Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.822
Filter
1.
Front Cell Infect Microbiol ; 14: 1464816, 2024.
Article in English | MEDLINE | ID: mdl-39359938

ABSTRACT

Background: In Malaysia, an increase in non-carbapenemase-producing carbapenem-resistant Klebsiella pneumoniae (NC-CRKP) has been observed over the years. Previously, four NC-CRKP with increased susceptibility to ciprofloxacin in the presence of phenylalanine-arginine ß-naphthylamide (PAßN) were identified. However, no contribution of the PAßN-inhibited efflux pump to carbapenem resistance was observed. All four NC-CRKP harboured non-carbapenemase ß-lactamase, with two also exhibiting porin loss. In this study, we further investigated the genomic features and resistance mechanisms of these four isolates. Methods: All four NC-CRKP were subjected to whole-genome sequencing, followed by comparative genomic and phylogenetic analyses. Results: Multi-locus sequence typing (MLST) analysis divided the four NC-CRKP into different sequence types: ST392, ST45, ST14, and ST5947. Neither major nor rare carbapenemase genes were detected. Given the presence of non-carbapenemase ß-lactamase in all isolates, we further investigated the potential mechanisms of resistance by identifying related chromosomal mutations. Deletion mutation was detected in the cation efflux system protein CusF. Insertion mutation was identified in the nickel/cobalt efflux protein RcnA. Missense mutation of ompK36 porin was detected in two isolates, while the loss of ompK36 porin was observed in another two isolates. Conclusions: This study revealed that NC-CRKP may confer carbapenem resistance through a combination of non-carbapenemase ß-lactamase and potential chromosomal mutations including missense mutation or loss of ompK36 porin and/or a frameshift missense mutation in efflux pump systems, such as cation efflux system protein CusF and nickel/cobalt efflux protein RcnA. Our findings highlighted the significance of implementing whole-genome sequencing into clinical practice to promote the surveillance of carbapenem resistance mechanisms among NC-CRKP.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Multilocus Sequence Typing , Whole Genome Sequencing , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/enzymology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Carbapenems/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Anti-Bacterial Agents/pharmacology , Phylogeny , Microbial Sensitivity Tests , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Porins/genetics , Porins/metabolism , Genome, Bacterial
2.
J Med Microbiol ; 73(10)2024 Oct.
Article in English | MEDLINE | ID: mdl-39360813

ABSTRACT

Introduction. Reports of ß-lactamase-producing Haemophilus influenzae are increasing worldwide.Aim. This study aimed to elucidate the molecular characteristics and evolution of ß-lactamase-producing H. influenzae.Methodology. A total of 159 clinical isolates were characterized using multi-locus sequence typing. Antimicrobial resistance genes and integrative and conjugative element (ICE) types were identified through PCR and DNA sequencing. The genetic structure of ICE was further investigated using whole-genome sequencing.Results. Out of 159 clinical isolates, 20.8% (n=33) were ß-lactamase producers. Thirteen sequence types (STs) were identified. ST 103, 155, 165 and 388 have been identified in previous studies, suggesting that strains with these STs tend to acquire the ß-lactamase gene bla TEM-1. Among ß-lactamase producers, 66.7% (n=22) of bla TEM-1 were located on ICE. The ICEs could be classified into two groups based on their sequence (types I and II). Among these strains, 2017-Y3 harboured a macrolide resistance gene, mef (A/E), in ICE. A comparative analysis of the ICE region of this strain and those from other countries suggested that each isolate was derived from ICE type I or II. These regions, including mef (A/E), were similar to those of Tn6822, which is commonly found in Streptococcus.Conclusions. This study revealed several STs associated with the acquisition of ß-lactamase genes on ICEs. Additionally, ICE evolution involved the acquisition of exogenous genes. The accumulation of resistance genes in ICE raises concerns regarding the emergence of multidrug-resistant H. influenzae.


Subject(s)
Anti-Bacterial Agents , Haemophilus Infections , Haemophilus influenzae , beta-Lactamases , Haemophilus influenzae/genetics , Haemophilus influenzae/drug effects , Haemophilus influenzae/classification , Haemophilus influenzae/isolation & purification , Haemophilus influenzae/enzymology , Humans , beta-Lactamases/genetics , Haemophilus Infections/microbiology , Anti-Bacterial Agents/pharmacology , Multilocus Sequence Typing , Adult , Male , Middle Aged , Whole Genome Sequencing , Aged , Female , Child, Preschool , Child , Genome, Bacterial , Young Adult , Infant , Adolescent , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Aged, 80 and over
3.
World J Microbiol Biotechnol ; 40(11): 333, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39358646

ABSTRACT

The Staphylococcus genus comprises multiple pathogenic and opportunistic species that represent a risk to public health. Epidemiological studies require accurate taxonomic classification of isolates with enough resolution to distinguish clonal complexes. Unfortunately, 16 S rRNA molecular analysis and phenotypic characterization cannot distinguish all species and do not offer enough resolution to assess intraspecific diversity. Other approaches, such as Multilocus Sequence Tagging, provide higher resolution; however, they have been developed for Staphylococcus aureus and a few other species. Here, we developed a set of genus-targeted primers using five orthologous genes (pta, tuf, tpi, groEs, and sarA) to identify all Staphylococcus species within the genus. The primers were initially evaluated using 20 strains from the Collection of Microorganisms of Interest in Animal Health from AGROSAVIA (CMISA), and their amplified sequences were compared to a set of 33 Staphylococcus species. This allowed the taxonomic identification of the strains even on close species and the establishment of intraspecies diversity. To enhance the scope and cost-effectiveness of the proposed strategy, we customized the primer sets for an Illumina paired-end amplicon protocol, enabling gene multiplexing. We assessed five genes across 177 strains, generating 880 paired-end libraries from the CMISA. This approach significantly reduced sequencing costs, as all libraries can be efficiently sequenced in a single MiSeq run at a fraction (one-fourth or less) of the cost associated with Sanger sequencing. In summary, this method can be used for precise identification and diversity analysis of Staphylococcus species, offering an advancement over traditional techniques in both resolution and cost-effectiveness.


