Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 50.504
1.
Sci Rep ; 14(1): 12860, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834832

A common theory of motor control posits that movement is controlled by muscle synergies. However, the behavior of these synergies during highly complex movements remains largely unexplored. Skateboarding is a hardly researched sport that requires rapid motor control to perform tricks. The objectives of this study were to investigate three key areas: (i) whether motor complexity differs between skateboard tricks, (ii) the inter-participant variability in synergies, and (iii) whether synergies are shared between different tricks. Electromyography data from eight muscles per leg were collected from seven experienced skateboarders performing three different tricks (Ollie, Kickflip, 360°-flip). Synergies were extracted using non-negative matrix factorization. The number of synergies (NoS) was determined using two criteria based on the total variance accounted for (tVAF > 90% and adding an additional synergy does not increase tVAF > 1%). In summary: (i) NoS and tVAF did not significantly differ between tricks, indicating similar motor complexity. (ii) High inter-participant variability exists across participants, potentially caused by the low number of constraints given to perform the tricks. (iii) Shared synergies were observed in every comparison of two tricks. Furthermore, each participant exhibited at least one synergy vector, which corresponds to the fundamental 'jumping' task, that was shared through all three tricks.


Electromyography , Movement , Muscle, Skeletal , Humans , Muscle, Skeletal/physiology , Male , Adult , Movement/physiology , Female , Young Adult , Biomechanical Phenomena , Skating/physiology , Leg/physiology
2.
J Musculoskelet Neuronal Interact ; 24(2): 107-119, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38825993

OBJECTIVES: The current study investigated performance fatigability (PF) and time course of changes in force, electromyographic amplitude (EMG AMP) and frequency (EMG MPF), and neuromuscular efficiency (NME) during a sustained, isometric, handgrip hold to failure (HTF) using the rating of perceived exertion (RPE)-Clamp Model. METHODS: Twelve males performed a handgrip HTF anchored to RPE=5. The time to task failure (Tlim), force (N), EMG AMP and MPF, and NME (normalized force/ normalized EMG AMP) were recorded. Analyses included a paired samples t-test for PF at an alpha of p<0.05, 1-way repeated measures ANOVA across time and post-hoc t-tests (p<0.0025) for force, EMG AMP and MPF, and NME responses. RESULTS: The PF (pre- to post- maximal force % decline) was 38.2±11.5%. There were decreases in responses, relative to 0% Tlim, from 40% to 100% Tlim (force), at 30%, 60%, and 100% Tlim (EMG AMP), from 10% to 100% Tlim(EMP MPF), and from 50% to 65%, and 80% to 100% Tlim (NME) (p<0.0025). CONCLUSIONS: The RPE-Clamp Model in this study demonstrated that pacing strategies may be influenced by the integration of anticipatory, feedforward, and feedback mechanisms, and provided insights into the relationship between neuromuscular and perceptual responses, and actual force generating capacity.


Electromyography , Hand Strength , Muscle Fatigue , Muscle, Skeletal , Humans , Male , Hand Strength/physiology , Muscle Fatigue/physiology , Young Adult , Adult , Electromyography/methods , Muscle, Skeletal/physiology , Isometric Contraction/physiology , Physical Exertion/physiology
3.
J Musculoskelet Neuronal Interact ; 24(2): 139-147, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38825996

OBJECTIVES: To verify the relationship between the indicators of components of lumbar motor control and determine the factors related to the indicators to each of these components. METHODS: Twenty-five healthy university students were included in the study. The lumbar spine and hip kinematic parameters of posterior/anterior pelvic tilt (mobility and smoothness), ball catching (reactivity), and forward/backward rocking (adaptive stability) were measured as indicators of lumbar motor control. Lumbar proprioception, trunk muscle strength, and lower trunk muscle thickness were also measured. Kinematic parameters of the lumbar spine and hip were measured using a small accelerometer. The data verified the relevance of indicators of lumbar motor control and the relationship with relevant factors. RESULTS: No significant correlations were found for most lumbar motor control indicators. Lumbar proprioception and rectus abdominis muscle thickness were identified as relevant indicators of lumbar motor control. CONCLUSIONS: Each component of lumbar motor control is independent and must be evaluated for the component whose function is required. Additionally, some components of lumbar motor control are associated with lumbar proprioception and rectus abdominis muscle thickness; thus, evaluation of these components is necessary when evaluating lumbar motor control.


