 0.1503 (95% CI [0.0784; 0.2223], p-value = 0.0030), involving 117 patients with a weighted average age of 13.63 and a weighted average baclofen dose of 203 µg/day. In 501 ITB implantations, 203 medical complications were reported, including six new-onset seizures (2.96% of medical complications), seven increased seizure frequency (3.45%), 33 infections (16.26%), eight meningitis (3.94%), and 16 cerebrospinal fluid leaks (7.88%). Delivery system complications, including 75 catheter and pump complications, were also reported. CONCLUSION: Despite the risk of complications, ITB has a significant impact on the reduction of spasticity. A small but statistically significant improvement in motor function was also noted in a group of patients.


Baclofen , Cerebral Palsy , Injections, Spinal , Muscle Relaxants, Central , Muscle Spasticity , Baclofen/administration & dosage , Humans , Muscle Spasticity/drug therapy , Muscle Spasticity/etiology , Cerebral Palsy/drug therapy , Cerebral Palsy/complications , Injections, Spinal/methods , Muscle Relaxants, Central/administration & dosage , Muscle Relaxants, Central/therapeutic use , Treatment Outcome , Severity of Illness Index , Motor Activity/drug effects , Motor Activity/physiology
18.
Cell Mol Neurobiol ; 44(1): 39, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649645

Spinal-cord injury (SCI) is a severe condition that can lead to limb paralysis and motor dysfunction, and its pathogenesis is not fully understood. The objective of this study was to characterize the differential gene expression and molecular mechanisms in the spinal cord of mice three days after spinal cord injury. By analyzing RNA sequencing data, we identified differentially expressed genes and discovered that the immune system and various metabolic processes play crucial roles in SCI. Additionally, we identified UHRF1 as a key gene that plays a significant role in SCI and found that SCI can be improved by suppressing UHRF1. These findings provide important insights into the molecular mechanisms of SCI and identify potential therapeutic targets that could greatly contribute to the development of new treatment strategies for SCI.


CCAAT-Enhancer-Binding Proteins , Spinal Cord Injuries , Ubiquitin-Protein Ligases , Animals , Spinal Cord Injuries/physiopathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Motor Activity/physiology , Mice, Inbred C57BL , Recovery of Function/physiology , Female , Spinal Cord/metabolism , Spinal Cord/pathology , Gene Expression Regulation
19.
Behav Brain Res ; 466: 115000, 2024 May 28.
Article En | MEDLINE | ID: mdl-38631659

The brain serotonin (5-HT) system performs a neurotrophic function and supports the plasticity of the nervous system, while its age-related changes can increase the risk of senile neurodegeneration. Zebrafish brain is highly resistant to damage and neurodegeneration due to its high regeneration potential and it is a promising model object in searching for molecular factors preventing age-related neurodegeneration. In the present study alterations in 5-HT-related behavior in the home tank and the novel tank diving test, as well as 5-HT, 5-HIAA levels, tryptophan hydroxylase (TPH), monoamine oxidase (MAO) activity and the expression of genes encoding TPH, MAO, 5-HT transporter and 5-HT receptors in the brain of 6, 12, 24 and 36 month old zebrafish males and females are investigated. Marked sexual dimorphism in the locomotor activity in the novel tank test is revealed: females of all ages move slower than males. No sexual dimorphism in 5-HT-related traits is observed. No changes in 5-HT and 5-HIAA levels in zebrafish brain during aging is observed. At the same time, the aging is accompanied by a decrease in the locomotor activity, TPH activity, tph2 and htr1aa genes expression as well as an increase in the MAO activity and slc6a4a gene expression in their brain. These results indicate that the brain 5-HT system in zebrafish is resistant to age-related alterations.


Aging , Brain , Hydroxyindoleacetic Acid , Monoamine Oxidase , Serotonin Plasma Membrane Transport Proteins , Serotonin , Sex Characteristics , Tryptophan Hydroxylase , Zebrafish , Animals , Serotonin/metabolism , Male , Female , Aging/metabolism , Aging/physiology , Brain/metabolism , Monoamine Oxidase/metabolism , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/genetics , Hydroxyindoleacetic Acid/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Motor Activity/physiology , Behavior, Animal/physiology , Receptors, Serotonin/metabolism , Receptors, Serotonin/genetics
20.
Prog Neurobiol ; 236: 102611, 2024 May.
Article En | MEDLINE | ID: mdl-38604583

Classical studies suggest that the anterior intraparietal area (AIP) contributes to the encoding of specific information such as objects and actions of self and others, through a variety of neuronal classes, such as canonical, motor and mirror neurons. However, these studies typically focused on a single variable, leaving it unclear whether distinct sets of AIP neurons encode a single or multiple sources of information and how multimodal coding emerges. Here, we chronically recorded monkey AIP neurons in a variety of tasks and conditions classically employed in separate experiments. Most cells exhibited mixed selectivity for observed objects, executed actions, and observed actions, enhanced when this information came from the monkey's peripersonal working space. In contrast with the classical view, our findings indicate that multimodal coding emerges in AIP from partially-mixed selectivity of individual neurons for a variety of information relevant for planning actions directed to both physical objects and other subjects.


Macaca mulatta , Parietal Lobe , Psychomotor Performance , Visual Perception , Animals , Parietal Lobe/physiology , Psychomotor Performance/physiology , Visual Perception/physiology , Male , Neurons/physiology , Motor Activity/physiology
...