Subject(s)
Coagulase , DNA, Bacterial , RNA, Ribosomal, 16S , Staphylococcus , Staphylococcus/genetics , Staphylococcus/classification , Staphylococcus/isolation & purification , Staphylococcus/enzymology , Coagulase/metabolism , Coagulase/genetics , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , DNA Primers/genetics , Phylogeny , Staphylococcal Infections/microbiology , Animals , Genes, Bacterial/genetics , Bacterial Proteins/genetics , Sequence Analysis, DNA , Multilocus Sequence Typing , Bacterial Typing Techniques/methods , Genetic Markers , High-Throughput Nucleotide Sequencing
4.
BMC Infect Dis ; 24(1): 941, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252007

ABSTRACT

Staphylococcus aureus is a major cause of neonatal infections in various anatomical sites, resulting in high morbidity and mortality in The Gambia. These clinical infections are often preceded by nasal carriage of S. aureus, a known risk factor. To determine whether potential sources of newborn S. aureus infections were from carriage, and to characterize S. aureus present in different anatomical sites (blood, ear, eye, umbilical cord, skin, pus, oropharynx, breast milk and vagina), we performed whole-genome sequencing of 172 isolates from clinical sites as well as from healthy and unhealthy carriage. A random selection of mothers (n = 90) and newborns (n = 42) participating in a clinical trial and testing positive for S. aureus were considered for this study. Sequence data were analyzed to determine S. aureus multilocus sequence types and selected antimicrobial and virulence gene profiles. Our findings revealed that in The Gambia, ST15 is the dominant sequence type associated with both carriage and clinical infection. In addition, S. aureus isolates causing clinical infection among neonates were genetically similar to those colonizing their oropharynx, and the different anatomical sites were not found to be uniquely colonized by S. aureus of a single genomic profile. Furthermore, while S. aureus associated with clinical infection had similar antimicrobial resistance gene profiles to carriage isolates, only hemolysin and adhesive factor virulence genes were significantly higher among clinical isolates. In conclusion, this study confirmed S. aureus oropharyngeal colonization among neonates as a potential source of clinical infection in The Gambia. Hence, interventions aiming to reduce neonatal clinical infections in The Gambia should consider decreasing oropharyngeal S. aureus carriage.Trial registration The trial was registered at ClinicalTrials.gov NCT03199547.


Subject(s)
Carrier State , Staphylococcal Infections , Staphylococcus aureus , Humans , Gambia/epidemiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Infant, Newborn , Carrier State/microbiology , Carrier State/epidemiology , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/classification , Female , Whole Genome Sequencing , Multilocus Sequence Typing , Genomics , Virulence Factors/genetics , Genome, Bacterial , Male , Adult , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
5.
Antimicrob Resist Infect Control ; 13(1): 107, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304920

ABSTRACT

INTRODUCTION: The global increase of multidrug-resistant organisms (MDROs) is one of the most urgent public health threats affecting both humans and animals. The One Health concept emphasizes the interconnectedness of human, animal and environmental health and highlights the need for integrated approaches to combat antimicrobial resistance (AMR). Although the sharing of environments and antimicrobial agents between companion animals and humans poses a risk for MDRO transmission, companion animals have been studied to a lesser extent than livestock animals. This study therefore used core genome multilocus sequence typing (cgMLST) to investigate the genetic relationships and putative transmission of MDROs between humans and pets. METHODS: This descriptive integrated typing study included 252 human isolates, 53 dog isolates and 10 cat isolates collected from 2019 to 2022 at the Charité University Hospital in Berlin, Germany. CgMLST was performed to characterize methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci and multidrug-resistant gram-negative bacteria. The genetic diversity of the MDROs of the different host populations was determined and compared based on sequence type and core genome complex type. RESULTS: Within this study the majority of samples from pets and humans was genetically distinct. However, for some isolates, the number of allelic differences identified by cgMLST was low. Two cases of putative household transmission or shared source of VR E. faecium and MDR E. coli between humans and pets were documented. CONCLUSIONS: The interaction between humans and their pets appears to play a minor role in the spread of the MDROs studied. However, further research is needed. This study emphasizes the importance of comprehensive molecular surveillance and a multidisciplinary One Health approach to understand and contain the spread of MDROs in human and animal populations. TRIAL REGISTRATION: The study is registered with the German Clinical Trials Register (DRKS00030009).


Subject(s)
Drug Resistance, Multiple, Bacterial , Methicillin-Resistant Staphylococcus aureus , Multilocus Sequence Typing , Pets , Humans , Animals , Dogs , Drug Resistance, Multiple, Bacterial/genetics , Cats , Pets/microbiology , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/classification , Anti-Bacterial Agents/pharmacology , Genome, Bacterial , Vancomycin-Resistant Enterococci/genetics , Germany , Microbial Sensitivity Tests , Genetic Variation , One Health
6.
BMC Microbiol ; 24(1): 362, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39306657