Lumbar Vertebrae , Proprioception , Humans , Male , Female , Young Adult , Proprioception/physiology , Lumbar Vertebrae/physiology , Lumbar Vertebrae/diagnostic imaging , Biomechanical Phenomena/physiology , Adult , Muscle Strength/physiology , Postural Balance/physiology , Lumbosacral Region/physiology , Muscle, Skeletal/physiology
4.
J Musculoskelet Neuronal Interact ; 24(2): 120-126, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38825994

OBJECTIVES: This study aimed to examine the reliability of supine medicine ball throw peak force and rate of force development (RFD) measurements. A secondary aim was to investigate the correlations between these measurements and vertical jump height. METHODS: Twenty young women (21±3 years) reported for experimental testing on two different occasions. Supine medicine ball throw assessments were performed during each testing session to assess peak force, RFDmax, and RFD at specific percentages of peak force (RFD30% and RFD40-80%). Vertical jumps were performed on a jump mat. The jump mat measured vertical jump height based on flight time. RESULTS: Good intraclass correlation coefficients (≥0.82) and coefficients of variation (≤14.0%) were observed between sessions for peak force, RFDmax, and RFD40-80%, but not for RFD30% (0.55, 27.2%). There were significant correlations between jump height and peak force (r=0.483, P=0.031), RFDmax (r=0.484, P=0.031), and RFD40-80% (r=0.491, P=0.028). There was no significant correlation between jump height and RFD30% (r=0.359, P=0.120). CONCLUSIONS: Our results showed that supine medicine ball throw peak force, RFDmax, and RFD40-80% were reliable measures for assessing upper-body explosive strength in young adults. These measurements were significantly associated with vertical jump height and therefore, may be effective predictors of one's athletic ability.


Muscle Strength , Humans , Female , Young Adult , Reproducibility of Results , Muscle Strength/physiology , Adult , Biomechanical Phenomena/physiology , Supine Position/physiology , Muscle, Skeletal/physiology
5.
J Musculoskelet Neuronal Interact ; 24(2): 127-138, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38825995

OBJECTIVES: The aim of this study was to compare torque-velocity profiles, muscle architecture, tendon dimensions, and bilateral-symmetry between competitive cyclists (CY), competitive runners (RN), ice-hockey players (IH), basketball players (BP), and physically-active individuals (CN) (n=10 for each group). METHODS: Vastus lateralis (VL) muscle and patellar tendon (PT) structures were determined with B-mode ultrasonography, and maximal knee extensor isokinetic torque was assessed at three different velocities. RESULTS: Optimal torque and velocity were lower in runners than CY, BP and IH (p<0.05). Maximal power was similar between the athlete groups but greater than CN (p<0.05). Furthermore, RN and BP reached their peak-torque at longer muscle lengths compared to IH and CY (p<0.05). RN had the lowest VL muscle thickness and the greatest fascicle length, while CY had the greatest pennation angle (p<0.05). CY had the greatest PT thickness, particularly at the proximal and medial sites, while BP at the distal point (p<0.05), with similar trends observed for PT cross-sectional-area. CONCLUSIONS: Our findings show that even if power generating capacity is similar between athletic disciplines, there are discipline-specific muscle adaptations, where particularly runners appear to have muscles adapted for speed rather than torque development, while in cyclists, velocity is sacrificed for torque development.


Athletes , Torque , Humans , Male , Adult , Young Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/diagnostic imaging , Ultrasonography/methods , Patellar Ligament/physiology , Patellar Ligament/diagnostic imaging , Patellar Ligament/anatomy & histology , Running/physiology
6.
J Musculoskelet Neuronal Interact ; 24(2): 200-208, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38826003

OBJECTIVES: Bilateral Deficit (BLD) occurs when the force generated by both limbs together is smaller than the sum of the forces developed separately by the two limbs. BLD may be modulated by physical training. Here, were investigated the effects of unilateral or bilateral plyometric training on BLD and neuromuscular activation during lower limb explosive extensions. METHODS: Fourteen young males were randomized into the unilateral (UL_) or bilateral (BL_) training group. Plyometric training (20 sessions, 2 days/week) was performed on a sled ergometer, and consisted of UL or BL consecutive, plyometric lower limb extensions (3-to-5 sets; 8-to-10 repetitions). Before and after training, maximal explosive efforts with both lower limbs or with each limb separately were assessed. Electromyography of representative lower limb muscles was measured. RESULTS: BL_training significantly and largely decreased BLD (p=0.003, effect size=1.63). This was accompanied by the reversion from deficit to facilitation of the electromyography amplitude of knee extensors during bilateral efforts (p=0.007). Conversely, UL_training had negligible effects on BLD (p=0.781). Also, both groups showed similar improvements in their maximal explosive power generated after training. CONCLUSIONS: Bilateral plyometric training can mitigate BLD, and should be considered for training protocols focused on improving bilateral lower limb motor performance.


