Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.627
Filter
1.
Nat Commun ; 15(1): 5337, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914540

ABSTRACT

Neuromuscular control of bionic arms has constantly improved over the past years, however, restoration of sensation remains elusive. Previous approaches to reestablish sensory feedback include tactile, electrical, and peripheral nerve stimulation, however, they cannot recreate natural, intuitive sensations. Here, we establish an experimental biological sensorimotor interface and demonstrate its potential use in neuroprosthetics. We transfer a mixed nerve to a skeletal muscle combined with glabrous dermal skin transplantation, thus forming a bi-directional communication unit in a rat model. Morphological analyses indicate reinnervation of the skin, mechanoreceptors, NMJs, and muscle spindles. Furthermore, sequential retrograde labeling reveals specific sensory reinnervation at the level of the dorsal root ganglia. Electrophysiological recordings show reproducible afferent signals upon tactile stimulation and tendon manipulation. The results demonstrate the possibility of surgically creating an interface for both decoding efferent motor control, as well as encoding afferent tactile and proprioceptive feedback, and may indicate the way forward regarding clinical translation of biological communication pathways for neuroprosthetic applications.


Subject(s)
Bionics , Muscle, Skeletal , Animals , Rats , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Feedback, Sensory/physiology , Proprioception/physiology , Ganglia, Spinal/physiology , Mechanoreceptors/physiology , Muscle Spindles/physiology , Male , Female , Touch/physiology , Skin/innervation
2.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R88-R96, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38842517

ABSTRACT

The purpose of the present study was to clarify the impact of age on the sympathoinhibitory response to cardiopulmonary baroreceptor loading in females. Nine older females (mean ± SD, 70 ± 6 yr) and 11 younger females (20 ± 1 yr) completed the study. A passive leg raising (PLR) test was performed wherein the participants were positioned supine (baseline, 0°), and their lower limbs were passively lifted at 10°, 20°, 30°, and 40° (3 min at each angle). Muscle sympathetic nerve activity (MSNA) was recorded via microneurography of the left radial nerve. The central venous pressure was estimated based on peripheral venous pressure (eCVP), which was monitored using a cannula in the right large antecubital vein. Baseline MSNA was higher in older females than in younger females. MSNA burst frequency (BF) decreased during the PLR test in both older and younger females, but the magnitude of the decrease in MSNA BF was smaller in older females than in younger females (older, -3.5 ± 1.5 vs. younger, -6.3 ± 1.5 bursts/min at 40° from baseline, P = 0.014). The eCVP increased during the PLR in both groups, and there was no difference in the changes in eCVP between the two groups (older, +1.07 ± 0.37 vs. younger, +1.12 ± 0.33 mmHg at 40° from baseline, P = 0.941). These results suggest that inhibition of sympathetic vasomotor outflow during cardiopulmonary baroreceptor loading could be blunted with advancing age in females.NEW & NOTEWORTHY There were no available data concerning the effect of age on the sympathoinhibitory response to cardiopulmonary baroreceptor loading in females. The magnitude of the decrease in muscle sympathetic nerve activity during passive leg raising (10°-40°) was smaller in older females than in young females. In females, inhibition of sympathetic vasomotor outflow during cardiopulmonary baroreceptor loading could be blunted with advancing age.


Subject(s)
Aging , Baroreflex , Pressoreceptors , Sympathetic Nervous System , Humans , Female , Sympathetic Nervous System/physiology , Pressoreceptors/physiology , Aged , Aging/physiology , Young Adult , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Age Factors , Blood Pressure/physiology , Middle Aged , Lung/innervation , Lung/physiology , Neural Inhibition
3.
J Neural Eng ; 21(4)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38885677

ABSTRACT

Objective.Peripheral nerve stimulation (PNS) has been demonstrated as an effective way to selectively activate muscles and to produce fine hand movements. However, sequential multi-joint upper limb movements, which are critical for paralysis rehabilitation, has not been tested with PNS. Here, we aimed to restore multiple upper limb joint movements through an intraneural interface with a single electrode, achieving coherent reach-grasp-pull movement tasks through sequential stimulation.Approach.A transverse intrafascicular multichannel electrode was implanted under the axilla of the rat's upper limb, traversing the musculocutaneous, radial, median, and ulnar nerves. Intramuscular electrodes were implanted into the biceps brachii (BB), triceps brachii (TB), flexor carpi radialis (FCR), and extensor carpi radialis (ECR) muscles to record electromyographic (EMG) activity and video recordings were used to capture the kinematics of elbow, wrist, and digit joints. Charge-balanced biphasic pulses were applied to different channels to recruit distinct upper limb muscles, with concurrent recording of EMG signals and joint kinematics to assess the efficacy of the stimulation. Finally, a sequential stimulation protocol was employed by generating coordinated pulses in different channels.Main results.BB, TB, FCR and ECR muscles were selectively activated and various upper limb movements, including elbow flexion, elbow extension, wrist flexion, wrist extension, digit flexion, and digit extension, were reliably generated. The modulation effects of stimulation parameters, including pulse width, amplitude, and frequency, on induced joint movements were investigated and reach-grasp-pull movement was elicited by sequential stimulation.Significance.Our results demonstrated the feasibility of sequential intraneural stimulation for functional multi-joint movement restoration, providing a new approach for clinical rehabilitation in paralyzed patients.