ABSTRACT

BACKGROUND: Acinetobacter baumannii (A. baumannii) is a life-threatening and challenging pathogen. In addition, it accounts for numerous serious infections, particularly among immunocompromised patients. Resistance to nearly all clinically used antibiotics and their ability to spread this resistance is one of the most important concerns related to this bacterium. OBJECTIVES: This study describes different molecular mechanisms of two multidrug-resistant A. baumannii isolates obtained from endotracheal aspirates collected from the neonatal intensive care unit (NICU), Ain Shams University Hospital, Egypt. METHODS: Following the identification of two isolates, they were examined for susceptibility to antimicrobial agents. This was followed by multilocus sequence typing as well as whole-genome sequence (WGS). Additionally, a Pathosystems Resources Integration Center (PATRIC) analysis was performed. RESULTS: Two isolates, Ab119 and Ab123, exhibited resistance to all tested antibiotics except for tigecycline and colistin. The WGS analysis of antimicrobial resistance genes (AMR) indicated that both isolates shared beta-lactam, aminoglycoside, macrolides, and sulfonamide resistance genes. Furthermore, each strain revealed different resistance genes such as blaNDM-1, blaNDM-10, OXA-64, aph (3')-VI, Tet-B in Ab119 strain and blaOXA-68, blaPER-1, blaPER-7, Tet-39 in Ab123 strain. Multiple efflux pump genes were detected. Multilocus sequence typing indicated that both isolates belong to the same sequence type (ST931), which belongs to international clone (IC3). Both isolates exhibited the presence of multiple mobile genetic elements (MGEs), but no plasmid was detected in either of them. CONCLUSIONS: A low prevalence of the IC3 sequence type was identified among two A. baumannii isolates obtained from the NICU in Egypt, exhibiting a high resistance level. Healthcare workers must have knowledge regarding the prevalence of A. baumannii among different populations in order to administer suitable treatment, improve patient outcomes, and apply effective infection control practices.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Intensive Care Units, Neonatal , Microbial Sensitivity Tests , Multilocus Sequence Typing , Whole Genome Sequencing , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/classification , Humans , Egypt/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Prospective Studies , Infant, Newborn , Genome, Bacterial/genetics , Cross-Sectional Studies
7.
Front Cell Infect Microbiol ; 14: 1444031, 2024.
Article in English | MEDLINE | ID: mdl-39282498

ABSTRACT

Tigecycline is a last-resort drug used to treat serious infections caused by multidrug-resistant bacteria. tet(X4) is a recently discovered plasmid-mediated tigecycline resistance gene that confers high-level resistance to tigecycline and other tetracyclines. Since the first discovery of tet(X4) in 2019, it has spread rapidly worldwide, and as a consequence, tigecycline has become increasingly ineffective in the clinical treatment of multidrug-resistant infections. In this study, we identified and analyzed tet(X4)-positive Escherichia coli isolates from duck farms in Hunan Province, China. In total, 976 samples were collected from nine duck farms. Antimicrobial susceptibility testing and whole-genome sequencing (WGS) were performed to establish the phenotypes and genotypes of tet(X4)-positive isolates. In addition, the genomic characteristics and transferability of tet(X4) were determined based on bioinformatics analysis and conjugation. We accordingly detected an E. coli strain harboring tet(X4) and seven other resistance genes in duck feces. Multi-locus sequence typing analysis revealed that this isolate belonged to a new clone, and subsequent genetic analysis indicated that tet(X4) was carried in a 4608-bp circular intermediate, flanked by ISVsa3-ORF2-abh elements. Moreover, it exhibited transferability to E. coli C600 with a frequency of 10-5. The detection of tet(X4)-harboring E, coli strains on duck farms enhances our understanding of tigecycline resistance dynamics. The transferable nature of the circular intermediate of tet(X4) contributing to the spread of tigecycline resistance genes poses a substantial threat to healthcare. Consequently, vigilant monitoring and proactive measures are necessary to prevent their spread.


Subject(s)
Anti-Bacterial Agents , Ducks , Escherichia coli Infections , Escherichia coli , Farms , Tigecycline , Whole Genome Sequencing , Animals , Anti-Bacterial Agents/pharmacology , China , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Ducks/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Feces/microbiology , Gene Transfer, Horizontal , Genotype , Microbial Sensitivity Tests , Multilocus Sequence Typing , Plasmids/genetics , Poultry Diseases/microbiology , Tigecycline/pharmacology
8.
Sci Rep ; 14(1): 20607, 2024 09 04.
Article in English | MEDLINE | ID: mdl-39232075

ABSTRACT

Biofilm formation and toxin production are some of the virulence factors of Clostridioides difficile (C. difficile), which causes hospital-acquired C. difficile infection (HA-CDI). This work investigated the prevalence and distribution of different strains recovered from HA-CDI patients hospitalized in 4 medical centres across Israel, and characterized strains' virulence factors and antibiotic susceptibility. One-hundred and eighty-eight faecal samples were collected. C. difficile 's toxins were detected by the CerTest Clostridium difficile GDH + Toxin A + B combo card test kit. Toxin loci PaLoc and PaCdt were detected by whole-genome sequencing (WGS). Multi-locus sequence typing (MLST) was performed to classify strains. Biofilm production was assessed by crystal violet. Antibiotic susceptibility was determined using Etest. Fidaxomicin susceptibility was tested via agar dilution. Sequence type (ST) 42 was the most (13.8%) common strain. All strains harboured the 2 toxins genes; 6.9% had the binary toxin. Most isolates were susceptible to metronidazole (98.9%) and vancomycin (99.5%). Eleven (5.85%) isolates were fidaxomicin-resistant. Biofilm production capacity was associated with ST (p < 0.001). In conclusion, a broad variety of C. difficile strains circulate in Israel's medical centres. Further studies are needed to explore the differences and their contribution to HA-CDI epidemiology.