Electromyography , Lower Extremity , Muscle, Skeletal , Plyometric Exercise , Humans , Male , Plyometric Exercise/methods , Lower Extremity/physiology , Young Adult , Electromyography/methods , Muscle, Skeletal/physiology , Adult , Muscle Strength/physiology
7.
Life Sci Alliance ; 7(8)2024 Aug.
Article En | MEDLINE | ID: mdl-38843935

Age-related reduction in muscle stem cell (MuSC) regenerative capacity is associated with cell-autonomous and non-cell-autonomous changes caused by alterations in systemic and skeletal muscle environments, ultimately leading to a decline in MuSC number and function. Previous studies demonstrated that STAT3 plays a key role in driving MuSC expansion and differentiation after injury-activated regeneration, by regulating autophagy in activated MuSCs. However, autophagy gradually declines in MuSCs during lifespan and contributes to the impairment of MuSC-mediated regeneration of aged muscles. Here, we show that STAT3 inhibition restores the autophagic process in aged MuSCs, thereby recovering MuSC ability to promote muscle regeneration in geriatric mice. We show that STAT3 inhibition could activate autophagy at the nuclear level, by promoting transcription of autophagy-related genes, and at the cytoplasmic level, by targeting STAT3/PKR phosphorylation of eIF2α. These results point to STAT3 inhibition as a potential intervention to reverse the age-related autophagic block that impairs MuSC ability to regenerate aged muscles. They also reveal that STAT3 regulates MuSC function by both transcription-dependent and transcription-independent regulation of autophagy.


Aging , Autophagy , Muscle, Skeletal , Regeneration , STAT3 Transcription Factor , STAT3 Transcription Factor/metabolism , Animals , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Muscle, Skeletal/cytology , Aging/physiology , Aging/metabolism , Mice, Inbred C57BL , Stem Cells/metabolism , Stem Cells/cytology , Phosphorylation , Male , Cell Differentiation , Signal Transduction
8.
Sci Rep ; 14(1): 13057, 2024 06 06.
Article En | MEDLINE | ID: mdl-38844650

Combined action observation and motor imagery (AOMI) facilitates corticospinal excitability (CSE) and may potentially induce plastic-like changes in the brain in a similar manner to physical practice. This study used transcranial magnetic stimulation (TMS) to explore changes in CSE for AOMI of coordinative lower-limb actions. Twenty-four healthy adults completed two baseline (BLH, BLNH) and three AOMI conditions, where they observed a knee extension while simultaneously imagining the same action (AOMICONG), plantarflexion (AOMICOOR-FUNC), or dorsiflexion (AOMICOOR-MOVE). Motor evoked potential (MEP) amplitudes were recorded as a marker of CSE for all conditions from two knee extensor, one dorsi flexor, and two plantar flexor muscles following TMS to the right leg representation of the left primary motor cortex. A main effect for experimental condition was reported for all three muscle groups. MEP amplitudes were significantly greater in the AOMICONG condition compared to the BLNH condition (p = .04) for the knee extensors, AOMICOOR-FUNC condition compared to the BLH condition (p = .03) for the plantar flexors, and AOMICOOR-MOVE condition compared to the two baseline conditions for the dorsi flexors (ps ≤ .01). The study findings support the notion that changes in CSE are driven by the imagined actions during coordinative AOMI.


Evoked Potentials, Motor , Imagination , Lower Extremity , Motor Cortex , Muscle, Skeletal , Pyramidal Tracts , Transcranial Magnetic Stimulation , Humans , Male , Female , Evoked Potentials, Motor/physiology , Adult , Motor Cortex/physiology , Imagination/physiology , Young Adult , Pyramidal Tracts/physiology , Lower Extremity/physiology , Muscle, Skeletal/physiology , Electromyography
9.
Nat Commun ; 15(1): 4777, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839748

Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in vertebrate animals, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle. These robots integrate multifunctional sensing and on-demand actuation into a biocompatible platform using an in-situ solution-based method. They feature biomimetic designs that enable adaptive motions and stress-free contact with tissues, supported by a battery-free wireless module for untethered operation. Demonstrations range from a robotic cuff for detecting blood pressure, to a robotic gripper for tracking bladder volume, an ingestible robot for pH sensing and on-site drug delivery, and a robotic patch for quantifying cardiac function and delivering electrotherapy, highlighting the application versatilities and potentials of the bio-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.