Subject(s)
Hand Strength , Movement , Peripheral Nerves , Rats, Sprague-Dawley , Animals , Rats , Peripheral Nerves/physiology , Movement/physiology , Hand Strength/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Male , Electric Stimulation Therapy/methods , Electrodes, Implanted , Electromyography/methods
4.
Anesth Analg ; 139(1): 36-43, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38885397

ABSTRACT

BACKGROUND: Peripheral nerve stimulation with a train-of-four (TOF) pattern can be used intraoperatively to evaluate the depth of neuromuscular block and confirm recovery from neuromuscular blocking agents (NMBAs). Quantitative monitoring can be challenging in infants and children due to patient size, equipment technology, and limited access to monitoring sites. Although the adductor pollicis muscle is the preferred site of monitoring, the foot is an alternative when the hands are unavailable. However, there is little information on comparative evoked neuromuscular responses at those 2 sites. METHODS: Pediatric patients undergoing inpatient surgery requiring NMBA administration were studied after informed consent. Electromyographic (EMG) monitoring was performed simultaneously in each participant at the hand (ulnar nerve, adductor pollicis muscle) and the foot (posterior tibial nerve, flexor hallucis brevis muscle). RESULTS: Fifty patients with a mean age of 3.0 ± standard deviation (SD) 2.9 years were studied. The baseline first twitch amplitude (T1) of TOF at the foot (12.46 mV) was 4.47 mV higher than at the hand (P <.0001). The baseline TOF ratio (TOFR) before NMBA administration and the maximum TOFR after antagonism with sugammadex were not different at the 2 sites. The onset time until the T1 decreased to 10% or 5% of the baseline value (T1) was delayed by approximately 90 seconds (both P =.014) at the foot compared with the hand. The TOFR at the foot recovered (TOFR ≥0.9) 191 seconds later than when this threshold was achieved at the hand (P =.017). After antagonism, T1 did not return to its baseline value, a typical finding with EMG monitoring, but the fractional recovery (maximum T1 at recovery divided by the baseline T1) at the hand and foot was not different, 0.81 and 0.77, respectively (P =.68). The final TOFR achieved at recovery was approximately 100% and was not different between the 2 sites. CONCLUSIONS: Although this study in young children demonstrated the feasibility of TOF monitoring, interpretation of the depth of neuromuscular block needs to consider the delayed onset and the delayed recovery of TOFR at the foot compared to the hand. The delay in achieving these end points when monitoring the foot may impact the timing of tracheal intubation and assessment of adequate recovery of neuromuscular block to allow tracheal extubation (ie, TOFR ≥0.9).


Subject(s)
Electromyography , Muscle, Skeletal , Neuromuscular Blockade , Humans , Male , Female , Electromyography/methods , Prospective Studies , Child, Preschool , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Child , Neuromuscular Blockade/methods , Infant , Foot , Electric Stimulation , Ulnar Nerve , Hand/innervation , Neuromuscular Blocking Agents/administration & dosage , Neuromuscular Monitoring/methods , Tibial Nerve
5.
J Neural Eng ; 21(3)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38861967

ABSTRACT

Objective. We intend to chronically restore somatosensation and provide high-fidelity myoelectric control for those with limb loss via a novel, distributed, high-channel-count, implanted system.Approach.We have developed the implanted Somatosensory Electrical Neurostimulation and Sensing (iSens®) system to support peripheral nerve stimulation through up to 64, 96, or 128 electrode contacts with myoelectric recording from 16, 8, or 0 bipolar sites, respectively. The rechargeable central device has Bluetooth® wireless telemetry to communicate to external devices and wired connections for up to four implanted satellite stimulation or recording devices. We characterized the stimulation, recording, battery runtime, and wireless performance and completed safety testing to support its use in human trials.Results.The stimulator operates as expected across a range of parameters and can schedule multiple asynchronous, interleaved pulse trains subject to total charge delivery limits. Recorded signals in saline show negligible stimulus artifact when 10 cm from a 1 mA stimulating source. The wireless telemetry range exceeds 1 m (direction and orientation dependent) in a saline torso phantom. The bandwidth supports 100 Hz bidirectional update rates of stimulation commands and data features or streaming select full bandwidth myoelectric signals. Preliminary first-in-human data validates the bench testing result.Significance.We developed, tested, and clinically implemented an advanced, modular, fully implanted peripheral stimulation and sensing system for somatosensory restoration and myoelectric control. The modularity in electrode type and number, including distributed sensing and stimulation, supports a wide variety of applications; iSens® is a flexible platform to bring peripheral neuromodulation applications to clinical reality. ClinicalTrials.gov ID NCT04430218.