Subject(s)
Anti-Bacterial Agents , Biofilms , Clostridioides difficile , Clostridium Infections , Cross Infection , Microbial Sensitivity Tests , Virulence Factors , Clostridioides difficile/genetics , Clostridioides difficile/drug effects , Clostridioides difficile/isolation & purification , Clostridioides difficile/pathogenicity , Humans , Israel/epidemiology , Clostridium Infections/microbiology , Clostridium Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Male , Female , Biofilms/drug effects , Biofilms/growth & development , Cross Infection/microbiology , Cross Infection/epidemiology , Aged , Middle Aged , Multilocus Sequence Typing , Adult , Aged, 80 and over , Whole Genome Sequencing , Feces/microbiology
9.
Front Cell Infect Microbiol ; 14: 1403234, 2024.
Article in English | MEDLINE | ID: mdl-39324056

ABSTRACT

Background: The emergence of ESBLs producing cephalosporin-resistant Escherichia coli isolates poses a threat to public health. This study aims to decipher the genetic landscape and gain insights into ESBL-producing E. coli strains belonging to the high-risk clone ST410 from pediatric patients. Methods: 29 E. coli ST410 isolates were collected from young children and subjected to antimicrobial susceptibility testing, Whole-genome sequencing (WGS), serotype analysis, MLST, ESBL genes, virulence genes, and plasmid profiling. Results: Antimicrobial susceptibility testing demonstrated a high level of resistance to cephalosporins followed by aminoglycoside, sulfonamide, carbapenem and penicillin group of antibiotics. However, n=20/29 shows MDR phenotype. Phylogenetic group B2 (n=15) dominated, followed by group D (n=7), group A (n=4), and group B1 (n=3). Serotyping analysis identified O1:H7 (n=8), O2:H1 (n=6), O8:H4 (n=5), O16:H5 (n=4), and O25:H4 (n=3). Other serotypes identified included O6:H1, O15:H5, and O18:H7 (n=1 each). The most commonly detected ESBL genes were bla CTX-M, (n=26), followed by bla TEM (n=23), and bla SHV (n=18). Additionally, bla OXA-1 (n=10), bla OXA-48 (n=5), bla KPC-2 (n=3), bla KPC-3 (n=2), bla NDM-1 (n=4), bla NDM-5 (n=1), bla GES-1 (n=2), bla GES-5 (n=1), and bla CYM-1 (n=3). Notable virulence genes identified within the ST410 isolates included fimH (n=29), papC (n=24), hlyA (n=22), and cnf1 (n=18), among others. Diverse plasmids were observed including IncFIS, IncX4, IncFIA, IncCol, IncI2 and IncFIC with transmission frequency ranges from 1.3X10-2 to 2.7X10-3. Conclusion: The ST410 clone exhibited a complex resistance profile, diverse serotypes, the presence of specific resistance genes (ESBL genes), virulence gene repertoire, and diverse plasmids. The bla CTX-M was the most prevalent ESBL gene detected.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Microbial Sensitivity Tests , Multilocus Sequence Typing , Phylogeny , Plasmids , Virulence Factors , Whole Genome Sequencing , beta-Lactamases , Humans , beta-Lactamases/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , China/epidemiology , Child, Preschool , Anti-Bacterial Agents/pharmacology , Infant , Virulence Factors/genetics , Plasmids/genetics , Serogroup , Male , Child , Female , Drug Resistance, Multiple, Bacterial/genetics , Serotyping , Genotype
10.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(9): 1372-1378, 2024 Sep 06.
Article in Chinese | MEDLINE | ID: mdl-39290019

ABSTRACT

To investigate the genomic features and perform cluster analysis of Carbapenem-resistant Klebsiella pneumoniae (CRKP) to provide an experimental basis for guiding the prevention and treatment of CRKP infections.A retrospective case-cohort study was conducted on 19 non-redundant CRKP strains isolated from the Tenth Affiliated Hospital of Southern Medical University between January and June 2023. Whole genome sequencing (WGS) and multilocus sequence typing (MLST) were performed to compare genomic features and analyze the resistance genes and homology of the strains.The results showed that the 19 CRKP strains were isolated from 8 different clinical departments, mainly from respiratory specimens. The whole genome sequencing revealed that the genomic lengths of CRKP ranged from 4.90 to 5.85 Mbp, with contigs N50 values>20 kb for each genome. The median overall GC content was 57.0% (50.4%-57.1%). Comparative genomic analysis identified three regions with high genomic variability. WGS detected 32 resistance genes across 11 categories. All 19 strains carried carbapenem resistance genes (blaKPC-2 and blaOXA-48), blaTEM-1B extended-spectrum ß-lactamase resistance genes, qnrS1 quinolone resistance gene, and fosA fosfomycin resistance gene, with each strain carrying only one carbapenemase gene. The detection rate of blaKPC-2 was 94.7% (18/19). MLST identified three sequence types: ST11, ST437 and ST147, with ST11 being predominant (89.5%, 17/19). Clustering analysis based on acquired resistance genes revealed three clonal transmission patterns among strains 72 and 90, and strains 88, 84, 66 and 79.In conclusion, CRKP strains carry multiple resistance genes, and clustering analysis indicating that nosocomial clonal transmission is closely related to acquired resistance genes. The ST11-blaKPC-2 type strain is the predominant clone. Strengthened surveillance and effective control strategies are necessary to reduce nosocomial transmission of CRKP.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Klebsiella pneumoniae , Multilocus Sequence Typing , Whole Genome Sequencing , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Carbapenems/pharmacology , Retrospective Studies , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Cluster Analysis , Genomics , beta-Lactamases/genetics , Microbial Sensitivity Tests , Genome, Bacterial , Drug Resistance, Bacterial/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics
11.
Epidemiol Infect ; 152: e106, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39344903

ABSTRACT

An investigation into an outbreak of Salmonella Newport infections in Canada was initiated in July 2020. Cases were identified across several provinces through whole-genome sequencing (WGS). Exposure data were gathered through case interviews. Traceback investigations were conducted using receipts, invoices, import documentation, and menus. A total of 515 cases were identified in seven provinces, related by 0-6 whole-genome multi-locus sequence typing (wgMLST) allele differences. The median age of cases was 40 (range 1-100), 54% were female, 19% were hospitalized, and three deaths were reported. Forty-eight location-specific case sub-clusters were identified in restaurants, grocery stores, and congregate living facilities. Of the 414 cases with exposure information available, 71% (295) had reported eating onions the week prior to becoming ill, and 80% of those cases who reported eating onions, reported red onion specifically. The traceback investigation identified red onions from Grower A in California, USA, as the likely source of the outbreak, and the first of many food recall warnings was issued on 30 July 2020. Salmonella was not detected in any tested food or environmental samples. This paper summarizes the collaborative efforts undertaken to investigate and control the largest Salmonella outbreak in Canada in over 20 years.