Robotics , Robotics/instrumentation , Robotics/methods , Animals , Biomimetics/methods , Biomimetics/instrumentation , Humans , Prostheses and Implants , Skin , Equipment Design , Muscle, Skeletal/physiology , Wearable Electronic Devices
10.
J Sports Sci Med ; 23(2): 396-409, 2024 Jun.
Article En | MEDLINE | ID: mdl-38841629

Arm-cycling is a versatile exercise modality with applications in both athletic enhancement and rehabilitation, yet the influence of forearm orientation remains understudied. Thus, this study aimed to investigate the impact of forearm position on upper-body arm-cycling Wingate tests. Fourteen adult males (27.3 ± 5.8 years) underwent bilateral assessments of handgrip strength in standing and seated positions, followed by pronated and supinated forward arm-cycling Wingate tests. Electromyography (EMG) was recorded from five upper-extremity muscles, including anterior deltoid, triceps brachii lateral head, biceps brachii, latissimus dorsi, and brachioradialis. Simultaneously, bilateral normal and propulsion forces were measured at the pedal-crank interface. Rate of perceived exertion (RPE), power output, and fatigue index were recorded post-test. The results showed that a pronated forearm position provided significantly (p < 0.05) higher normal and propulsion forces and triceps brachii muscle activation patterns during arm-cycling. No significant difference in RPE was observed between forearm positions (p = 0.17). A positive correlation was found between seated handgrip strength and peak power output during the Wingate test while pronated (dominant: p = 0.01, r = 0.55; non-dominant: p = 0.03, r = 0.49) and supinated (dominant: p = 0.03, r = 0.51; don-dominant: p = 0.04, r = 0.47). Fatigue changed the force and EMG profile during the Wingate test. In conclusion, this study enhances our understanding of forearm position's impact on upper-body Wingate tests. These findings have implications for optimizing training and performance strategies in individuals using arm-cycling for athletic enhancement and rehabilitation.


Electromyography , Exercise Test , Forearm , Hand Strength , Muscle, Skeletal , Pronation , Humans , Male , Forearm/physiology , Hand Strength/physiology , Adult , Muscle, Skeletal/physiology , Young Adult , Biomechanical Phenomena , Pronation/physiology , Exercise Test/methods , Supination/physiology , Muscle Fatigue/physiology , Physical Exertion/physiology , Arm/physiology , Upper Extremity/physiology
11.
J Sports Sci Med ; 23(2): 425-435, 2024 Jun.
Article En | MEDLINE | ID: mdl-38841632

Non-local muscle fatigue (NLMF) refers to a transient decline in the functioning of a non-exercised muscle following the fatigue of a different muscle group. Most studies examining NLMF conducted post-tests immediately after the fatiguing protocols, leaving the duration of these effects uncertain. The aim of this study was to investigate the duration of NLMF (1-, 3-, and 5-minutes). In this randomized crossover study, 17 recreationally trained participants (four females) were tested for the acute effects of unilateral knee extensor (KE) muscle fatigue on the contralateral homologous muscle strength, and activation. Each of the four sessions included testing at either 1-, 3-, or 5-minutes post-test, as well as a control condition for non-dominant KE peak force, instantaneous strength (force produced within the first 100-ms), and vastus lateralis and biceps femoris electromyography (EMG). The dominant KE fatigue intervention protocol involved two sets of 100-seconds maximal voluntary isometric contractions (MVIC) separated by 1-minute of rest. Non-dominant KE MVIC forces showed moderate and small magnitude reductions at 1-min (p < 0.0001, d = 0.72) and 3-min (p = 0.005, d = 0.30) post-test respectively. The KE MVIC instantaneous strength revealed large magnitude, significant reductions between 1-min (p = 0.021, d = 1.33), and 3-min (p = 0.041, d = 1.13) compared with the control. In addition, EMG data revealed large magnitude increases with the 1-minute versus control condition (p = 0.03, d = 1.10). In summary, impairments of the non-exercised leg were apparent up to 3-minutes post-exercise with no significant deficits at 5-minutes. Recovery duration plays a crucial role in the manifestation of NLMF.