Subject(s)
Electromyography , Humans , Electromyography/methods , Electrodes, Implanted , Wireless Technology/instrumentation , Telemetry/instrumentation , Telemetry/methods , Equipment Design/methods , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation
6.
Ann Plast Surg ; 92(6S Suppl 4): S426-S431, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38857008

ABSTRACT

BACKGROUND: Targeted muscle reinnervation (TMR) has demonstrated efficacy in reducing neuroma and chronic pain. In this article, we investigated postoperative outcomes in our patient cohort, with a focus on the role of nonmodifiable factors such as patient age and gender. METHODS: Patients who had extremity TMR from April 2018 to October 2022 were reviewed. Outcomes of interest included patient age, gender, cause and type of amputation, delayed versus immediate TMR, as well as postoperative improvement in pain as assessed by numerical rating score (NRS). RESULTS: A total of 40 patients underwent TMR on 47 limbs. Mean age was 46.2 ± 17.0 years. Delayed TMR (27, 57.4%) was most commonly performed, followed by immediate and delayed-immediate at 11 (23.4%) and 9 (19.1%), respectively. Amputation level was most commonly above-knee in 20 (42.6%) patients, followed by below-knee (12, 25.5%), transhumeral (8, 17.0%), transradial (6, 12.8%), and shoulder (1, 2.1%). The median time interval between amputation and TMR was 12 months. The median preoperative NRS assessing residual limb pain (RLP) for patients who underwent delayed TMR was 10. The median postoperative NRS assessing RLP for all patients was 0 (interquartile range25-75: 0-5) and significantly improved compared with preoperative NRS (P < 0.001). At the last follow-up for limbs that had delayed and delayed-immediate TMR (n = 36), 33 (91.7%) limbs had more than 50% resolution of RLP. There was a significant difference in median postoperative NRS by gender (4 in men and 0 in women) (P < 0.05). Postoperative median NRS also favored younger patients (0, <50 years compared with 4.5, >50 years) (P < 0.05). Multiple linear regression analysis showed that, of different variables analyzed, only male gender and older age were predictive of poorer postoperative outcomes. CONCLUSION: TMR showed high efficacy in our cohort, with improved short-term outcomes in women and younger patients.


Subject(s)
Pain Measurement , Humans , Female , Male , Middle Aged , Adult , Retrospective Studies , Amputation, Surgical/methods , Muscle, Skeletal/innervation , Treatment Outcome , Neuroma/surgery , Nerve Transfer/methods , Chronic Pain/surgery , Aged , Age Factors
7.
J Plast Reconstr Aesthet Surg ; 94: 229-237, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823079

ABSTRACT

BACKGROUND: Targeted muscle reinnervation (TMR) has been shown to reduce phantom limb pain (PLP) and residual limb pain (RLP) after major limb amputation. However, the effect of the timing of surgery on pain control and quality of life outcomes is controversial. We conducted a retrospective study to compare the outcomes of acute TMR for pain prevention with non-acute TMR for the treatment of established pain. METHODS: All patients treated with TMR in our institution between January 2018 and December 2021 were evaluated at 6, 12, 18 and 24 months post-operatively. Pain intensity and quality of life outcomes were assessed using the Brief Pain Inventory (Pain Severity and Pain Interference scales) and Pain Catastrophizing Scale. Outcomes were compared between acute and non-acute TMR using the Wilcoxon ranked-sum test or Fisher's exact test as appropriate. Multilevel mixed-effects linear regression was used to account for repeat measures and potential pain confounders. RESULTS: Thirty-two patients with 38 major limb amputations were included. Acute TMR patients reported significantly lower RLP and PLP scores, pain interference and pain catastrophisation at all time points (p < 0.05). Acute TMR was significantly associated with lower pain severity and pain interference in a linear mixed-effects model accounting for patient age, gender, amputation indication, amputation site, time post-TMR and repeated surveys (p < 0.05). There was no significant difference in the complication rate (p = 0.51). CONCLUSION: Acute TMR was associated with clinically and statistically significant pain outcomes that were better than that in non-acute TMR. This suggests that TMR should be performed with preventative intent, when possible, as part of a multidisciplinary approach to pain management, rather than deferred until the development of chronic pain.


Subject(s)
Amputation, Surgical , Muscle, Skeletal , Pain Measurement , Phantom Limb , Humans , Male , Female , Amputation, Surgical/adverse effects , Middle Aged , Retrospective Studies , Phantom Limb/prevention & control , Phantom Limb/etiology , Muscle, Skeletal/innervation , Quality of Life , Pain, Postoperative/etiology , Pain, Postoperative/prevention & control , Pain, Postoperative/diagnosis , Aged , Nerve Transfer/methods , Adult , Pain Management/methods
8.
Aging Cell ; 23(6): e14115, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831622

ABSTRACT

With aging skeletal muscle fibers undergo repeating cycles of denervation and reinnervation. In approximately the 8th decade of life reinnervation no longer keeps pace, resulting in the accumulation of persistently denervated muscle fibers that in turn cause an acceleration of muscle dysfunction. The significance of denervation in important clinical outcomes with aging is poorly studied. The Study of Muscle, Mobility, and Aging (SOMMA) is a large cohort study with the primary objective to assess how aging muscle biology impacts clinically important traits. Using transcriptomics data from vastus lateralis muscle biopsies in 575 participants we have selected 49 denervation-responsive genes to provide insights to the burden of denervation in SOMMA, to test the hypothesis that greater expression of denervation-responsive genes negatively associates with SOMMA participant traits that included time to walk 400 meters, fitness (VO2peak), maximal mitochondrial respiration, muscle mass and volume, and leg muscle strength and power. Consistent with our hypothesis, increased transcript levels of: a calciumdependent intercellular adhesion glycoprotein (CDH15), acetylcholine receptor subunits (CHRNA1, CHRND, CHRNE), a glycoprotein promoting reinnervation (NCAM1), a transcription factor regulating aspects of muscle organization (RUNX1), and a sodium channel (SCN5A) were each negatively associated with at least 3 of these traits. VO2peak and maximal respiration had the strongest negative associations with 15 and 19 denervation-responsive genes, respectively. In conclusion, the abundance of denervationresponsive gene transcripts is a significant determinant of muscle and mobility outcomes in aging humans, supporting the imperative to identify new treatment strategies to restore innervation in advanced age.