Subject(s)
Disease Outbreaks , Onions , Salmonella Food Poisoning , Humans , Canada/epidemiology , Female , Male , Adult , Middle Aged , Child, Preschool , Adolescent , Young Adult , Child , Aged , Infant , Aged, 80 and over , Salmonella Food Poisoning/epidemiology , Salmonella Food Poisoning/microbiology , Onions/microbiology , Whole Genome Sequencing , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Salmonella/genetics , Salmonella/classification , Salmonella/isolation & purification , Multilocus Sequence Typing
12.
Medicina (Kaunas) ; 60(9)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39336569

ABSTRACT

Background and Objectives: Carbapenem resistance is a growing global challenge for healthcare, and, therefore, monitoring its prevalence and patterns is crucial for implementing targeted interventions to mitigate its impact on patient outcomes and public health. This study aimed to determine the prevalence of carbapenem resistance among Escherichia coli (E. coli) strains in the largest tertiary care hospital of the capital territory of Pakistan and to characterize the isolates for the presence of antimicrobial resistance genes. Additionally, the most prevalent sequence types were analyzed. Materials and Methods: A total of 15,467 clinical samples were collected from November 2020 to May 2022, underwent antimicrobial susceptibility testing, and were analyzed for antimicrobial resistance genes through conventional PCR and sequence typing using MLST. Results: In carbapenem-resistant E. coli (CR-EC), 74.19% of isolates harbored the blaNDM gene, with blaNDM-1 (66.96%), blaNDM-5 (12.17%), and blaNDM-7 (20.87%) variants detected. Additionally, blaIMP was found in 25.81% and blaOXA-48 in 35.48% of isolates. The presence of blaCTX-M15 and blaTEM was identified in 83.87% and 73.55% of CR-EC isolates, respectively, while armA and rmtB were detected in 40% and 65.16% of isolates, respectively. Colistin and tigecycline were the most effective drugs against CR-EC isolates, with both showing an MIC50 of 0.5 µg/mL. The MIC90 for colistin was 1 µg/mL, while for tigecycline, it was 2 µg/mL. MLST analysis revealed that the CR-EC isolates belonged to ST131 (24.52%), ST2279 (23.87%), ST3499 (16.13%), ST8051 (15.48%), ST8900 (9.68%), ST3329 (7.10%), ST88 (1.94%), and ST6293 (1.29%). The ST131 complex (70.97%) was the most prevalent, harboring 95.65% of the blaNDM gene, while the ST23 complex (18.06%) harbored 62.50% of the blaIMP gene. Conclusions: Implementing large-scale surveillance studies to monitor the spread of specific pathogens, along with active infection control policies, is crucial for the effective containment and prevention of future epidemics.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Hospitals, University , Microbial Sensitivity Tests , beta-Lactamases , Escherichia coli/drug effects , Escherichia coli/genetics , Humans , Pakistan/epidemiology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Multilocus Sequence Typing/methods , Carbapenems/pharmacology , Carbapenems/therapeutic use , Prevalence
13.
Int J Mol Sci ; 25(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39337257

ABSTRACT

Moraxella catarrhalis has been recognized as an important cause of upper respiratory tract and middle ear infections in children, as well as chronic obstructive pulmonary disease and chronic bronchitis in adults. We aim to study the clonal structure, antimicrobial resistance, and serotypes of M. catarrhalis strains recovered from patients of different ages. Nasopharyngeal swabs, middle ear fluid, and sputum samples were collected. In vitro susceptibility testing was performed according to EUCAST criteria. The monoclonal Ab hybridoma technique was used for serotyping. All strains were subjected to MLST. The studied population demonstrated susceptibility to all tested antimicrobials M. catarrhalis strains, with the majority being serotype A (90.4%), followed by B (6.8%), and C (2.7%). We observed a predominant clonal complex CC224 (21.9%) along with other clusters including CC141 (8.2%), CC184 (8.2%), CC449 (6.8%), CC390 (5.5%), and CC67 (2.7%). Two primary founders, namely, ST224 and ST141, were identified. The analyzed genetic lineages displayed diversity but revealed the predominance of two main clusters, CC224 and CC141, encompassing multidrug-resistant sequence types distributed in other regions. These data underscore the need for ongoing epidemiological monitoring of successfully circulating clones and the implementation of adequate antibiotic policies to limit or delay the spread of multidrug-resistant strains in our region.