Cross-Over Studies , Electromyography , Isometric Contraction , Knee , Muscle Fatigue , Muscle Strength , Humans , Muscle Fatigue/physiology , Female , Male , Isometric Contraction/physiology , Muscle Strength/physiology , Young Adult , Knee/physiology , Time Factors , Adult , Quadriceps Muscle/physiology , Muscle, Skeletal/physiology , Hamstring Muscles/physiology
12.
J Sports Sci Med ; 23(2): 326-341, 2024 Jun.
Article En | MEDLINE | ID: mdl-38841639

In the recent past, practical blood flow restriction (pBFR) using non-pneumatic, usually elastic cuffs has been established as a cost-effective alternative to traditional blood flow restriction (BFR) using pneumatic cuffs, especially for training in large groups. This study investigated whether low-load resistance exercise with perceptually primed pBFR using an elastic knee wrap is suitable to induce similar motor performance fatigue as well as physiological and perceptual responses compared to traditional BFR using a pneumatic nylon cuff in males and females. In a randomized, counterbalanced cross-over study, 30 healthy subjects performed 4 sets (30-15-15-15 repetitions) of unilateral knee extensions at 20% of their one-repetition-maximum. In the pBFR condition, each individual was perceptually primed to a BFR pressure corresponding to 60% of their arterial occlusion pressure. Before and after exercise, maximal voluntary torque, maximal muscle activity, and cuff pressure-induced discomfort were assessed. Moreover, physiological (i.e., muscle activity, muscle oxygenation) and perceptual responses (i.e., effort and exercise-induced leg muscle pain) were recorded during exercise. Moderate correlations with no differences between pBFR and BFR were found regarding the decline in maximal voluntary torque and maximal muscle activity. Furthermore, no to very strong correlations between conditions, with no differences, were observed for muscle activity, muscle oxygenation, and perceptual responses during exercise sets. However, cuff pressure-induced discomfort was lower in the pBFR compared to the BFR condition. These results indicate that low-load resistance exercise combined with perceptually primed pBFR is a convenient and less discomfort inducing alternative to traditional BFR. This is especially relevant for BFR training with people who have a low cuff-induced discomfort tolerance.


Cross-Over Studies , Muscle Fatigue , Muscle, Skeletal , Resistance Training , Humans , Female , Resistance Training/methods , Male , Muscle Fatigue/physiology , Adult , Young Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/blood supply , Regional Blood Flow , Torque , Myalgia/etiology , Myalgia/prevention & control , Perception/physiology , Oxygen Consumption , Blood Flow Restriction Therapy/methods , Electromyography , Knee/physiology
13.
PeerJ ; 12: e17403, 2024.
Article En | MEDLINE | ID: mdl-38827299

Background: Effective rehabilitation of upper limb musculoskeletal disorders requires multimodal assessment to guide clinicians' decision-making. Furthermore, a comprehensive assessment must include reliable tests. Nevertheless, the interrelationship among various upper limb tests remains unclear. This study aimed to evaluate the reliability of easily applicable upper extremity assessments, including absolute values and asymmetries of muscle mechanical properties, pressure pain threshold, active range of motion, maximal isometric strength, and manual dexterity. A secondary aim was to explore correlations between different assessment procedures to determine their interrelationship. Methods: Thirty healthy subjects participated in two experimental sessions with 1 week between sessions. Measurements involved using a digital myotonometer, algometer, inclinometer, dynamometer, and the Nine-Hole Peg test. Intraclass correlation coefficients, standard error of the mean, and minimum detectable change were calculated as reliability indicators. Pearson's correlation was used to assess the interrelationship between tests. Results: For the absolute values of the dominant and nondominant sides, reliability was 'good' to 'excellent' for muscle mechanical properties, pressure pain thresholds, active range of motion, maximal isometric strength, and manual dexterity. Similarly, the reliability for asymmetries ranged from 'moderate' to 'excellent' across the same parameters. Faster performance in the second session was consistently found for the Nine-Hole Peg test. No systematic inter-session errors were identified for the values of the asymmetries. No significant correlations were found between tests, indicating test independence. Conclusion: These findings indicate that the sensorimotor battery of tests is reliable, while monitoring asymmetry changes may offer a more conservative approach to effectively tracking recovery of upper extremity injuries.