Subject(s)
Aging , Muscle, Skeletal , Humans , Aging/genetics , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/innervation , Aged , Female , Middle Aged , Cohort Studies , Adult
9.
Surg Radiol Anat ; 46(7): 1121-1129, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38743143

ABSTRACT

PURPOSE: Selective tibial neurotomy (STN) is a surgical procedure for treating spastic equinovarus foot. Hyperselective neurectomy (HSN) of tibial nerve is a modified STN procedure, which was rarely discussed. This study aimed to describe the branching patterns of the tibial nerve and propose an optimal surgical incision of HSN for treatment of spastic equinovarus foot. METHODS: Sixteen lower limbs were dissected to determine the various branching patterns of the tibial nerve and categorized according to these branching patterns. The mean distances from the nerve entry points to the tip of femur's medial epicondyle were measured, as well as their percentage to the overall length of the leg. The surgical incision was designed according to the range of these nerve entry points. RESULTS: The tibial nerve sent out proximal and distal motor branches based on their position relative to the soleus muscle's tendinous arch. For proximal motor branches, the branches innervating the medial gastrocnemius, lateral gastrocnemius and proximal soleus were categorized into types I (9/16), II (5/16) and III (2/16). Measurements from the medial epicondyle to the nerve entry points into the medial gastrocnemius, lateral gastrocnemius and proximal soleus ranged from 14 to 33 mm (4-9% of leg length), 22-45 mm (6-12%) and 35-81 mm (10-22%), respectively. Distal motor branches including the distal soleus, posterior tibialis, flexor digitorum longus and flexor hallucis longus, were classified as types A (8/14), B (4/14) and C (2/14), with the distances from their respective terminal points to the medial epicondyle were 67-137 mm (19-39%), 74-125 mm (20-35%), 116-243 mm (33-69%) and 125-272 mm (35-77%). CONCLUSIONS: The motor branches of tibial nerve were classified into two groups and each subdivided into three types. Detailed location parameters may serve as an anatomical basis for designing incision of HSN.


Subject(s)
Cadaver , Tibial Nerve , Tibial Nerve/anatomy & histology , Tibial Nerve/surgery , Humans , Male , Female , Muscle, Skeletal/innervation , Muscle, Skeletal/anatomy & histology , Clubfoot/surgery , Aged , Middle Aged , Denervation/methods
10.
Am J Physiol Heart Circ Physiol ; 327(1): H000, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38787381

ABSTRACT

Systemic insulin increases muscle sympathetic nerve activity (MSNA) via both central actions within the brainstem and peripheral activation of the arterial baroreflex. Augmented MSNA during hyperinsulinemia likely restrains peripheral vasodilation and contributes to the maintenance of blood pressure (BP). However, in the absence of insulin action within the peripheral vasculature, whether central insulin stimulation increases MSNA and influences peripheral hemodynamics in humans remains unknown. Herein, we hypothesized intranasal insulin administration would increase MSNA and BP in healthy young adults. Participants were assigned to time control [TC, n = 13 (5 females/8 males), 28 ± 1 yr] or 160 IU of intranasal insulin administered over 5 min [n = 15 (5 females/10 males), 26 ± 2 yr]; five (1 female/4 males) participants completed both conditions. MSNA (fibular microneurography), BP (finger photoplethysmography), and leg blood flow (LBF, femoral Doppler ultrasound) were assessed at baseline, and 15 and 30 min following insulin administration. Leg vascular conductance [LVC = (LBF ÷ mean BP) × 100] was calculated. Venous insulin and glucose concentrations remained unchanged throughout (P > 0.05). Following intranasal insulin administration, MSNA (burst frequency; baseline = 100%; minute 15, 121 ± 8%; minute 30, 118 ± 6%; P = 0.009, n = 7) and mean BP (baseline = 100%; minute 15, 103 ± 1%; minute 30, 102 ± 1%; P = 0.003) increased, whereas LVC decreased (baseline = 100%; minute 15, 93 ± 3%; minute 30, 99 ± 3%; P = 0.03). In contrast, MSNA, mean BP, and LVC were unchanged in TC participants (P > 0.05). We provide the first evidence that intranasal insulin administration in healthy young adults acutely increases MSNA and BP and decreases LVC. These results enhance mechanistic understanding of the sympathetic and peripheral hemodynamic response to insulin.NEW & NOTEWORTHY Systemic insulin increases muscle sympathetic nerve activity (MSNA) via central actions within the brainstem and peripheral activation of the arterial baroreflex. In the absence of peripheral insulin action, whether central insulin stimulation increases MSNA and influences peripheral hemodynamics in humans was unknown. We provide the first evidence that intranasal insulin administration increases MSNA and blood pressure and reduces leg vascular conductance. These results enhance mechanistic understanding of the sympathetic and hemodynamic response to insulin.