Subject(s)
Moraxella catarrhalis , Moraxellaceae Infections , Multilocus Sequence Typing , Phylogeny , Moraxella catarrhalis/genetics , Moraxella catarrhalis/isolation & purification , Moraxella catarrhalis/drug effects , Humans , Moraxellaceae Infections/microbiology , Child , Adult , Bulgaria/epidemiology , Female , Male , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Child, Preschool , Adolescent , Middle Aged , Aged , Serogroup , Young Adult , Infant
14.
Curr Microbiol ; 81(11): 382, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342057

ABSTRACT

Ten Gram stain-negative, oxidase-negative, catalase-positive, rod-shaped strains were isolated from lettuce in the city Wanju in South Korea. Comparative 16S rRNA gene analysis and multilocus sequence analysis indicated that the strains grouped closely together with all other Lelliottia (L.)-type strains. The average nucleotide identity (ANI) comparisons of the isolates showed a high relationship between the strains, as the ANI values of all strains ranged from 91.01 to 91.31% when compared to the L. jeotgali-type strain PFL01T. All isolates showed the highest genomic DNA sequence similarity to the L. jeotgali PFL01T strain at 43.3% when compared with digital DNA-DNA hybridization (dDDH). Strain V104_15T of the proposed novel Lelliottia species showed 91.2% and 43.3% similarity with the most closely related L. jeotgali PFL01T-type strain in the ANI and dDDH comparisons, respectively. Strain V104_15T could not grow at 45 °C and 7% NaCl, while L. jeotgali PFL01T strain could grow at both these conditions. Strain V104_15T showed ß-glucosidase activity but not α-glucosidase activity, while the L. jeotgali PFL01T strain was α-glucosidase positive but ß-glucosidase negative. The major cellular fatty acids of strain V104_15T were C16:0 and cyclo-C17:0 including summed features. The mol % G + C content of the genomic DNA of strain V104_15T was 55.74%. Phenotypic and biochemical characteristics, as well as the phylogenomic analysis indicated that the strain V104_15T represents a novel species of the genus Lelliottia, for which the name Lelliottia wanjuensis sp. nov. is proposed. The type strain is V104_15T (= LMG 32996 T = DSM 115585 T).


Subject(s)
DNA, Bacterial , Fatty Acids , Lactuca , Phylogeny , RNA, Ribosomal, 16S , Republic of Korea , Lactuca/microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Base Composition , Bacterial Typing Techniques , Multilocus Sequence Typing , Sequence Analysis, DNA
15.
BMC Microbiol ; 24(1): 365, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342084

ABSTRACT

BACKGROUND: The emergence of Streptococcus agalactiae infections in patients with bacteremia is increasing. It is crucial to investigate the epidemiology, molecular characteristics, biofilm status, and virulence analysis of Streptococcus agalactiae in these patients. METHODS: In this cross-sectional study, 61 S. agalactiae isolated from blood infection were subjected to characterization through antimicrobial susceptibility tests, biofilm formation, multilocus sequence typing (MLST), and PCR analysis for detecting resistance (tet and erm family) and virulence genes (alp2/3, alp4, bca, bac, eps, rib, lmb, cylE, and pilus island genes). RESULTS: Overall, 32.7% of the isolates demonstrated an inducible clindamycin resistance phenotype. The results showed that 49.2, 24.6, and 8.2% of confirmed Streptococcus agalactiae strains were classified as strong, intermediate, and weak biofilm-forming strains, respectively. tet(M) (57.1%) was recovered most, followed by tet(M) + tet(L) (14.3%), tet(S) + tet(K) (10.7%), tet(M) + tet(K) (8.9%), tet(M) + tet(K) + tet(O) (5.4%), and tet(S) + tet(L) + tet(O) (3.6%). Three virulence gene profiles of cylE, lmb, bca, rib (24.6%; 15/61), cylE, lmb, rib, alp3 (19.7%; 12/61), and cylE, lmb, bac, rib (16.4%; 10/61) were detected in approximately two-thirds of the isolates. MLST revealed that the 61 isolates belonged to six clonal complexes, including CC1 (49.2%), followed by CC12 (18%), CC19 (13.1%), CC22 (9.8%), CC17 (6.6%), and CC283 (3.3%), and 11 different sequence types (STs), including ST1 (24.6%), ST7 (14.8%), ST918 (13.1%), ST2118 (9.8%), ST19 (9.8%), ST48 (6.6%), ST1372 (4.9%), ST22 (4.9%), ST40 (4.9%), ST734 (3.3%), and ST283 (3.3%). Remarkably, all CC1 and CC12 isolates, three-fourths of CC19, and half of CC22 were confirmed as biofilm producers. Conversely, CC17 and CC28 isolates were found to be nonproducers. The occurrence of strong biofilm formation was limited to specific CCs, namely CC1 (34.4%), CC12 (8.2%), CC19 (3.3%), and CC22 (3.3%). CONCLUSION: The high prevalence of CC1 and CC12 clones among S. agalactiae strains reflects the emergence of these lineages as successful clones in Iran, which is a serious concern and poses a potential threat to patients.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Biofilms , Microbial Sensitivity Tests , Multilocus Sequence Typing , Streptococcal Infections , Streptococcus agalactiae , Virulence Factors , Streptococcus agalactiae/genetics , Streptococcus agalactiae/pathogenicity , Streptococcus agalactiae/drug effects , Streptococcus agalactiae/classification , Streptococcus agalactiae/isolation & purification , Iran/epidemiology , Humans , Streptococcal Infections/microbiology , Streptococcal Infections/epidemiology , Bacteremia/microbiology , Bacteremia/epidemiology , Biofilms/growth & development , Cross-Sectional Studies , Virulence/genetics , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Male , Female , Middle Aged , Adult , Aged , Drug Resistance, Bacterial/genetics
16.
BMC Microbiol ; 24(1): 374, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342086

