Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.276
Filter
1.
Learn Mem ; 31(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38950976

ABSTRACT

How does repeated stimulation of mechanoafferents affect feeding motor neurons? Monosynaptic connections from a mechanoafferent population in the Aplysia buccal ganglia to five motor followers with different functions were examined during repeated stimulus trains. The mechanoafferents produced both fast and slow synaptic outputs, which could be excitatory or inhibitory. In contrast, other Aplysia mechanoafferents produce only fast excitation on their followers. In addition, patterns of synaptic connections were different to the different motor followers. Some followers received both fast excitation and fast inhibition, whereas others received exclusively fast excitation. All followers showed strong decreases in fast postsynaptic potential (PSP) amplitude within a stimulus train. Fast and slow synaptic connections were of net opposite signs in some followers but not in others. For one follower, synaptic contacts were not uniform from all subareas of the mechanoafferent cluster. Differences in properties of the buccal ganglia mechanoafferents and other Aplysia mechanoafferents may arise because the buccal ganglia neurons innervate the interior of the feeding apparatus, rather than an external surface, and connect to motor neurons for muscles with different motor functions. Fast connection patterns suggest that these synapses may be activated when food slips, biasing the musculature to release food. The largest slow inhibitory synaptic PSPs may contribute to a delay in the onset of the next behavior. Additional functions are also possible.


Subject(s)
Aplysia , Feeding Behavior , Ganglia, Invertebrate , Motor Neurons , Animals , Aplysia/physiology , Motor Neurons/physiology , Ganglia, Invertebrate/physiology , Feeding Behavior/physiology , Mechanoreceptors/physiology , Synapses/physiology , Physical Stimulation
2.
Learn Mem ; 31(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38950977

ABSTRACT

Changes caused by learning that a food is inedible in Aplysia were examined for fast and slow synaptic connections from the buccal ganglia S1 cluster of mechanoafferents to five followers, in response to repeated stimulus trains. Learning affected only fast connections. For these, unique patterns of change were present in each follower, indicating that learning differentially affects the different branches of the mechanoafferents to their followers. In some followers, there were increases in either excitatory or inhibitory connections, and in others, there were decreases. Changes in connectivity resulted from changes in the amplitude of excitation or inhibition, or as a result of the number of connections, or of both. Some followers also exhibited changes in either within or between stimulus train plasticity as a result of learning. In one follower, changes differed from the different areas of the S1 cluster. The patterns of changes in connectivity were consistent with the behavioral changes produced by learning, in that they would produce an increase in the bias to reject or to release food, and a decrease in the likelihood to respond to food.


Subject(s)
Aplysia , Ganglia, Invertebrate , Motor Neurons , Aplysia/physiology , Animals , Motor Neurons/physiology , Ganglia, Invertebrate/physiology , Learning/physiology , Mechanoreceptors/physiology , Neuronal Plasticity/physiology , Food , Feeding Behavior/physiology
3.
Zhonghua Nei Ke Za Zhi ; 63(7): 660-665, 2024 Jul 01.
Article in Chinese | MEDLINE | ID: mdl-38951089

ABSTRACT

Objective: To investigate the clinical and electrophysiological characteristics of patients with amyotrophic lateral sclerosis (ALS) with positive repetitive nerve stimulation (RNS) test results on the accessory nerve and negative needle electromyography (EMG) test results on the sternocleidomastoid with the goal to enrich the knowledge of disease progression in patients with ALS. Methods: The clinical data of 612 patients diagnosed with ALS at the Neurology Department of the First Medical Center, Chinese PLA General Hospital from June 2016 to August 2022 were collected. In total, 267 cases had undergone EMG tests on the sternocleidomastoid following a positive 3 Hz RNS test result on the accessory nerve, who were selected as the study subjects. The differences in clinical indicators were compared between RNS (+)/EMG (-) group and RNS (+)/EMG (+) group. A binomial distribution model with multiple variables was built to quantitatively analyze the major factors and their effects. Results: At the initial visit, 15.8% of patients with ALS were 3 Hz RNS (+) on the accessory nerve and EMG (-) on the ipsilateral sternocleidomastoid, accounting for 36.3% of RNS (+) patients. The decremental range of the 3 Hz RNS test delivered to the accessory nerve in these patients [-14% (-19%, -12%)] was lower than that in patients with RNS (+)/EMG (+) [-17% (-23%, -13%)] (P<0.05), while the ratio of upper limb onset (64.9%) and non-definite diagnosis (28.9%) were higher [54.7% and 13.5% for patients with RNS (+)/EMG (+), P<0.05]. Furthermore, the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) score [40 (37, 42)], body mass index (BMI) [23.8 (22.0, 25.4) kg/m2] and forced vital capacity (FVC) [92.8% (76.6%, 103.8%)] were higher in patients with RNS(+)/EMG(+) (P<0.05). The multivariate model suggested that, in patients with RNS (+)/EMG (-), the ratio of upper limb onset to lower limb onset was 1.04, while that of upper limb onset to bulbar onset was 2.02, and that of lower limb onset to bulbar onset was 1.94. The ratio of non-definite ALS to definite ALS was 1.13. The ALSFRS-R score, BMI, and FVC had a protective contribution to the electrophysiological function of the motor neurons. The ratio of the effect size of the ALSFRS-R or BMI to that of FVC was 3.37 and 1.14, respectively. Conclusions: Patients with ALS that were 3 Hz RNS (+) on the accessory nerve and EMG (-) on the ipsilateral sternocleidomastoid had a smaller decremental range of the compound muscle action potential amplitude, and a higher proportion of upper limb onset and non-definite ALS. A higher ALSFRS-R score, BMI, and FVC have a protective effect to the electrophysiological function of motor neurons. The effect size of the ALSFRS-R score is the largest, followed by BMI and FVC.