Subject(s)
Administration, Intranasal , Insulin , Muscle, Skeletal , Sympathetic Nervous System , Humans , Male , Female , Insulin/administration & dosage , Insulin/blood , Sympathetic Nervous System/drug effects , Adult , Muscle, Skeletal/innervation , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Blood Pressure/drug effects , Regional Blood Flow/drug effects , Blood Glucose/metabolism , Blood Glucose/drug effects , Healthy Volunteers , Young Adult , Baroreflex/drug effects
11.
J Hand Surg Eur Vol ; 49(6): 773-782, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38819009

ABSTRACT

Optimal recovery of muscle function after proximal nerve injuries remains a complex and challenging problem. After a nerve injury, alterations in the affected muscles lead to atrophy, and later degeneration and replacement by fat-fibrous tissues. At present, several different strategies for the preservation of skeletal muscle have been reported, including various sets of physical exercises, muscle massage, physical methods (e.g. electrical stimulation, magnetic field and laser stimulation, low-intensity pulsed ultrasound), medicines (e.g. nutrients, natural and chemical agents, anti-inflammatory and antioxidants, hormones, enzymes and enzyme inhibitors), regenerative medicine (e.g. growth factors, stem cells and microbiota) and surgical procedures (e.g. supercharge end-to-side neurotization). The present review will focus on methods that aimed to minimize the damage to muscles after denervation based on our present knowledge.


Subject(s)
Muscle, Skeletal , Peripheral Nerve Injuries , Humans , Muscle, Skeletal/innervation , Peripheral Nerve Injuries/surgery , Peripheral Nerve Injuries/therapy , Exercise Therapy/methods , Massage , Muscle Denervation
12.
J Physiol ; 602(12): 2855-2872, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38709959

ABSTRACT

Alpha band oscillations in shared synaptic inputs to the alpha motor neuron pool can be considered an involuntary source of noise that hinders precise voluntary force production. This study investigated the impact of changing muscle length on the shared synaptic oscillations to spinal motor neurons, particularly in the physiological tremor band. Fourteen healthy individuals performed low-level dorsiflexion contractions at ankle joint angles of 90° and 130°, while high-density surface electromyography (HDsEMG) was recorded from the tibialis anterior (TA). We decomposed the HDsEMG into motor units spike trains and calculated the motor units' coherence within the delta (1-5 Hz), alpha (5-15 Hz), and beta (15-35 Hz) bands. Additionally, force steadiness and force spectral power within the tremor band were quantified. Results showed no significant differences in force steadiness between 90° and 130°. In contrast, alpha band oscillations in both synaptic inputs and force output decreased as the length of the TA was moved from shorter (90°) to longer (130°), with no changes in delta and beta bands. In a second set of experiments (10 participants), evoked twitches were recorded with the ankle joint at 90° and 130°, revealing longer twitch durations in the longer TA muscle length condition compared to the shorter. These experimental results, supported by a simple computational simulation, suggest that increasing muscle length enhances the muscle's low-pass filtering properties, influencing the oscillations generated by the Ia afferent feedback loop. Therefore, this study provides valuable insights into the interplay between muscle biomechanics and neural oscillations. KEY POINTS: We investigated whether changes in muscle length, achieved by changing joint position, could influence common synaptic oscillations to spinal motor neurons, particularly in the tremor band (5-15 Hz). Our results demonstrate that changing muscle length from shorter to longer induces reductions in the magnitude of alpha band oscillations in common synaptic inputs. Importantly, these reductions were reflected in the oscillations of muscle force output within the alpha band. Longer twitch durations were observed in the longer muscle length condition compared to the shorter, suggesting that increasing muscle length enhances the muscle's low-pass filtering properties. Changes in the peripheral contractile properties of motor units due to changes in muscle length significantly influence the transmission of shared synaptic inputs into muscle force output. These findings prove the interplay between muscle mechanics and neural adaptations.


Subject(s)
Motor Neurons , Muscle Contraction , Muscle, Skeletal , Humans , Motor Neurons/physiology , Male , Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Muscle Contraction/physiology , Female , Electromyography , Young Adult , Synapses/physiology , Spinal Cord/physiology
13.
J Physiol ; 602(12): 2961-2983, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38758005