Forearm , Hand , Range of Motion, Articular , Humans , Male , Female , Reproducibility of Results , Adult , Range of Motion, Articular/physiology , Hand/physiology , Forearm/physiology , Young Adult , Healthy Volunteers , Muscle, Skeletal/physiology , Pain Threshold/physiology
14.
PeerJ ; 12: e17443, 2024.
Article En | MEDLINE | ID: mdl-38827313

Background: High-intensity sprint exercises (HIS) are central to sprinter training and require careful monitoring of athlete muscle fatigue to improve performance and prevent injury. While the countermovement jump (CMJ) may be used to monitor neuromuscular fatigue (NMF), little is known about the specific effects from HIS. The purpose of this study is to investigate the effects of HIS on the CMJ to assess its utility for assessing NMF following HIS. Methods: Ten male collegiate 400 m sprinters completed a 400 m sprint fatigue protocol and underwent five CMJ-testing sessions (baseline, 3 minutes, 10 minutes, 1 hour and 24 hours) over two days. Three CMJ trials, performed on a force plate, were completed each trial, with rating of perceived exertion (RPE) recorded as a subjective fatigue measure. Changes in RPE, CMJ variables, force-time and power-time curves at baseline and post fatigue were assessed. Results: Significant changes were observed in most variables following the fatigue protocol. In particular, concentric mean power remained significantly lower after 24 hours compared to baseline. In addition, the force-time curves exhibited a significant reduction in all conditions following the fatigue protocol. This decline was most pronounced within 50-75%of the concentric phase relative to baseline measurements. Conclusion. Results indicate that the CMJ may be a useful tool for monitoring fatigue in at least 400 m sprinters. These data also indicate that HIS may disproportionately reduce force output in during concentric movement. These insights may improve training prescriptions and injury prevention strategies for sprint athletes.


Muscle Fatigue , Running , Humans , Male , Muscle Fatigue/physiology , Young Adult , Running/physiology , Athletic Performance/physiology , Exercise Test/methods , Muscle, Skeletal/physiology , Athletes
15.
Elife ; 132024 Jun 03.
Article En | MEDLINE | ID: mdl-38828844

Muscle regeneration is a complex process due to dynamic and multiscale biochemical and cellular interactions, making it difficult to identify microenvironmental conditions that are beneficial to muscle recovery from injury using experimental approaches alone. To understand the degree to which individual cellular behaviors impact endogenous mechanisms of muscle recovery, we developed an agent-based model (ABM) using the Cellular-Potts framework to simulate the dynamic microenvironment of a cross-section of murine skeletal muscle tissue. We referenced more than 100 published studies to define over 100 parameters and rules that dictate the behavior of muscle fibers, satellite stem cells (SSCs), fibroblasts, neutrophils, macrophages, microvessels, and lymphatic vessels, as well as their interactions with each other and the microenvironment. We utilized parameter density estimation to calibrate the model to temporal biological datasets describing cross-sectional area (CSA) recovery, SSC, and fibroblast cell counts at multiple timepoints following injury. The calibrated model was validated by comparison of other model outputs (macrophage, neutrophil, and capillaries counts) to experimental observations. Predictions for eight model perturbations that varied cell or cytokine input conditions were compared to published experimental studies to validate model predictive capabilities. We used Latin hypercube sampling and partial rank correlation coefficient to identify in silico perturbations of cytokine diffusion coefficients and decay rates to enhance CSA recovery. This analysis suggests that combined alterations of specific cytokine decay and diffusion parameters result in greater fibroblast and SSC proliferation compared to individual perturbations with a 13% increase in CSA recovery compared to unaltered regeneration at 28 days. These results enable guided development of therapeutic strategies that similarly alter muscle physiology (i.e. converting extracellular matrix [ECM]-bound cytokines into freely diffusible forms as studied in cancer therapeutics or delivery of exogenous cytokines) during regeneration to enhance muscle recovery after injury.


Muscle, Skeletal , Regeneration , Animals , Regeneration/physiology , Mice , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Cytokines/metabolism , Models, Biological , Fibroblasts/metabolism , Fibroblasts/physiology , Macrophages/metabolism
16.
Physiol Rep ; 12(11): e16002, 2024 Jun.
Article En | MEDLINE | ID: mdl-38831632