Subject(s)
Amyotrophic Lateral Sclerosis , Electromyography , Motor Neurons , Humans , Amyotrophic Lateral Sclerosis/physiopathology , Motor Neurons/physiology , Neuromuscular Junction/physiopathology , Electric Stimulation , Accessory Nerve/physiopathology , Male , Female , Middle Aged
4.
Nat Commun ; 15(1): 5126, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879614

ABSTRACT

Motor learning relies on experience-dependent plasticity in relevant neural circuits. In four experiments, we provide initial evidence and a double-blinded, sham-controlled replication (Experiment I-II) demonstrating that motor learning involving ballistic index finger movements is improved by preceding paired corticospinal-motoneuronal stimulation (PCMS), a human model for exogenous induction of spike-timing-dependent plasticity. Behavioral effects of PCMS targeting corticomotoneuronal (CM) synapses are order- and timing-specific and partially bidirectional (Experiment III). PCMS with a 2 ms inter-arrival interval at CM-synapses enhances learning and increases corticospinal excitability compared to control protocols. Unpaired stimulations did not increase corticospinal excitability (Experiment IV). Our findings demonstrate that non-invasively induced plasticity interacts positively with experience-dependent plasticity to promote motor learning. The effects of PCMS on motor learning approximate Hebbian learning rules, while the effects on corticospinal excitability demonstrate timing-specificity but not bidirectionality. These findings offer a mechanistic rationale to enhance motor practice effects by priming sensorimotor training with individualized PCMS.


Subject(s)
Learning , Motor Neurons , Neuronal Plasticity , Humans , Male , Learning/physiology , Female , Adult , Neuronal Plasticity/physiology , Young Adult , Motor Neurons/physiology , Transcranial Magnetic Stimulation , Pyramidal Tracts/physiology , Evoked Potentials, Motor/physiology , Double-Blind Method , Motor Cortex/physiology , Fingers/physiology , Motor Skills/physiology , Synapses/physiology
5.
Nature ; 630(8017): 686-694, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839968

ABSTRACT

To convert intentions into actions, movement instructions must pass from the brain to downstream motor circuits through descending neurons (DNs). These include small sets of command-like neurons that are sufficient to drive behaviours1-the circuit mechanisms for which remain unclear. Here we show that command-like DNs in Drosophila directly recruit networks of additional DNs to orchestrate behaviours that require the active control of numerous body parts. Specifically, we found that command-like DNs previously thought to drive behaviours alone2-4 in fact co-activate larger populations of DNs. Connectome analyses and experimental manipulations revealed that this functional recruitment can be explained by direct excitatory connections between command-like DNs and networks of interconnected DNs in the brain. Descending population recruitment is necessary for behavioural control: DNs with many downstream descending partners require network co-activation to drive complete behaviours and drive only simple stereotyped movements in their absence. These DN networks reside within behaviour-specific clusters that inhibit one another. These results support a mechanism for command-like descending control in which behaviours are generated through the recruitment of increasingly large DN networks that compose behaviours by combining multiple motor subroutines.


Subject(s)
Connectome , Drosophila melanogaster , Animals , Drosophila melanogaster/physiology , Female , Male , Brain/physiology , Nerve Net/physiology , Motor Neurons/physiology , Movement
6.
Zhonghua Yi Xue Za Zhi ; 104(21): 1987-1993, 2024 Jun 04.
Article in Chinese | MEDLINE | ID: mdl-38825942