ABSTRACT

Volitional movement requires descending input from the motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity. In humans, it is not known whether posterior epidural spinal cord stimulation targeted at the sensorimotor interface or anterior epidural spinal cord stimulation targeted within the motor system is effective at facilitating brain evoked responses. In 59 individuals undergoing elective cervical spine decompression surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord was stimulated with epidural electrodes, with muscle responses being recorded in arm and leg muscles. Spinal electrodes were placed either posteriorly or anteriorly, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and spinal sensory (posterior) but not spinal motor (anterior) stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred only when descending motor and spinal afferent stimuli were timed to converge in the spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, clinical signs suggest that facilitation was observed in both injured and uninjured segments of the spinal cord. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation. KEY POINTS: Pairs of stimuli designed to alter nervous system function typically target the motor system, or one targets the sensory system and the other targets the motor system for convergence in cortex. In humans undergoing clinically indicated surgery, we tested paired brain and spinal cord stimulation that we developed in rats aiming to target sensorimotor convergence in the cervical cord. Arm and hand muscle responses to paired sensorimotor stimulation were more than five times larger than brain or spinal cord stimulation alone when applied to the posterior but not anterior spinal cord. Arm and hand muscle responses to paired stimulation were more selective for targeted muscles than the brain- or spinal-only conditions, especially at latencies that produced the strongest effects of paired stimulation. Measures of clinical evidence of compression were only weakly related to the paired stimulation effect, suggesting that it could be applied as therapy in people affected by disorders of the central nervous system.


Subject(s)
Evoked Potentials, Motor , Motor Cortex , Muscle, Skeletal , Spinal Cord , Motor Cortex/physiology , Humans , Male , Female , Middle Aged , Spinal Cord/physiology , Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Spinal Cord Stimulation/methods , Aged , Electric Stimulation/methods
14.
J Plast Reconstr Aesthet Surg ; 94: 40-42, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749367

ABSTRACT

Targeted muscle reinnervation (TMR) and regenerative peripheral nerve interface (RPNI) are used to prevent or treat neuromas in amputees. TMR for above-the-knee amputation (AKA) is most commonly performed through a posterior incision rather than the stump wound because recipient motor nerves are primarily located in the proximal third of the thigh. When preventative TMR is performed with concurrent AKA, a posterior approach requires intraoperative repositioning and an additional incision. The purpose of this study was to evaluate feasibility of TMR and operative times for nerve management performed through the wound compared to a posterior approach in AKA patients to guide surgical decision-making. Patients who underwent AKA with TMR between 2018-2023 were reviewed. Patients were divided into two groups: TMR performed through the wound (Group I) and TMR performed through a posterior approach (Group II). If a nerve was unable to undergo coaptation for TMR due to the lack of suitable donor motor nerves, RPNI was performed. Eighteen patients underwent AKA with nerve management were included from Group I (8 patients) and Group II (10 patients). TMR coaptations performed on distinct nerves was 1.5 ± 0.5 in Group I compared to 2.6 ± 0.5 in Group II (p = 0.001). Operative time for Group I was 200.7 ± 33.4 min compared to 326.5 ± 37.1 min in Group II (p = 0.001). TMR performed through the wound following AKA requires less operative time than a posterior approach. However, since recipient motor nerves are not consistently found near the stump, RPNI may be required with TMR whereas the posterior approach allows for more TMR coaptations.


Subject(s)
Amputation, Surgical , Nerve Transfer , Humans , Male , Female , Amputation, Surgical/methods , Middle Aged , Adult , Nerve Transfer/methods , Retrospective Studies , Operative Time , Amputation Stumps/innervation , Amputation Stumps/surgery , Nerve Regeneration/physiology , Feasibility Studies , Aged , Neuroma/surgery , Thigh/innervation , Thigh/surgery , Muscle, Skeletal/innervation , Muscle, Skeletal/transplantation
15.
Sci Robot ; 9(90): eadl0085, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809994

ABSTRACT

Sensory feedback for prosthesis control is typically based on encoding sensory information in specific types of sensory stimuli that the users interpret to adjust the control of the prosthesis. However, in physiological conditions, the afferent feedback received from peripheral nerves is not only processed consciously but also modulates spinal reflex loops that contribute to the neural information driving muscles. Spinal pathways are relevant for sensory-motor integration, but they are commonly not leveraged for prosthesis control. We propose an approach to improve sensory-motor integration for prosthesis control based on modulating the excitability of spinal circuits through the vibration of tendons in a closed loop with muscle activity. We measured muscle signals in healthy participants and amputees during different motor tasks, and we closed the loop by applying vibration on tendons connected to the muscles, which modulated the excitability of motor neurons. The control signals to the prosthesis were thus the combination of voluntary control and additional spinal reflex inputs induced by tendon vibration. Results showed that closed-loop tendon vibration was able to modulate the neural drive to the muscles. When closed-loop tendon vibration was used, participants could achieve similar or better control performance in interfaces using muscle activation than without stimulation. Stimulation could even improve prosthetic grasping in amputees. Overall, our results indicate that closed-loop tendon vibration can integrate spinal reflex pathways in the myocontrol system and open the possibility of incorporating natural feedback loops in prosthesis control.