During skeletal muscle development, the intricate mitochondrial network formation relies on continuous fission and fusion. This process in larger mammals differs from rodents, the most used animal models. However, the expression pattern of proteins regulating mitochondrial dynamics in developing skeletal muscle remains unexplored in larger mammals. Therefore, we characterized the cellular expression and tissue-level distribution of these proteins during development taking goat as a model. We have performed histological and immunohistochemical analyses to study metabolic features in various muscles. Neonatal muscles display uniform distribution of mitochondrial activity. In contrast, adult muscles exhibit clear distinctions based on their function, whether dedicated for posture maintenance or facilitating locomotion. Mitochondrial fission proteins like DRP-1, MFF, and fusion proteins like MFN-1 and 2 are abundantly expressed in neonatal muscles. Fission proteins exhibit drastic downregulation with limited peripheral expression, whereas fusion proteins continue to express in a fiber-specific manner during adulthood. Locomotory muscles exhibit different fibers based on mitochondrial activity and peripheralization with high SDH activity. The proximity ligation assay between MFN1 and MFN2 demonstrates that their interaction is restricted to subsarcolemmal mitochondria in adult fibers while distributed evenly in neonatal fibers. These differences between postural and locomotory muscles suggest their physiological and metabolic properties are different.


Goats , Mitochondrial Dynamics , Mitochondrial Proteins , Muscle, Skeletal , Animals , Goats/metabolism , Mitochondrial Dynamics/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Muscle, Skeletal/physiology , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria, Muscle/metabolism , Muscle Development/physiology
17.
Medicine (Baltimore) ; 103(23): e38446, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847683

BACKGROUND: Stair-climbing (SC) is an essential daily life skill, and stair-climbing exercise (SCE) serves as a valuable method for promoting physical activity in older adults. This study aimed to compare the impact of SCEs with heel contact (HC) and heel off (HO) during SC on functional mobility and trunk muscle (TM) activation amplitudes in community-dwelling older adults. METHODS: In the pilot randomized controlled trial, participants were randomly allocated to either the HC group (n = 17; mean age 75.9 ± 6.3 years) or the HO group (n = 17; mean age 76.5 ± 4.6 years). The HC participants performed SCE with the heel of the ankle in contact with the ground, while the HO participants performed SCE with the heel of the ankle off the ground during SC. Both groups participated in progressive SCE for one hour per day, three days per week, over four consecutive weeks (totaling 12 sessions) at the community center. We measured timed stair-climbing (TSC), timed up and go (TUG), and electromyography (EMG) amplitudes of the TMs including rectus abdominis (RA), external oblique (EO), transverse abdominus and internal oblique abdominals (TrA-IO), and erector spinae (ES) during SC before and after the intervention. RESULTS: Both groups showed a significant improvement in TSC and TUG after the intervention (P < .01, respectively), with no significant difference between the groups. There was no significant difference in the EMG activity of the TMs between the groups after the intervention. The amplitude of TMs significantly decreased after the intervention in both groups (P < .01, respectively). CONCLUSION: Both SCE methods could improve balance and SC ability in older adults while reducing the recruitment of TMs during SC. Both SCE strategies are effective in improving functional mobility and promoting appropriate posture control during SC in older adults.


Electromyography , Independent Living , Stair Climbing , Humans , Aged , Male , Pilot Projects , Female , Stair Climbing/physiology , Aged, 80 and over , Torso/physiology , Muscle, Skeletal/physiology
18.
Mol Biol Rep ; 51(1): 625, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717527

BACKGROUND: The currently known homing pigeon is a result of a sharp one-sided selection for flight characteristics focused on speed, endurance, and spatial orientation. This has led to extremely well-adapted athletic phenotypes in racing birds. METHODS: Here, we identify genes and pathways contributing to exercise adaptation in sport pigeons by applying next-generation transcriptome sequencing of m.pectoralis muscle samples, collected before and after a 300 km competition flight. RESULTS: The analysis of differentially expressed genes pictured the central role of pathways involved in fuel selection and muscle maintenance during flight, with a set of genes, in which variations may therefore be exploited for genetic improvement of the racing pigeon population towards specific categories of competition flights. CONCLUSIONS: The presented results are a background to understanding the genetic processes in the muscles of birds during flight and also are the starting point of further selection of genetic markers associated with racing performance in carrier pigeons.