ABSTRACT

Objective: To test the new method of iMAX (the minimum stimulus current that elicits the maximum compound muscle action potential amplitude) electrodiagnosis, verify the feasibility of this method in evaluating the excitability of peripheral motor axons, and preliminarily explore the clinical application value. Methods: This study was a cross-sectional study. A total of 50 healthy subjects were recruited from the outpatient department of Peking University Third Hospital from June 2022 to March 2023, including 25 males and 25 females, aged 25-68 (48±8) years. Eleven patients with Charcot-Marie-Pain-1A (CMT1A), 7 males and 4 females, aged 19-55 (41±13) years and 21 patients with diabetic peripheral neuropathy (DPN), 10 males and 11 females, aged 28-79 (53±16) years were enrolled in this study. iMAX of bilateral median nerves, ulnar nerves and peroneal nerves were detected in all patients. Repeatable motor responses with minimum motor threshold and amplitude of at least 0.1 mV and the minimum stimulus current intensity, at which the maximum compound muscle action potential amplitude is elicited, were measured respectively [1 mA increment is called (iUP) and, 0.1 mA adjustment is called (iMAX)].Comparison of the parameters: the parameters of threshold, iUP and iMAX were compared among different age groups, genders and sides, body mass index(BMI) values and detection time , as well as between CMT1A patients, DPN patients and healthy subjects. Results: In healthy subjects, the threshold, iUP value and iMAX value were (1.8±0.7) mA, (4.4±1.2) mA, and (4.2±1.3) mA respectively; ulnar nerve (3.1±1.6) mA, (6.8±3.2) mA, (6.4±3.2) mA; peroneal nerve (3.7±2.0) mA, (7.8±2.8) mA, (7.4±2.9) mA. There were statistically significant differences in threshold, iUP value and iMAX value among different age groups (all P<0.001).With the increase of age, there was a trend of increasing threshold, iUP, and iMAX values in different nerves, and the differences are statistically significant (all P<0.001). There were no significant differences in gender, side and detection time threshold, iUP value and iMAX value (all P>0.05). The parameters of healthy subjects with high BMI value were higher than those of healthy subjects with low BMI value(all P<0.05). Compared with the healthy subjects, the parameters of 11 CMT1A patients were significantly increased (all P<0.05), and the parameters of 21 DPN patients were slightly increased (P<0.05). Conclusion: The new iMAX method reflects the excitability of motor axons and early axonal dysfunction, which is an important supplement to the traditional nerve conduction, and can be used to monitor motor axon excitability disorders.


Subject(s)
Action Potentials , Electrodiagnosis , Humans , Female , Male , Middle Aged , Adult , Cross-Sectional Studies , Aged , Electrodiagnosis/methods , Motor Neurons/physiology , Median Nerve/physiopathology , Neural Conduction , Ulnar Nerve , Diabetic Neuropathies/diagnosis , Diabetic Neuropathies/physiopathology , Peripheral Nerves/physiopathology , Electric Stimulation , Electromyography
7.
Zhongguo Zhen Jiu ; 44(6): 694-8, 2024 Jun 12.
Article in Chinese | MEDLINE | ID: mdl-38867633

ABSTRACT

Professor LIU Zhishun's clinical experience of electroacupuncture (EA) for pediatric neurogenic bladder of lower motor neuron type in children is summarized. Considering the unique physiological and pathological characteristics of children, with the strategy of combining "disease-symptom-location" in the selection of acupoints, professor LIU Zhishun proposes that the main disease location is the bladder and kidney, with the involvement of the conception vessel, governor vessel, kidney meridian of foot-shaoyin and the bladder meridian of foot-taiyang. The primary acupoint prescription-1 (bilateral Zhongliao [BL 33], Ciliao [BL 32] and Huiyang [BL 35]) and primary acupoint prescription-2 (Guanyuan [CV 4], Zhongji [CV 3] and bilateral Sanyinjiao [SP 6]) are selected to promote the yang of the governor vessel, stimulate the yin of the conception vessel, and invigorate the bladder's qi transformation. Before acupuncture, the four-step method is applied to precisely locate Ciliao (BL 32) and Zhongliao (BL 33). During acupuncture, the importance of achieving deqi is emphasized, with deep insertion in the sacral area to reach the disease location. Based on the tolerance characteristics of children, low-frequency EA and gentle moxibustion treatment are applied.


Subject(s)
Acupuncture Points , Electroacupuncture , Urinary Bladder, Neurogenic , Child , Child, Preschool , Female , Humans , Male , Meridians , Motor Neurons/physiology , Urinary Bladder/innervation , Urinary Bladder, Neurogenic/therapy
8.
Synapse ; 78(4): e22304, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38896000