Subject(s)
Amputees , Artificial Limbs , Feedback, Sensory , Hand , Muscle, Skeletal , Prosthesis Design , Reflex , Vibration , Humans , Adult , Hand/physiology , Male , Female , Feedback, Sensory/physiology , Reflex/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Electromyography , Tendons/physiology , Motor Neurons/physiology , Middle Aged , Hand Strength/physiology , Young Adult
16.
J Exp Biol ; 227(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38699818

ABSTRACT

Little is known regarding the precise muscle, bone and joint actions resulting from individual and simultaneous muscle activation(s) of the lower limb. An in situ experimental approach is described herein to control the muscles of the rabbit lower hindlimb, including the medial and lateral gastrocnemius, soleus, plantaris and tibialis anterior. The muscles were stimulated using nerve-cuff electrodes placed around the innervating nerves of each muscle. Animals were fixed in a stereotactic frame with the ankle angle set at 90 deg. To demonstrate the efficacy of the experimental technique, isometric plantarflexion torque was measured at the 90 deg ankle joint angle at a stimulation frequency of 100, 60 and 30 Hz. Individual muscle torque and the torque produced during simultaneous activation of all plantarflexor muscles are presented for four animals. These results demonstrate that the experimental approach was reliable, with insignificant variation in torque between repeated contractions. The experimental approach described herein provides the potential for measuring a diverse array of muscle properties, which is important to improve our understanding of musculoskeletal biomechanics.


Subject(s)
Hindlimb , Muscle, Skeletal , Torque , Animals , Rabbits , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Hindlimb/physiology , Biomechanical Phenomena , Electric Stimulation , Male
17.
Clin Auton Res ; 34(2): 233-252, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38709357

ABSTRACT

PURPOSE: We conducted a meta-analysis to determine the effect of hyperoxia on muscle sympathetic nerve activity in healthy individuals and those with cardio-metabolic diseases. METHODS: A comprehensive search of electronic databases was performed until August 2022. All study designs (except reviews) were included: population (humans; apparently healthy or with at least one chronic disease); exposures (muscle sympathetic nerve activity during hyperoxia or hyperbaria); comparators (hyperoxia or hyperbaria vs. normoxia); and outcomes (muscle sympathetic nerve activity, heart rate, blood pressure, minute ventilation). Forty-nine studies were ultimately included in the meta-analysis. RESULTS: In healthy individuals, hyperoxia had no effect on sympathetic burst frequency (mean difference [MD] - 1.07 bursts/min; 95% confidence interval [CI] - 2.17, 0.04bursts/min; P = 0.06), burst incidence (MD 0.27 bursts/100 heartbeats [hb]; 95% CI - 2.10, 2.64 bursts/100 hb; P = 0.82), burst amplitude (P = 0.85), or total activity (P = 0.31). In those with chronic diseases, hyperoxia decreased burst frequency (MD - 5.57 bursts/min; 95% CI - 7.48, - 3.67 bursts/min; P < 0.001) and burst incidence (MD - 4.44 bursts/100 hb; 95% CI - 7.94, - 0.94 bursts/100 hb; P = 0.01), but had no effect on burst amplitude (P = 0.36) or total activity (P = 0.90). Our meta-regression analyses identified an inverse relationship between normoxic burst frequency and change in burst frequency with hyperoxia. In both groups, hyperoxia decreased heart rate but had no effect on any measure of blood pressure. CONCLUSION: Hyperoxia does not change sympathetic activity in healthy humans. Conversely, in those with chronic diseases, hyperoxia decreases sympathetic activity. Regardless of disease status, resting sympathetic burst frequency predicts the degree of change in burst frequency, with larger decreases for those with higher resting activity.


Subject(s)
Hyperoxia , Muscle, Skeletal , Sympathetic Nervous System , Humans , Hyperoxia/physiopathology , Sympathetic Nervous System/physiology , Sympathetic Nervous System/physiopathology , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Heart Rate/physiology
18.
Am J Physiol Heart Circ Physiol ; 327(1): H140-H154, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38700469

ABSTRACT

Preeclampsia is a risk factor for future cardiovascular diseases. However, the mechanisms underlying this association remain unclear, limiting effective prevention strategies. Blood pressure responses to acute stimuli may reveal cardiovascular dysfunction not apparent at rest, identifying individuals at elevated cardiovascular risk. Therefore, we compared blood pressure responsiveness with acute stimuli between previously preeclamptic (PPE) women (34 ± 5 yr old, 13 ± 6 mo postpartum) and women following healthy pregnancies (Ctrl; 29 ± 3 yr old, 15 ± 4 mo postpartum). Blood pressure (finger photoplethysmography calibrated to manual sphygmomanometry-derived values; PPE: n = 12, Ctrl: n = 12) was assessed during end-expiratory apnea, mental stress, and isometric handgrip exercise protocols. Integrated muscle sympathetic nerve activity (MSNA) was assessed in a subset of participants (peroneal nerve microneurography; PPE: n = 6, Ctrl: n = 8). Across all protocols, systolic blood pressure (SBP) was higher in PPE than Ctrl (main effects of group all P < 0.05). Peak changes in SBP were stressor specific: peak increases in SBP were not different between PPE and Ctrl during apnea (8 ± 6 vs. 6 ± 5 mmHg, P = 0.32) or mental stress (9 ± 5 vs. 4 ± 7 mmHg, P = 0.06). However, peak exercise-induced increases in SBP were greater in PPE than Ctrl (11 ± 5 vs. 7 ± 7 mmHg, P = 0.04). MSNA was higher in PPE than Ctrl across all protocols (main effects of group all P < 0.05), and increases in peak MSNA were greater in PPE than Ctrl during apnea (44 ± 6 vs. 27 ± 14 burst/100 hb, P = 0.04) and exercise (25 ± 8 vs. 13 ± 11 burst/100 hb, P = 0.01) but not different between groups during mental stress (2 ± 3 vs. 0 ± 5 burst/100 hb, P = 0.41). Exaggerated pressor and sympathetic responses to certain stimuli may contribute to the elevated long-term risk for cardiovascular disease in PPE.NEW & NOTEWORTHY Women with recent histories of preeclampsia demonstrated higher systolic blood pressures across sympathoexcitatory stressors relative to controls. Peak systolic blood pressure reactivity was exacerbated in previously preeclamptic women during small muscle-mass exercises, although not during apneic or mental stress stimuli. These findings underscore the importance of assessing blood pressure control during a variety of experimental conditions in previously preeclamptic women to elucidate mechanisms that may contribute to their elevated cardiovascular disease risk.


Subject(s)
Apnea , Blood Pressure , Hand Strength , Pre-Eclampsia , Stress, Psychological , Sympathetic Nervous System , Humans , Female , Pre-Eclampsia/physiopathology , Pre-Eclampsia/diagnosis , Pregnancy , Adult , Stress, Psychological/physiopathology , Apnea/physiopathology , Sympathetic Nervous System/physiopathology , Exercise , Muscle, Skeletal/innervation , Muscle, Skeletal/physiopathology , Case-Control Studies
19.
Physiol Rep ; 12(9): e16039, 2024 May.
Article in English | MEDLINE | ID: mdl-38740563

ABSTRACT

Evaluating reciprocal inhibition of the thigh muscles is important to investigate the neural circuits of locomotor behaviors. However, measurements of reciprocal inhibition of thigh muscles using spinal reflex, such as H-reflex, have never been systematically established owing to methodological limitations. The present study aimed to clarify the existence of reciprocal inhibition in the thigh muscles using transcutaneous spinal cord stimulation (tSCS). Twenty able-bodied male individuals were enrolled. We evoked spinal reflex from the biceps femoris muscle (BF) by tSCS on the lumber posterior root. We examined whether the tSCS-evoked BF reflex was reciprocally inhibited by the following conditionings: (1) single-pulse electrical stimulation on the femoral nerve innervating the rectus femoris muscle (RF) at various inter-stimulus intervals in the resting condition; (2) voluntary contraction of the RF; and (3) vibration stimulus on the RF. The BF reflex was significantly inhibited when the conditioning electrical stimulation was delivered at 10 and 20 ms prior to tSCS, during voluntary contraction of the RF, and during vibration on the RF. These data suggested a piece of evidence of the existence of reciprocal inhibition from the RF to the BF muscle in humans and highlighted the utility of methods for evaluating reciprocal inhibition of the thigh muscles using tSCS.


Subject(s)
Spinal Cord Stimulation , Thigh , Humans , Male , Spinal Cord Stimulation/methods , Adult , Thigh/physiology , Thigh/innervation , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Muscle Contraction/physiology , Transcutaneous Electric Nerve Stimulation/methods , Young Adult , H-Reflex/physiology , Femoral Nerve/physiology , Neural Inhibition/physiology , Quadriceps Muscle/physiology , Quadriceps Muscle/innervation , Hamstring Muscles/physiology , Electromyography
20.
Skelet Muscle ; 14(1): 11, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769542

ABSTRACT

BACKGROUND: Myotonic Dystrophy type I (DM1) is the most common muscular dystrophy in adults. Previous reports have highlighted that neuromuscular junctions (NMJs) deteriorate in skeletal muscle from DM1 patients and mouse models thereof. However, the underlying pathomechanisms and their contribution to muscle dysfunction remain unknown. METHODS: We compared changes in NMJs and activity-dependent signalling pathways in HSALR and Mbnl1ΔE3/ΔE3 mice, two established mouse models of DM1. RESULTS: Muscle from DM1 mouse models showed major deregulation of calcium/calmodulin-dependent protein kinases II (CaMKIIs), which are key activity sensors regulating synaptic gene expression and acetylcholine receptor (AChR) recycling at the NMJ. Both mouse models exhibited increased fragmentation of the endplate, which preceded muscle degeneration. Endplate fragmentation was not accompanied by changes in AChR turnover at the NMJ. However, the expression of synaptic genes was up-regulated in mutant innervated muscle, together with an abnormal accumulation of histone deacetylase 4 (HDAC4), a known target of CaMKII. Interestingly, denervation-induced increase in synaptic gene expression and AChR turnover was hampered in DM1 muscle. Importantly, CaMKIIß/ßM overexpression normalized endplate fragmentation and synaptic gene expression in innervated Mbnl1ΔE3/ΔE3 muscle, but it did not restore denervation-induced synaptic gene up-regulation. CONCLUSIONS: Our results indicate that CaMKIIß-dependent and -independent mechanisms perturb synaptic gene regulation and muscle response to denervation in DM1 mouse models. Changes in these signalling pathways may contribute to NMJ destabilization and muscle dysfunction in DM1 patients.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Disease Models, Animal , Muscle, Skeletal , Myotonic Dystrophy , Neuromuscular Junction , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Myotonic Dystrophy/physiopathology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Neuromuscular Junction/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/innervation , Muscle, Skeletal/pathology , Mice , Humans , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Receptors, Cholinergic/metabolism , Receptors, Cholinergic/genetics , Male , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...