Columbidae , Flight, Animal , Transcriptome , Animals , Columbidae/genetics , Columbidae/physiology , Flight, Animal/physiology , Transcriptome/genetics , Gene Expression Profiling/methods , Pectoralis Muscles/metabolism , Pectoralis Muscles/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology
19.
PLoS One ; 19(5): e0302828, 2024.
Article En | MEDLINE | ID: mdl-38722930

Cupping therapy is a popular intervention for improving muscle recovery after exercise although clinical evidence is weak. Previous studies demonstrated that cupping therapy may improve microcirculation of the soft tissue to accelerate tissue healing. However, it is unclear whether the cupping size could affect the spatial hemodynamic response of the treated muscle. The objective of this study was to use 8-channel near-infrared spectroscopy to assess this clinical question by assessing the effect of 3 cupping sizes (35, 40, and 45 mm in inner diameter of the circular cup) under -300 mmHg for 5 min on the muscle hemodynamic response from the area inside and outside the cup, including oxyhemoglobin and deoxy-hemoglobin in 18 healthy adults. Two-way factorial design was used to assess the interaction between the cupping size (35, 40, and 45 mm) and the location (inside and outside the cup) and the main effects of the cupping size and the location. The two-way repeated measures ANOVA demonstrated an interaction between the cupping size and the location in deoxy-hemoglobin (P = 0.039) but no interaction in oxyhemoglobin (P = 0.100), and a main effect of the cup size (P = 0.001) and location (P = 0.023) factors in oxyhemoglobin. For the cupping size factor, the 45-mm cup resulted in a significant increase in oxyhemoglobin (5.738±0.760 µM) compared to the 40-mm (2.095±0.312 µM, P<0.001) and 35-mm (3.134±0.515 µM, P<0.01) cup. Our findings demonstrate that the cupping size and location factors affect the muscle hemodynamic response, and the use of multi-channel near-infrared spectroscopy may help understand benefits of cupping therapy on managing musculoskeletal impairment.


Hemodynamics , Muscle, Skeletal , Oxyhemoglobins , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Male , Hemodynamics/physiology , Female , Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/blood supply , Oxyhemoglobins/metabolism , Oxyhemoglobins/analysis , Cupping Therapy/methods , Young Adult , Hemoglobins/metabolism
20.
BMC Neurol ; 24(1): 144, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724916

BACKGROUND: Restoring shoulder function is critical for upper-extremity rehabilitation following a stroke. The complex musculoskeletal anatomy of the shoulder presents a challenge for safely assisting elevation movements through robotic interventions. The level of shoulder elevation assistance in rehabilitation is often based on clinical judgment. There is no standardized method for deriving an optimal level of assistance, underscoring the importance of addressing abnormal movements during shoulder elevation, such as abnormal synergies and compensatory actions. This study aimed to investigate the effectiveness and safety of a newly developed shoulder elevation exoskeleton robot by applying a novel optimization technique derived from the muscle synergy index. METHODS: Twelve chronic stroke participants underwent an intervention consisting of 100 robot-assisted shoulder elevation exercises (10 × 10 times, approximately 40 min) for 10 days (4-5 times/week). The optimal robot assist rate was derived by detecting the change points using the co-contraction index, calculated from electromyogram (EMG) data obtained from the anterior deltoid and biceps brachii muscles during shoulder elevation at the initial evaluation. The primary outcomes were the Fugl-Meyer assessment-upper extremity (FMA-UE) shoulder/elbow/forearm score, kinematic outcomes (maximum angle of voluntary shoulder flexion and elbow flexion ratio during shoulder elevation), and shoulder pain outcomes (pain-free passive shoulder flexion range of motion [ROM] and visual analogue scale for pain severity during shoulder flexion). The effectiveness and safety of robotic therapy were examined using the Wilcoxon signed-rank sum test. RESULTS: All 12 patients completed the procedure without any adverse events. Two participants were excluded from the analysis because the EMG of the biceps brachii was not obtained. Ten participants (five men and five women; mean age: 57.0 [5.5] years; mean FMA-UE total score: 18.7 [10.5] points) showed significant improvement in the FMA-UE shoulder/elbow/forearm score, kinematic outcomes, and pain-free passive shoulder flexion ROM (P < 0.05). The shoulder pain outcomes remained unchanged or improved in all patients. CONCLUSIONS: The study presents a method for deriving the optimal robotic assist rate. Rehabilitation using a shoulder robot based on this derived optimal assist rate showed the possibility of safely improving the upper-extremity function in patients with severe stroke in the chronic phase.


Electromyography , Exoskeleton Device , Feasibility Studies , Muscle, Skeletal , Shoulder , Stroke Rehabilitation , Humans , Male , Female , Stroke Rehabilitation/methods , Middle Aged , Aged , Shoulder/physiopathology , Shoulder/physiology , Electromyography/methods , Muscle, Skeletal/physiopathology , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology , Exercise Therapy/methods , Stroke/physiopathology , Robotics/methods , Biomechanical Phenomena/physiology , Adult
...