ABSTRACT

The goal of this report is to explore how K2P channels modulate axonal excitability by using the crayfish ventral superficial flexor preparation. This preparation allows for simultaneous recording of motor nerve extracellular action potentials (eAP) and intracellular excitatory junctional potential (EJP) from a muscle fiber. Previous pharmacological studies have demonstrated the presence of K2P-like channels in crayfish. Fluoxetine (50 µM) was used to block K2P channels in this study. The blocker caused a gradual decline, and eventually complete block, of motor axon action potentials. At an intermediate stage of the block, when the peak-to-peak amplitude of eAP decreased to ∼60%-80% of the control value, the amplitude of the initial positive component of eAP declined at a faster rate than that of the negative peak representing sodium influx. Furthermore, the second positive peak following this sodium influx, which corresponds to the after-hyperpolarizing phase of intracellularly recorded action potentials (iAP), became larger during the intermediate stage of eAP block. Finally, EJP recorded simultaneously with eAP showed no change in amplitude, but did show a significant increase in synaptic delay. These changes in eAP shape and EJP delay are interpreted as the consequence of depolarized resting membrane potential after K2P channel block. In addition to providing insights to possible functions of K2P channels in unmyelinated axons, results presented here also serve as an example of how changes in eAP shape contain information that can be used to infer alterations in intracellular events. This type of eAP-iAP cross-inference is valuable for gaining mechanistic insights here and may also be applicable to other model systems.


Subject(s)
Action Potentials , Astacoidea , Axons , Fluoxetine , Motor Neurons , Animals , Astacoidea/drug effects , Astacoidea/physiology , Fluoxetine/pharmacology , Action Potentials/drug effects , Action Potentials/physiology , Motor Neurons/drug effects , Motor Neurons/physiology , Axons/drug effects , Axons/physiology
9.
PLoS One ; 19(6): e0306099, 2024.
Article in English | MEDLINE | ID: mdl-38917189

ABSTRACT

Orexin-mediated stimulation of orexin receptors 1/2 (OX[1/2]R) may stimulate the diaphragm and genioglossus muscle via activation of inspiratory neurons in the pre-Bötzinger complex, which are critical for the generation of inspiratory rhythm, and phrenic and hypoglossal motoneurons. Herein, we assessed the effects of OX2R-selective agonists TAK-925 (danavorexton) and OX-201 on respiratory function. In in vitro electrophysiologic analyses using rat medullary slices, danavorexton and OX-201 showed tendency and significant effect, respectively, in increasing the frequency of inspiratory synaptic currents of inspiratory neurons in the pre-Bötzinger complex. In rat medullary slices, both danavorexton and OX-201 significantly increased the frequency of inspiratory synaptic currents of hypoglossal motoneurons. Danavorexton and OX-201 also showed significant effect and tendency, respectively, in increasing the frequency of burst activity recorded from the cervical (C3-C5) ventral root, which contains axons of phrenic motoneurons, in in vitro electrophysiologic analyses from rat isolated brainstem-spinal cord preparations. Electromyogram recordings revealed that intravenous administration of OX-201 increased burst frequency of the diaphragm and burst amplitude of the genioglossus muscle in isoflurane- and urethane-anesthetized rats, respectively. In whole-body plethysmography analyses, oral administration of OX-201 increased respiratory activity in free-moving mice. Overall, these results suggest that OX2R-selective agonists enhance respiratory function via activation of the diaphragm and genioglossus muscle through stimulation of inspiratory neurons in the pre-Bötzinger complex, and phrenic and hypoglossal motoneurons. OX2R-selective agonists could be promising drugs for various conditions with respiratory dysfunction.


Subject(s)
Diaphragm , Hypoglossal Nerve , Motor Neurons , Orexin Receptors , Phrenic Nerve , Animals , Diaphragm/drug effects , Diaphragm/innervation , Diaphragm/physiology , Motor Neurons/drug effects , Motor Neurons/physiology , Orexin Receptors/agonists , Orexin Receptors/metabolism , Rats , Phrenic Nerve/drug effects , Phrenic Nerve/physiology , Mice , Male , Hypoglossal Nerve/drug effects , Hypoglossal Nerve/physiology , Rats, Sprague-Dawley , Inhalation , Medulla Oblongata/drug effects , Medulla Oblongata/physiology , Isoquinolines , Pyridines
10.
J Musculoskelet Neuronal Interact ; 24(2): 148-158, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38825997

ABSTRACT

OBJECTIVE: Scapular dyskinesis is one of the causes of shoulder disorders and involves muscle weakness in the serratus anterior. This study investigated whether motor unit (MU) recruitment and firing property, which are important for muscle exertion, have altered in serratus anterior of the individuals with scapular dyskinesis. METHODS: Asymptomatic adults with (SD) and without (control) scapular dyskinesis were analyzed. Surface electromyography (sEMG) waveforms were collected at submaximal voluntary contraction of the serratus anterior. The sEMG waveform was decomposed into MU action potential amplitude (MUAPAMP), mean firing rate (MFR), and recruitment threshold. MUs were divided into low, moderate, and high thresholds, and MU recruitment and firing properties of the groups were compared. RESULTS: High-threshold MUAPAMP was significantly smaller in the SD group than in the control group. The control group also exhibited recruitment properties that reflected the size principle, however, the SD group did not. Furthermore, the SD group had a lower MFR than the control group. CONCLUSIONS: Individuals with scapular dyskinesis exhibit altered MU recruitment properties and lower firing rates of the serratus anterior; this may be detrimental to muscle performance. Thus, it may be necessary to improve the neural drive of the serratus anterior when correcting scapular dyskinesis.


Subject(s)
Dyskinesias , Electromyography , Scapula , Humans , Male , Scapula/physiopathology , Adult , Dyskinesias/physiopathology , Electromyography/methods , Female , Recruitment, Neurophysiological/physiology , Young Adult , Muscle, Skeletal/physiopathology , Action Potentials/physiology , Motor Neurons/physiology , Muscle Contraction/physiology
11.
Cell ; 187(13): 3427-3444.e21, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38733990

ABSTRACT

Many behaviors require the coordinated actions of somatic and autonomic functions. However, the underlying mechanisms remain elusive. By opto-stimulating different populations of descending spinal projecting neurons (SPNs) in anesthetized mice, we show that stimulation of excitatory SPNs in the rostral ventromedial medulla (rVMM) resulted in a simultaneous increase in somatomotor and sympathetic activities. Conversely, opto-stimulation of rVMM inhibitory SPNs decreased both activities. Anatomically, these SPNs innervate both sympathetic preganglionic neurons and motor-related regions in the spinal cord. Fiber-photometry recording indicated that the activities of rVMM SPNs correlate with different levels of muscle and sympathetic tone during distinct arousal states. Inhibiting rVMM excitatory SPNs reduced basal muscle and sympathetic tone, impairing locomotion initiation and high-speed performance. In contrast, silencing the inhibitory population abolished muscle atonia and sympathetic hypoactivity during rapid eye movement (REM) sleep. Together, these results identify rVMM SPNs as descending spinal projecting pathways controlling the tone of both the somatomotor and sympathetic systems.


Subject(s)
Medulla Oblongata , Spinal Cord , Sympathetic Nervous System , Animals , Male , Mice , Locomotion/physiology , Medulla Oblongata/physiology , Mice, Inbred C57BL , Motor Neurons/physiology , Neurons/physiology , Sleep, REM/physiology , Spinal Cord/physiology , Sympathetic Nervous System/physiology , Behavior, Animal , Cell Count , Muscle, Skeletal
12.
Article in English | MEDLINE | ID: mdl-38717875

ABSTRACT

This study presents a novel high density surface electromyography (EMG) decomposition method, named as 2CFastICA, because it incorporates two key algorithms: kernel constrained FastICA and correlation constrained FastICA. The former focuses on overcoming the local convergence of FastICA without requiring the peel-off strategy used in the progressive FastICA peel-off (PFP) framework. The latter further refines the output of kernel constrained FastICA by correcting possible erroneous or missed spikes. The two constrained FastICA algorithms supplement each other to warrant the decomposition performance. The 2CFastICA method was validated using simulated surface EMG signals with different motor unit numbers and signal to noise ratios (SNRs). Two source validation was also performed by simultaneous high density surface EMG and intramuscular EMG recordings, showing a matching rate (MR) of (97.2 ± 3.5)% for 170 common motor units. In addition, a different form of two source validation was also conducted taking advantages of the high density surface EMG characteristics of patients with amyotrophic lateral sclerosis, showing a MR of (99.4 ± 0.9)% for 34 common motor units from interference and sparse datasets. Both simulation and experimental results indicate that 2CFastICA can achieve similar decomposition performance to PFP. However, the efficiency of decomposition can be greatly improved by 2CFastICA since the complex signal processing procedures associated with the peel-off strategy are not required any more. Along with this paper, we also provide the MATLAB open source code of 2CFastICA for high density surface EMG decomposition.


Subject(s)
Algorithms , Electromyography , Signal-To-Noise Ratio , Electromyography/methods , Humans , Reproducibility of Results , Signal Processing, Computer-Assisted , Muscle, Skeletal/physiology , Motor Neurons/physiology , Computer Simulation , Male , Adult , Female
13.
Clin Neurophysiol ; 163: 68-89, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705104

ABSTRACT

Identifying upper motor neuron (UMN) dysfunction is fundamental to the diagnosis and understanding of disease pathogenesis in motor neuron disease (MND). The clinical assessment of UMN dysfunction may be difficult, particularly in the setting of severe muscle weakness. From a physiological perspective, transcranial magnetic stimulation (TMS) techniques provide objective biomarkers of UMN dysfunction in MND and may also be useful to interrogate cortical and network function. Single, paired- and triple pulse TMS techniques have yielded novel diagnostic and prognostic biomarkers in MND, and have provided important pathogenic insights, particularly pertaining to site of disease onset. Cortical hyperexcitability, as heralded by reduced short interval intracortical inhibition (SICI) and increased short interval intracortical facilitation, has been associated with the onset of lower motor neuron degeneration, along with patterns of disease spread, development of specific clinical features such as the split hand phenomenon, and may provide an indication about the rate of disease progression. Additionally, reduction of SICI has emerged as a potential diagnostic aid in MND. The triple stimulation technique (TST) was shown to enhance the diagnostic utility of conventional TMS measures in detecting UMN dysfunction in MND. Separately, sophisticated brain imaging techniques have uncovered novel biomarkers of neurodegeneration that have bene associated with progression. The present review will discuss the utility of TMS and brain neuroimaging derived biomarkers of UMN dysfunction in MND, focusing on recently developed TMS techniques and advanced neuroimaging modalities that interrogate structural and functional integrity of the corticomotoneuronal system, with an emphasis on pathogenic, diagnostic, and prognostic utility.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Neuron Disease , Motor Neurons , Transcranial Magnetic Stimulation , Humans , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/diagnosis , Transcranial Magnetic Stimulation/methods , Motor Neuron Disease/physiopathology , Motor Neuron Disease/diagnosis , Motor Neurons/physiology , Evoked Potentials, Motor/physiology , Motor Cortex/physiopathology , Motor Cortex/diagnostic imaging
14.
J Appl Physiol (1985) ; 136(6): 1546-1558, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38695356

ABSTRACT

Contraction intensity is a key factor determining the development of muscle fatigue, and it has been shown to induce distinct changes along the motor pathway. The role of cortical and spinal inputs that regulate motor unit (MU) behavior during fatiguing contractions is poorly understood. We studied the cortical, spinal, and neuromuscular response to sustained fatiguing isometric tasks performed at 20% and 70% of the maximum isometric voluntary contraction (MVC), together with MU behavior of knee extensors in healthy active males. Neuromuscular function was assessed before and after performance of both tasks. Cortical and spinal responses during exercise were measured via stimulation of the motor cortex and spinal cord. High-density electromyography was used to record individual MUs from the vastus lateralis (VL). Exercise at 70%MVC induced greater decline in MVC (P = 0.023) and potentiated twitch force compared with 20%MVC (P < 0.001), with no difference in voluntary activation (P = 0.514). Throughout exercise, corticospinal responses were greater during the 20%MVC task (P < 0.001), and spinal responses increased over time in both tasks (P ≤ 0.042). MU discharge rate increased similarly after both tasks (P ≤ 0.043), whereas recruitment and derecruitment thresholds were unaffected (P ≥ 0.295). These results suggest that increased excitability of cortical and spinal inputs might be responsible for the increase in MU discharge rate. The increase in evoked responses together with the higher MU discharge rate might be required to compensate for peripheral adjustments to sustain fatiguing contractions at different intensities.NEW & NOTEWORTHY Changes in central nervous system and muscle function occur in response to fatiguing exercise and are specific to exercise intensity. This study measured corticospinal, neuromuscular, and motor unit behavior to fatiguing isometric tasks performed at different intensities. Both tasks increased corticospinal excitability and motor unit discharge rate. Our findings suggest that these acute adjustments are required to compensate for the exercise-induced decrements in neuromuscular function caused by fatiguing tasks.


Subject(s)
Electromyography , Isometric Contraction , Knee , Motor Cortex , Muscle Fatigue , Humans , Male , Muscle Fatigue/physiology , Isometric Contraction/physiology , Adult , Knee/physiology , Motor Cortex/physiology , Electromyography/methods , Young Adult , Spinal Cord/physiology , Motor Neurons/physiology , Muscle, Skeletal/physiology , Exercise/physiology , Quadriceps Muscle/physiology
15.
Clin Neurophysiol ; 163: 47-55, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703699

ABSTRACT

OBJECTIVE: To evaluate the associations between motor unit number index (MUNIX) and disease progression and prognosis in amyotrophic lateral sclerosis (ALS) in a large-scale longitudinal study. METHODS: MUNIX was performed at the patient's first visit, at 3, 6, and 12 months in 4 muscles. MUNIX data from the patients were compared with those from 38 age-matched healthy controls. Clinical data included the revised ALS functional rating scale (ALSFRS-R), the forced vital capacity (FVC), and the survival of the patients. RESULTS: Eighty-two patients were included at baseline, 62 were evaluated at three months, 48 at six months, and 33 at twelve months. MUNIX score was lower in ALS patients compared to controls. At baseline, MUNIX was correlated with ALSFRS-R and FVC. Motor unit size index (MUSIX) was correlated with patient survival. Longitudinal analyses showed that MUNIX decline was greater than ALSFRS-R decline at each evaluation. A baseline MUNIX score greater than 378 predicted survival over the 12-month period with a sensitivity of 82% and a specificity of 56%. CONCLUSIONS: This longitudinal study suggests that MUNIX could be an early quantitative marker of disease progression and prognosis in ALS. SIGNIFICANCE: MUNIX might be considered as potential indicator for monitoring disease progression.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Progression , Motor Neurons , Humans , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/mortality , Amyotrophic Lateral Sclerosis/diagnosis , Male , Female , Middle Aged , Aged , Longitudinal Studies , Motor Neurons/physiology , Prognosis , Biomarkers , Adult , Electromyography
16.
Physiol Behav ; 282: 114585, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38762195

ABSTRACT

We investigated the effects of one-week quercetin ingestion on motor unit (MU) behavior and muscle contractile properties before, during, and after a single session of resistance exercise in older adults. Twenty-four older adults were divided into two groups: those receiving quercetin glycosides (QUE) or placebo (PLA), and they performed a single session of resistance exercise. MU behavior before and during resistance exercise and electrically elicited contraction before and after resistance exercise were measured (Day 1), and the same measurements were conducted again after 7 days of placebo or quercetin glycoside ingestion (Day 8). The MU recruitment threshold (RT) was decreased (p < 0.001, 25.6 ± 10.1 to 23.6 ± 9.5 %MVC) and the exerted force normalized by the MU firing rate (FR) was increased (p = 0.003, 1.13 ± 0.24 to 1.18 ± 0.22 %MVC/pps) from Days 1 to 8, respectively, in QUE but not PLA (p = 0.263, 22.6 ± 11.9 to 21.9 ± 11.6 %MVC; p = 0.713, 1.09 ± 0.20 to 1.10 ± 0.19 %MVC/pps, respectively). On Day 1, a significant correlation between MURT and%change in MUFR from the first to last contractions during the resistance exercise was observed in both groups (QUE: p = 0.009, rs = 0.308; PLA: p < 0.001, rs = 0.403). On Day 8 %change in MUFR was negatively correlated with MURT in QUE (p = 0.044, rs = -0.251), but there was no significant correlation in PLA (p = 0.844). There was no difference in electrically elicited contraction before and after the resistance exercise between QUE and PLA (p < 0.05). These results suggest that one-week quercetin ingestion in older adults lowered MURT and led to greater fatigue in MU with higher RT than with lower RT during resistance training.


Subject(s)
Muscle, Skeletal , Quercetin , Recruitment, Neurophysiological , Resistance Training , Humans , Quercetin/pharmacology , Quercetin/administration & dosage , Male , Aged , Female , Recruitment, Neurophysiological/drug effects , Recruitment, Neurophysiological/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Muscle Contraction/drug effects , Muscle Contraction/physiology , Double-Blind Method , Motor Neurons/drug effects , Motor Neurons/physiology , Electromyography/drug effects , Electric Stimulation , Antioxidants/administration & dosage , Antioxidants/pharmacology , Exercise/physiology
17.
J Electromyogr Kinesiol ; 77: 102886, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761514

ABSTRACT

We introduce the open-source software MUedit and we describe its use for identifying the discharge timing of motor units from all types of electromyographic (EMG) signals recorded with multi-channel systems. MUedit performs EMG decomposition using a blind-source separation approach. Following this, users can display the estimated motor unit pulse trains and inspect the accuracy of the automatic detection of discharge times. When necessary, users can correct the automatic detection of discharge times and recalculate the motor unit pulse train with an updated separation vector. Here, we provide an open-source software and a tutorial that guides the user through (i) the parameters and steps of the decomposition algorithm, and (ii) the manual editing of motor unit pulse trains. Further, we provide simulated and experimental EMG signals recorded with grids of surface electrodes and intramuscular electrode arrays to benchmark the performance of MUedit. Finally, we discuss advantages and limitations of the blind-source separation approach for the study of motor unit behaviour during tonic muscle contractions.


Subject(s)
Algorithms , Electromyography , Motor Neurons , Muscle Contraction , Muscle, Skeletal , Software , Electromyography/methods , Humans , Muscle, Skeletal/physiology , Motor Neurons/physiology , Muscle Contraction/physiology , Signal Processing, Computer-Assisted , Action Potentials/physiology
18.
J Neural Eng ; 21(3)2024 May 31.
Article in English | MEDLINE | ID: mdl-38722313

ABSTRACT

Objective.In the specific use of electromyogram (EMG) driven prosthetics, the user's disability reduces the space available for the electrode array. We propose a framework for EMG decomposition adapted to the condition of a few channels (less than 30 observations), which can elevate the potential of prosthetics in terms of cost and applicability.Approach.The new framework contains a peel-off approach, a refining strategy for motor unit (MU) spike train and MU action potential and a re-subtracting strategy to adapt the framework to few channels environments. Simulated EMG signals were generated to test the framework. In addition, we quantify and analyze the effect of strategies used in the framework.Main results.The results show that the new algorithm has an average improvement of 19.97% in the number of MUs identified compared to the control algorithm. Quantitative analysis of the usage strategies shows that the re-subtracting and refining strategies can effectively improve the performance of the framework under the condition of few channels.Significance.These prove that the new framework can be applied to few channel conditions, providing a optimization space for neural interface design in cost and user adaptation.


Subject(s)
Algorithms , Computer Simulation , Electromyography , Electromyography/methods , Humans , Motor Neurons/physiology , Action Potentials/physiology , Muscle, Skeletal/physiology
19.
J Neurophysiol ; 131(6): 1188-1199, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38691529

ABSTRACT

Prolonged inhibition of respiratory neural activity elicits a long-lasting increase in phrenic nerve amplitude once respiratory neural activity is restored. Such long-lasting facilitation represents a form of respiratory motor plasticity known as inactivity-induced phrenic motor facilitation (iPMF). Although facilitation also occurs in inspiratory intercostal nerve activity after diminished respiratory neural activity (iIMF), it is of shorter duration. Atypical PKC activity in the cervical spinal cord is necessary for iPMF and iIMF, but the site and specific isoform of the relevant atypical PKC are unknown. Here, we used RNA interference to test the hypothesis that the zeta atypical PKC isoform (PKCζ) within phrenic motor neurons is necessary for iPMF but PKCζ within intercostal motor neurons is unnecessary for transient iIMF. Intrapleural injections of siRNAs targeting PKCζ (siPKCζ) to knock down PKCζ mRNA within phrenic and intercostal motor neurons were made in rats. Control rats received a nontargeting siRNA (NTsi) or an active siRNA pool targeting a novel PKC isoform, PKCθ (siPKCθ), which is required for other forms of respiratory motor plasticity. Phrenic nerve burst amplitude and external intercostal (T2) electromyographic (EMG) activity were measured in anesthetized and mechanically ventilated rats exposed to 30 min of respiratory neural inactivity (i.e., neural apnea) created by modest hypocapnia (20 min) or a similar recording duration without neural apnea (time control). Phrenic burst amplitude was increased in rats treated with NTsi (68 ± 10% baseline) and siPKCθ (57 ± 8% baseline) 60 min after neural apnea vs. time control rats (-3 ± 3% baseline), demonstrating iPMF. In contrast, intrapleural siPKCζ virtually abolished iPMF (5 ± 4% baseline). iIMF was transient in all groups exposed to neural apnea; however, intrapleural siPKCζ attenuated iIMF 5 min after neural apnea (50 ± 21% baseline) vs. NTsi (97 ± 22% baseline) and siPKCθ (103 ± 20% baseline). Neural inactivity elevated the phrenic, but not intercostal, responses to hypercapnia, an effect that was blocked by siPKCζ. We conclude that PKCζ within phrenic motor neurons is necessary for long-lasting iPMF, whereas intercostal motor neuron PKCζ contributes to, but is not necessary for, transient iIMF.NEW & NOTEWORTHY We report important new findings concerning the mechanisms regulating a form of spinal neuroplasticity elicited by prolonged inhibition of respiratory neural activity, inactivity-induced phrenic motor facilitation (iPMF). We demonstrate that the atypical PKC isoform PKCζ within phrenic motor neurons is necessary for long-lasting iPMF, whereas intercostal motor neuron PKCζ contributes to, but is not necessary for, transient inspiratory intercostal facilitation. Our findings are novel and advance our understanding of mechanisms contributing to phrenic motor plasticity.


Subject(s)
Motor Neurons , Phrenic Nerve , Protein Kinase C , Rats, Sprague-Dawley , Animals , Phrenic Nerve/physiology , Protein Kinase C/metabolism , Protein Kinase C/physiology , Motor Neurons/physiology , Male , Rats , Neuronal Plasticity/physiology
20.
Article in English | MEDLINE | ID: mdl-38697654

ABSTRACT

A coordinated and complex interplay of signals between motor neurons, skeletal muscle cells, and Schwann cells controls the formation and maintenance of neuromuscular synapses. Deficits in the signaling pathway for building synapses, caused by mutations in critical genes or autoantibodies against key proteins, are responsible for several neuromuscular diseases, which cause muscle weakness and fatigue. Here, we describe the role that four key genes, Agrin, Lrp4, MuSK, and Dok7, play in this signaling pathway, how an understanding of their mechanisms of action has led to an understanding of several neuromuscular diseases, and how this knowledge has contributed to emerging therapies for treating neuromuscular diseases.


Subject(s)
Neuromuscular Junction , Signal Transduction , Humans , Animals , Agrin/metabolism , LDL-Receptor Related Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Muscle Proteins/metabolism , Neuromuscular Diseases , Receptors, Cholinergic/metabolism , Synapses/physiology , Synapses/metabolism , Motor Neurons/physiology , Motor Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...