ABSTRACT

BACKGROUND: There is a serious public health concern regarding the emergence of carbapenem-resistant Escherichia coli (CREC). The purpose of this study is to identify the molecular characterization and risk factors of CREC in Fujian province, China. METHODS: A total of 48 CREC isolates were collected from various clinical samples. The strains were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Susceptibility to antibiotics was determined by the standard broth microdilution method. Polymerase chain reaction (PCR) was used to screen common drug resistance genes. Multilocus sequence typing (MLST) was used to type isolates. RT-qPCR was used to detect gene expression of acrA, acrB, and tolC. Conjugation assays were used to analyze the transferability of plasmids carrying mcr-1 or blaNDM. Risk factors for CREC infection were identified by logistic regression analysis. RESULTS: 48 CREC strains were collected, with 81.25% producing carbapenemase (CP-CREC), and 18.75% were not producing carbapenemase (no-CP-CREC). They belonged to 21 sequence type (STs) and five unknown STs. Perianal swabs were the main sample type, with 25 patients found to have hematological malignancies. All isolates of CP-CREC were found to contain blaNDM (blaNDM-5 (n = 32), blaNDM-1 (n = 5), blaNDM-4 (n = 1), and blaNDM-13 (n = 1)), among which one isolate co-existence blaNDM-5 and blaOXA-48. Two blaNDM-positive strains, specifically blaNDM-5 and blaNDM-4, were found to co-habor mcr-1 with ST617. Conjugation assays confirmed that blaNDM-1, blaNDM-13, and most blaNDM-5(68.75%, 22/32) could be transferred between E. coli strains. Four of the 9 non-CP-CREC isolates had deletions in ompC and ompF with blaCTX-M production, while the other five showed high expression of acrA, acrB, and tolC. Antibiotics usage, antifungal treatment, detection of other pathogens (prior to CREC infection), and respiratory disease were identified as independent risk factors for CREC infection. The area under the receiver operating characteristic curve for the scoring system was 0.937. Youden's index, with sensitivity and specificity of 0.96 and 0.78, was maximal when 2 points were scored. CONCLUSIONS: In CP-CREC, carbapenem resistance is caused primarily by multiple types of blaNDM, while non-CP-CREC is caused by loss of porin protein or high expression of efflux pumps coupled with carrying blaCTX-M. CREC isolates were highly diverse in terms of ST, with a total of 21 STs identified. Here, we first describe a clinical strain of CREC from China both mcr-1 and blaNDM -4 with ST617. An easy-to-use scoring system was developed to diagnose CREC infections.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Escherichia coli Infections , Escherichia coli , Microbial Sensitivity Tests , Multilocus Sequence Typing , Tertiary Care Centers , China/epidemiology , Humans , Tertiary Care Centers/statistics & numerical data , Risk Factors , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Male , Female , Middle Aged , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Adult , Carbapenems/pharmacology , Aged , beta-Lactamases/genetics , Bacterial Proteins/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/drug effects , Plasmids/genetics , Young Adult , Child , Infant , Child, Preschool , Aged, 80 and over , Adolescent , Escherichia coli Proteins/genetics
17.
Sci Rep ; 14(1): 21409, 2024 09 13.
Article in English | MEDLINE | ID: mdl-39271789

ABSTRACT

Streptococcus pneumoniae, a medically important opportunistic bacterial pathogen of the upper respiratory tract, is a major public health concern, causing a wide range of pneumococcal illnesses, both invasive and noninvasive. It is associated with significant global morbidity and mortality, including pneumonia, meningitis, sepsis, and acute otitis media. The major purpose of this study was to determine the molecular epidemiology of Streptococcus pneumoniae strains that cause invasive and noninvasive infections in Ethiopia. A prospective study was undertaken in two regional hospitals between January 2018 and December 2019. Whole-genome sequencing was used to analyze all isolates. Serotypes and multilocus sequence types (MLST) were derived from genomic data. The E-test was used for antimicrobial susceptibility testing. Patient samples obtained 54 Streptococcus pneumoniae isolates, 33 from invasive and 21 from noninvasive specimens. Our findings identified 32 serotypes expressed by 25 Global Pneumococcal Sequence Clusters (GPSCs) and 42 sequence types (STs), including 21 new STs. The most common sequence types among the invasive isolates were ST3500, ST5368, ST11162, ST15425, ST15555, ST15559, and ST15561 (2/33, 6% each). These sequence types were linked to serotypes 8, 7 C, 15B/C, 16 F, 10 A, 15B, and 6 A, respectively. Among the noninvasive isolates, only ST15432, associated with serotype 23 A, had numerous isolates (4/21, 19%). Serotype 14 was revealed as the most resistant strain to penicillin G, whereas isolates from serotypes 3, 8, 7 C, and 10 A were resistant to erythromycin. Notably, all serotype 6 A isolates were resistant to both erythromycin and penicillin G. Our findings revealed an abnormally significant number of novel STs, as well as extremely diversified serotypes and sequence types, implying that Ethiopia may serve as a breeding ground for novel STs. Recombination can produce novel STs that cause capsular switching. This has the potential to influence how immunization campaigns affect the burden of invasive pneumococcal illness. The findings highlight the importance of continuous genetic surveillance of the pneumococcal population as a vital step toward enhancing future vaccine design.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Molecular Epidemiology , Multilocus Sequence Typing , Pneumococcal Infections , Serogroup , Streptococcus pneumoniae , Whole Genome Sequencing , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/classification , Humans , Ethiopia/epidemiology , Pneumococcal Infections/microbiology , Pneumococcal Infections/epidemiology , Male , Child , Female , Child, Preschool , Adolescent , Adult , Middle Aged , Prospective Studies , Infant , Young Adult , Anti-Bacterial Agents/pharmacology , Aged
18.
BMC Microbiol ; 24(1): 347, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39277715

ABSTRACT

BACKGROUND: Linezolid-resistant Enterococcus faecium (LRE) is a global priority pathogen. Thirteen LRE were reported from clinical specimens between November 2021 and April 2023 at two laboratories in Karachi, Pakistan. We aimed to investigate the strain types and genes associated with linezolid resistance among these isolates. Whole genome sequencing (WGS) was performed and analyzed by multilocus sequence typing (MLST). The presence of linezolid resistance genes was identified using ResFinder v4.1.11 and the LRE-finder tool. RESULTS: Twelve isolates belonged to clonal complex 17 (CC17); ST80 (n = 10), ST612 (n = 1) and ST1380 (n = 1). Six isolates showed the presence of optrA gene and G2576T mutations in the 23S rRNA gene, while six showed poxtA and cfr(D) genes. One isolate showed the combination of optrA, cfr(D) and poxtA genes. CONCLUSION: Our findings show the circulation of CC17 sequence types with a known outbreak potential and we identified molecular mechanisms of resistance that were not previously reported from Pakistan.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterococcus faecium , Gram-Positive Bacterial Infections , Linezolid , Microbial Sensitivity Tests , Multilocus Sequence Typing , Whole Genome Sequencing , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Enterococcus faecium/classification , Pakistan , Linezolid/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , RNA, Ribosomal, 23S/genetics , Female , Male , Genome, Bacterial/genetics , Genomics , Adult , Bacterial Proteins/genetics , Middle Aged , Mutation
19.
BMC Oral Health ; 24(1): 1063, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261810

ABSTRACT

BACKGROUND: Streptococcus mutans is studied for its acidogenic and aciduric characteristics, notably its biofilm formation in the presence of sucrose, toward its role in the caries process. Variations in both genotype and phenotype have been reported among clinical isolates of S. mutans. This study aimed to examine genotypic and phenotypic characteristics of S. mutans obtained from Thai children with varying caries statuses. METHODS: We determined the presence of S. mutans and caries status in 395 children aged 3-4 years. From 325 children carrying S. mutans, we selected 90 with different caries statuses-caries-free (CF; n = 30), low severity of caries (LC; n = 30), or high severity of caries (HC; n = 30). Three isolates of S. mutans were taken from each child, thus, a total of 270 isolates were obtained. Multilocus sequence typing (MLST) was used to genotype the isolates and assess their clonal relationships. The properties, including biofilm formation, collagen binding, and acid production and tolerance were also evaluated. RESULTS: Children with carious lesions showed a higher detection rate and number of S. mutans in saliva than those without caries. S. mutans from individuals with HC status showed the lowest biofilm formation ability, while this group had the highest detection rate of collagen-binding isolates. There was no difference in acid production or tolerance by caries status. Genotyping by MLST did not reveal any clone of S. mutans specific to CF status. This result remained even when we included MLST data from the open-access PubMLST database. MLST did identify clones containing only strains from caries-affected hosts, but tests of their phenotypic properties did not reveal any differences between S. mutans from these clones and clones that were from both caries-free and caries-affected children. CONCLUSIONS: The clonal relationships of S. mutans indicated by MLST were not associated with the status of dental caries in the host.


Subject(s)
Biofilms , Dental Caries , Saliva , Streptococcus mutans , Child, Preschool , Female , Humans , Male , Biofilms/growth & development , Dental Caries/microbiology , DMF Index , Genotype , Multilocus Sequence Typing , Phenotype , Saliva/microbiology , Southeast Asian People , Streptococcus mutans/genetics , Streptococcus mutans/isolation & purification , Thailand
20.
Acta Microbiol Immunol Hung ; 71(3): 220-227, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39226121

ABSTRACT

This study examined the prevalence and antibiotic resistance pattern of blaCTX-M extended-spectrum ß-lactamase positive Salmonella species isolated from a hospital in Weifang. Salmonella strains were isolated from hospitalized patients from January 2018 to April 2023. Whole-genome sequencing was performed by Illumina platform. CTX-M-producing Salmonella were identified by Comprehensive Antibiotic Research Database (CARD). Strain susceptibility to six antimicrobial agents was assessed by BD Phoenix™ M50 System. MLST analysis confirmed sequence types and additionally, serotypes were determined by SeqSero2. Genetic environments of blaCTX-M genes were analyzed by Isfinder and BLASTn. Single nucleotide polymorphisms were used to construct a phylogenetic tree to analyze homology. A total of 34 CTX-M-producing Salmonella were detected. The most prevalent serotype was Salmonella enterica subsp. enterica 1,4,[5],12:i:- (14/34, 41.18%), belonging to ST34, followed by Salmonella Enteritidis (10/34, 29.41%), belonging to ST11. The highest resistance rate was detected to ampicillin (97.06%), followed by ceftriaxone (94.12%) and ceftazidime (58.83%). In CTX-M-producing Salmonella five types of blaCTX-M genes were identified, the most prevalent was blaCTX-M-55 (47.06%, 16/34), followed by blaCTX-M-14, blaCTX-M-65, blaCTX-M-125, and blaCTX-M-27 at 26.47% (9/34), 11.77% (4/34), 8.82% (3/34), and 5.88% (2/34), respectively. Apart from blaCTX-M, 40 antibiotic resistance genes were also detected, conveying resistance to multiple drugs and the most frequent genes were namely, mcr-1.1, aph(6)-Id, aph(3″)-Ib, oqxAB, qnrB6, qnrS1. According to genetic environment analysis, the insertion sequence ISEcp1 was prevalent upstream of the blaCTX-M gene. Our study demonstrates that multiple resistance genes are carried by clinical isolates of Salmonella spp. however, the dominant ESBL genotype is CTX-M-55, that is associated with ISEcp1.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Salmonella Infections , Salmonella , beta-Lactamases , Humans , China/epidemiology , beta-Lactamases/genetics , Salmonella Infections/microbiology , Salmonella Infections/epidemiology , Salmonella/genetics , Salmonella/drug effects , Salmonella/enzymology , Salmonella/isolation & purification , Salmonella/classification , Anti-Bacterial Agents/pharmacology , Prevalence , Phylogeny , Serogroup , Drug Resistance, Multiple, Bacterial , Multilocus Sequence Typing , Whole Genome Sequencing , Salmonella enteritidis/genetics , Salmonella enteritidis/drug effects , Salmonella enteritidis/enzymology , Salmonella enteritidis/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL