Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31.718
Filter
1.
Gen Physiol Biophys ; 43(4): 321-333, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953574

ABSTRACT

Vitiligo is featured by manifestation of white maculae and primarily results from oxidative stress. Sphingosine kinase-1 (SPHK1) participates in oxidative stress. This paper was devised to explore the role of SPHK1 in vitiligo and to disclose the mechanism. PIG1 cell viability was appraised utilizing cell counting kit-8 assay while Western blot detected SPHK1 and four and a half LIM domains 2 (FHL2). The transduction efficacy of small interfering RNA (siRNA)-SPHK1, siRNA-FHL2 and pcDNA3.1 plasmid overexpressing FHL2 (Ov-FHL2) was checked using Western blot. Flow cytometry detected cell apoptotisis. Western blot detected mitochondrial cytochrome c (Mit-Cyt-c) and cytosolic cytochrome c (Cyto-Cyt-c). Dichloro-dihydro-fluorescein diacetate (DCFH-DA) detected reactive oxygen species (ROS) activity while oxidative stress markers were evaluated using corresponding assay kits. SPHK1 expression was discovered to be increased in hydrogen peroxide (H2O2)-challenged PIG1 cells and SPHK1 interference alleviated H2O2-challenged viability damage, apoptosis, oxidative stress and FHL2 expression in PIG1 cells. FHL2 depletion could suppress viability damage, apoptosis and oxidative stress in H2O2-challenged PIG1 cells. Rescue experiments demonstrated that the suppressive impacts of SPHK1 deficiency on PIG1 cell viability, apoptosis and oxidative stress induced by H2O2 were offset by FHL2 overexpression. Collectively, SPHK1 knockdown protected against vitiligo via the regulation of FHL2.


Subject(s)
Cell Survival , Hydrogen Peroxide , LIM-Homeodomain Proteins , Melanocytes , Oxidative Stress , Phosphotransferases (Alcohol Group Acceptor) , Oxidative Stress/drug effects , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Hydrogen Peroxide/metabolism , LIM-Homeodomain Proteins/metabolism , LIM-Homeodomain Proteins/genetics , Humans , Melanocytes/metabolism , Melanocytes/drug effects , Cell Survival/drug effects , Apoptosis/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Muscle Proteins/metabolism , Muscle Proteins/genetics , Cell Line
3.
J Proteome Res ; 23(7): 2452-2473, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965921

ABSTRACT

Cancer cachexia is an involuntary loss of body weight, mostly of skeletal muscle. Previous research favors the existence of a microbiota-muscle crosstalk, so the aim of the study was to evaluate the impact of microbiota alterations induced by antibiotics on skeletal muscle proteins expression. Skeletal muscle proteome changes were investigated in control (CT) or C26 cachectic mice (C26) with or without antibiotic treatment (CT-ATB or C26-ATB, n = 8 per group). Muscle protein extracts were divided into a sarcoplasmic and myofibrillar fraction and then underwent label-free liquid chromatography separation, mass spectrometry analysis, Mascot protein identification, and METASCAPE platform data analysis. In C26 mice, the atrogen mafbx expression was 353% higher than CT mice and 42.3% higher than C26-ATB mice. No effect on the muscle protein synthesis was observed. Proteomic analyses revealed a strong effect of antibiotics on skeletal muscle proteome outside of cachexia, with adaptative processes involved in protein folding, growth, energy metabolism, and muscle contraction. In C26-ATB mice, proteome adaptations observed in CT-ATB mice were blunted. Differentially expressed proteins were involved in other processes like glucose metabolism, oxidative stress response, and proteolysis. This study confirms the existence of a microbiota-muscle axis, with a muscle response after antibiotics that varies depending on whether cachexia is present.


Subject(s)
Anti-Bacterial Agents , Cachexia , Muscle, Skeletal , Proteome , Cachexia/metabolism , Cachexia/microbiology , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/adverse effects , Proteome/metabolism , Proteome/analysis , Mice , Neoplasms/metabolism , Neoplasms/complications , Neoplasms/drug therapy , Muscle Proteins/metabolism , Male , Proteomics/methods , Microbiota/drug effects , Energy Metabolism/drug effects
4.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 219-227, 2024.
Article in English | MEDLINE | ID: mdl-38945887

ABSTRACT

This study investigated the protective effect of carnosine and its components (L-histidine and ß-alanine [HA]) against dexamethasone (Dex)-induced muscle atrophy in C2C12 myotubes. Myotubes were treated with Dex (10 µM) to induce muscle atrophy manifested by decreased myotube diameter, low myosin heavy chain content, and increased expression of muscle atrophy-associated ubiquitin ligases (Atrogin-1, MuRF-1, and Cbl-b). Carnosine (20 mM) treatment significantly improved the myotube diameter and MyHC protein expression level in Dex-treated C2C12 myotubes. It also downregulated the expression of Atrogin-1, MuRF-1, and Cbl-b and suppressed the expression of forkhead box O3 (FoxO3a) mediated by Dex. Furthermore, reactive oxygen species production was increased by Dex but was ameliorated by carnosine treatment. However, HA (20 mM), the component of carnosine, treatment was found ineffective in preventing Dex-induced protein damage. Therefore, based on above results it can be suggested that carnosine could be a potential therapeutic agent to prevent Dex-induced muscle atrophy compared to its components HA.


Subject(s)
Carnosine , Dexamethasone , Muscle Fibers, Skeletal , Muscle Proteins , Muscular Atrophy , Reactive Oxygen Species , SKP Cullin F-Box Protein Ligases , Carnosine/pharmacology , Dexamethasone/pharmacology , Muscular Atrophy/chemically induced , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Animals , Mice , Muscle Proteins/metabolism , Cell Line , Reactive Oxygen Species/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitin-Protein Ligases/metabolism , Forkhead Box Protein O3/metabolism , Tripartite Motif Proteins/metabolism , Myosin Heavy Chains/metabolism
5.
Ultrason Sonochem ; 107: 106945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857567

ABSTRACT

In this study, large yellow croaker (Larimichthys crocea) was frozen using multi-frequency ultrasound-assisted freezing (MUIF) with different powers (160 W, 175 W, and 190 W, respectively) and stored at -18 °C for ten months. The effect of different ultrasound powers on the myofibrillar protein (MP) structures and lipid oxidation of large yellow croaker was investigated. The results showed that MUIF significantly slowed down the oxidation of MP by inhibiting carbonyl formation and maintaining high sulfhydryl contents. These treatments also held a high activity of Ca2+-ATPase in the MP. MUIF maintained a higher ratio of α-helix to ß-sheet during frozen storage, thereby protecting the secondary structure of the tissue and stabilizing the tertiary structure. In addition, MUIF inhibited the production of thiobarbituric acid reactive substances value and the loss of unsaturated fatty acid content, indicating that MUIF could better inhibit lipid oxidation of large yellow croaker during long-time frozen storage.


Subject(s)
Freezing , Oxidation-Reduction , Perciformes , Animals , Time Factors , Food Storage , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Ultrasonic Waves , Calcium-Transporting ATPases/metabolism
6.
Ultrason Sonochem ; 107: 106935, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850642

ABSTRACT

Myofibrillar proteins (MPs) have a notable impact on the firmness and flexibility of gel-based products. Therefore, enhancing the gelation and emulsification properties of scallop MPs is of paramount significance for producing high-quality scallop surimi products. In this study, we investigated the effects of high-intensity ultrasound on the physicochemical and gelation properties of MPs from bay scallops (Argopecten irradians). The carbonyl content of MPs significantly increased with an increase in ultrasound power (150, 350, and 550 W), indicating ultrasound-induced MP oxidation. Meanwhile, high-intensity ultrasound treatment (550 W) enhanced the emulsifying capacity and the short-term stability of MPs (up to 72.05 m2/g and 153.05 min, respectively). As the ultrasound power increased, the disulfide bond content and surface hydrophobicity of MPs exhibited a notable increase, indicating conformational changes in MPs. Moreover, in the secondary structure of MPs, the α-helix content significantly decreased, whereas the ß-sheet content increased, thereby suggesting the ultrasound-induced stretching and flexibility of MP molecules. Sodium-dodecyl sulfate-polyacrylamide gel electrophoresis and scanning electron microscopy analysis further elucidated that high-intensity ultrasound induced MP oxidation, leading to modification of amino acid side chains, intra- and intermolecular cross-linking, and MP aggregation. Consequently, high-intensity ultrasound treatment was found to augment the viscoelasticity, gel strength, and water-holding capacity of MP gels, because ultrasound treatment facilitated the formation of a stable network structure in protein gels. Thus, this study offers theoretical insights into the functional modification of bay scallop MPs and the processing of its surimi products.


Subject(s)
Gels , Muscle Proteins , Pectinidae , Pectinidae/chemistry , Animals , Gels/chemistry , Muscle Proteins/chemistry , Ultrasonic Waves , Chemical Phenomena , Hydrophobic and Hydrophilic Interactions , Emulsions/chemistry
7.
Sci Rep ; 14(1): 13172, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849371

ABSTRACT

Changes in protein turnover play an important role in dynamic physiological processes, including skeletal muscle regeneration, which occurs as an essential part of tissue repair after injury. The inability of muscle tissue to recapitulate this regenerative process can lead to the manifestation of clinical symptoms in various musculoskeletal diseases, including muscular dystrophies and pathological atrophy. Here, we employed a workflow that couples deuterated water (2H2O) administration with mass spectrometry (MS) to systematically measure in-vivo protein turnover rates across the muscle proteome in 8-week-old male C57BL6/J mice. We compared the turnover kinetics of over 100 proteins in response to cardiotoxin (CTX) induced muscle damage and regeneration at unique sequential stages along the regeneration timeline. This analysis is compared to gene expression data from mRNA-sequencing (mRNA-seq) from the same tissue. The data reveals quantitative protein flux signatures in response to necrotic damage, in addition to sequential differences in cell proliferation, energy metabolism, and contractile gene expression. Interestingly, the mRNA changes correlated poorly with changes in protein synthesis rates, consistent with post-transcriptional control mechanisms. In summary, the experiments described here reveal the signatures and timing of protein flux changes during skeletal muscle regeneration, as well as the inability of mRNA expression measurements to reveal changes in directly measured protein turnover rates. The results of this work described here provide a better understanding of the muscle regeneration process and could help to identify potential biomarkers or therapeutic targets.


Subject(s)
Mice, Inbred C57BL , Muscle, Skeletal , Regeneration , Animals , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/injuries , Regeneration/drug effects , Mice , Muscle Proteins/metabolism , Muscle Proteins/genetics , Proteome/metabolism , Cardiotoxins/toxicity
8.
Sci Rep ; 14(1): 13727, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877142

ABSTRACT

Connectin (also known as titin) is a giant striated muscle protein that functions as a molecular spring by providing elasticity to the sarcomere. Novex-3 is a short splice variant of connectin whose physiological function remains unknown. We have recently demonstrated using in vitro analyses that in addition to sarcomere expression, novex-3 was also expressed in cardiomyocyte nuclei exclusively during fetal life, where it provides elasticity/compliance to cardiomyocyte nuclei and promotes cardiomyocyte proliferation in the fetus, suggesting a non-sarcomeric function. Here, we analyzed novex-3 knockout mice to assess the involvement of this function in cardiac pathophysiology in vivo. Deficiency of novex-3 compromised fetal cardiomyocyte proliferation and induced the enlargement of individual cardiomyocytes in neonates. In adults, novex-3 deficiency resulted in chamber dilation and systolic dysfunction, associated with Ca2+ dysregulation, resulting in a reduced life span. Mechanistic analyses revealed a possible association between impaired proliferation and abnormal nuclear mechanics, including stiffer nuclei positioned peripherally with stabilized circumnuclear microtubules in knockout cardiomyocytes. Although the underlying causal relationships were not fully elucidated, these data show that novex-3 has a vital non-sarcomeric function in cardiac pathophysiology and serves as an early contributor to cardiomyocyte proliferation.


Subject(s)
Cell Nucleus , Cell Proliferation , Connectin , Mice, Knockout , Myocytes, Cardiac , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mice , Cell Nucleus/metabolism , Connectin/genetics , Connectin/metabolism , Sarcomeres/metabolism , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/deficiency , Calcium/metabolism
9.
BMC Neurol ; 24(1): 211, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907197

ABSTRACT

BACKGROUND: Congenital myasthenic syndromes (CMS) are among the most challenging differential diagnoses in the neuromuscular domain, consisting of diverse genotypes and phenotypes. A mutation in the Docking Protein 7 (Dok-7) is a common cause of CMS. DOK7 CMS requires different treatment than other CMS types. Regarding DOK7's special considerations and challenges ahead of neurologists, we describe seven DOK7 patients and evaluate their response to treatment. METHODS: The authors visited these patients in the neuromuscular clinics of Tehran and Kerman Universities of Medical Sciences Hospitals. They diagnosed these patients based on clinical findings and neurophysiological studies, which Whole Exome Sequencing confirmed. For each patient, we tried unique medications and recorded the clinical response. RESULTS: The symptoms started from birth to as late as the age of 33, with the mean age of onset being 12.5. Common symptoms were: Limb-girdle weakness in 6, fluctuating symptoms in 5, ptosis in 4, bifacial weakness in 3, reduced extraocular movement in 3, bulbar symptoms in 2 and dyspnea in 2 3-Hz RNS was decremental in 5 out of 6 patients. Salbutamol was the most effective. c.1124_1127dupTGCC is the most common variant; three patients had this variant. CONCLUSION: We strongly recommend that neurologists consider CMS in patients with these symptoms and a similar familial history. We recommend prescribing salbutamol as the first-choice treatment option for DOK7 patients.


Subject(s)
Muscle Proteins , Myasthenic Syndromes, Congenital , Humans , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/diagnosis , Myasthenic Syndromes, Congenital/drug therapy , Myasthenic Syndromes, Congenital/physiopathology , Male , Female , Muscle Proteins/genetics , Adult , Young Adult , Adolescent , Child , Mutation
10.
Int J Mol Sci ; 25(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928324

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is characterized by biomechanically dysfunctional cardiomyocytes. Underlying cellular changes include perturbed myocardial titin expression and titin hypophosphorylation leading to titin filament stiffening. Beside these well-studied alterations at the cardiomyocyte level, exercise intolerance is another hallmark of HFpEF caused by molecular alterations in skeletal muscle (SKM). Currently, there is a lack of data regarding titin modulation in the SKM of HFpEF. Therefore, the aim of the present study was to analyze molecular alterations in limb SKM (tibialis anterior (TA)) and in the diaphragm (Dia), as a more central SKM, with a focus on titin, titin phosphorylation, and contraction-regulating proteins. This study was performed with muscle tissue, obtained from 32-week old female ZSF-1 rats, an established a HFpEF rat model. Our results showed a hyperphosphorylation of titin in limb SKM, based on enhanced phosphorylation at the PEVK region, which is known to lead to titin filament stiffening. This hyperphosphorylation could be reversed by high-intensity interval training (HIIT). Additionally, a negative correlation occurring between the phosphorylation state of titin and the muscle force in the limb SKM was evident. For the Dia, no alterations in the phosphorylation state of titin could be detected. Supported by data of previous studies, this suggests an exercise effect of the Dia in HFpEF. Regarding the expression of contraction regulating proteins, significant differences between Dia and limb SKM could be detected, supporting muscle atrophy and dysfunction in limb SKM, but not in the Dia. Altogether, these data suggest a correlation between titin stiffening and the appearance of exercise intolerance in HFpEF, as well as a differential regulation between different SKM groups.


Subject(s)
Connectin , Diaphragm , Disease Models, Animal , Heart Failure , Muscle, Skeletal , Animals , Heart Failure/metabolism , Heart Failure/physiopathology , Heart Failure/pathology , Rats , Diaphragm/metabolism , Diaphragm/physiopathology , Diaphragm/pathology , Connectin/metabolism , Phosphorylation , Female , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Muscle, Skeletal/pathology , Stroke Volume , Muscle Contraction , Physical Conditioning, Animal , Muscle Proteins/metabolism
11.
Food Res Int ; 188: 114531, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823850

ABSTRACT

Different emulsion gel systems are widely applied to deliver functional ingredients. The effects and mechanisms of ultrasound-assisted emulsification (UAE) treatment and carboxymethyl cellulose (CMC) modifying the curcumin delivery properties and in vitro digestibility of the myofibrillar protein (MP)-soybean oil emulsion gels were investigated. The rheological properties, droplet size, protein and CMC distribution, ultrastructure, surface hydrophobicity, sulfhydryl groups, and zeta potential of emulsion gels were also measured. Results indicate that UAE treatment and CMC addition both improved curcumin encapsulation and protection efficiency in MP emulsion gel, especially for the UAE combined with CMC (UAE-CMC) treatment which encapsulation efficiency, protection efficiency, the release rate, and bioaccessibility of curcumin increased from 86.75 % to 97.67 %, 44.85 % to 68.85 %, 18.44 % to 41.78 %, and 28.68 % to 44.93 % respectively. The protein digestibility during the gastric stage was decreased after the CMC addition and UAE treatment, and the protein digestibility during the intestinal stage was reduced after the CMC addition. The fatty acid release rate was increased after CMC addition and UAE treatment. Apparent viscosity, storage modulus, and loss modulus were decreased after CMC addition while increased after UAE and UAE-CMC treatment especially the storage modulus increased from 0.26 Pa to 41 Pa after UAE-CMC treatment. The oil size was decreased, the protein and CMC concentration around the oil was increased, and a denser and uniform emulsion gel network structure was formed after UAE treatment. The surface hydrophobicity, free SH groups, and absolute zeta potential were increased after UAE treatment. The UAE-CMC treatment could strengthen the MP emulsion gel structure and decrease the oil size to increase the curcumin delivery properties, and hydrophobic and electrostatic interaction might be essential forces to maintain the emulsion gel.


Subject(s)
Carboxymethylcellulose Sodium , Curcumin , Digestion , Emulsions , Gels , Hydrophobic and Hydrophilic Interactions , Rheology , Curcumin/chemistry , Emulsions/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Muscle Proteins , Soybean Oil/chemistry , Viscosity , Particle Size , Myofibrils/chemistry , Myofibrils/metabolism , Ultrasonic Waves
12.
Food Res Int ; 188: 114461, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823861

ABSTRACT

Myofibrillar proteins are crucial for gel formation in processed meat products such as sausages and meat patties. Freeze-thaw cycles can alter protein properties, impacting gel stability and product quality. This study aims to investigate the potential of thawed drip and its membrane-separated components as potential antifreeze agents to retard denaturation, oxidation and gel deterioration of myofibrillar proteins during freezing-thawing cycles of pork patties. The thawed drip and its membrane-separated components of > 10 kDa and < 10 kDa, along with deionized water, were added to minced pork at 10 % mass fraction and subjected to increasing freeze-thaw cycles. Results showed that the addition of thawed drip and its membrane separation components inhibited denaturation and structural changes of myofibrillar proteins, evidenced by reduced surface hydrophobicity and carbonyl content, increased free sulfhydryl groups, protein solubility and α-helix, as compared to the deionized water group. Correspondingly, improved gel properties including water-holding capacity, textural parameters and denser network structure were observed with the addition of thawed drip and its membrane separation components. Denaturation and oxidation of myofibrillar proteins were positively correlated with gel deterioration during freezing-thawing cycles. We here propose a role of thawed drip and its membrane separation components as cryoprotectants against myofibrillar protein gel deterioration during freeze-thawing cycles.


Subject(s)
Freezing , Gels , Muscle Proteins , Myofibrils , Animals , Gels/chemistry , Swine , Muscle Proteins/chemistry , Myofibrils/chemistry , Food Handling/methods , Protein Denaturation , Meat Products/analysis , Hydrophobic and Hydrophilic Interactions , Solubility , Water/chemistry , Oxidation-Reduction
13.
Front Endocrinol (Lausanne) ; 15: 1375771, 2024.
Article in English | MEDLINE | ID: mdl-38883605

ABSTRACT

Introduction: The incidence of infertility is significantly higher in women with diseases linked to impaired glucose homeostasis, such as insulin resistance. Defective glucose metabolism interferes with fertilization; however, the molecular mechanism underlying this interference is unclear. Smoothelin-like protein 1 (SMTNL1) was isolated from muscle and steroid hormone-responsive tissues and regulates the contractile functions of various cell types through the inhibition of myosin phosphatase (MP) holoenzyme. In addition, SMTNL-1 after phosphorylation at Ser301 by protein kinase A translocates to the nucleus and functions as a transcriptional co-activator of the progesterone receptor-B. SMTNL1 null mice exhibit reduced reproductive fitness and are more prone to type 2 diabetes mellitus. However, the role of SMTNL1 in endometrial epithelial cells is not known. Methods: The effect of SMTNL1 overexpression was investigated in pregnancy and in gestational diabetic endometrial epithelial cell models by immunofluorescent staining, cell migration, and semi quantitative Western blot analysis and glucose uptake assay. Results: We show that SMTNL1 promotes the differentiation of endometrial epithelial cells in a progesterone-dependent manner to attenuate insulin resistance. Furthermore, SMTNL1 hampers the migration capacity of epithelial cells in a gestational diabetes model by inhibiting the expression of MYPT1, the regulatory subunit of MP, and the activity of the holoenzyme, resulting in increased phosphorylation of the 20 kDa regulatory myosin light chain. SMTNL1 also acts as an insulin-sensitizing agent by increasing the gene expression of PP2A and DUPS9 protein phosphatases, resulting in decreased ERK1/2 activity and, hence, decreasing the phosphorylation of IRS-1 at Ser612 under gestational diabetes conditions. Conclusion: SMTNL1 may have therapeutic relevance to the progesterone-dependent inhibition of endometrial epithelial cell migration under hyperglycemic conditions and insulin sensitivity in the endometrium in gestational diabetes or other metabolic disorders.


Subject(s)
Endometrium , Epithelial Cells , Insulin Resistance , Muscle Proteins , Female , Endometrium/metabolism , Humans , Epithelial Cells/metabolism , Muscle Proteins/metabolism , Muscle Proteins/genetics , Pregnancy , Animals , Diabetes, Gestational/metabolism , Mice , Phosphorylation , Cell Movement , Intracellular Signaling Peptides and Proteins
14.
Elife ; 122024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865175

ABSTRACT

Philadelphia chromosome-positive (Ph+) leukemia is a fatal hematological malignancy. Although standard treatments with tyrosine kinase inhibitors (TKIs) have achieved remarkable success in prolonging patient survival, intolerance, relapse, and TKI resistance remain serious issues for patients with Ph+ leukemia. Here, we report a new leukemogenic process in which RAPSYN and BCR-ABL co-occur in Ph+ leukemia, and RAPSYN mediates the neddylation of BCR-ABL. Consequently, neddylated BCR-ABL enhances the stability by competing its c-CBL-mediated degradation. Furthermore, SRC phosphorylates RAPSYN to activate its NEDD8 E3 ligase activity, promoting BCR-ABL stabilization and disease progression. Moreover, in contrast to in vivo ineffectiveness of PROTAC-based degraders, depletion of RAPSYN expression, or its ligase activity decreased BCR-ABL stability and, in turn, inhibited tumor formation and growth. Collectively, these findings represent an alternative to tyrosine kinase activity for the oncoprotein and leukemogenic cells and generate a rationale of targeting RAPSYN-mediated BCR-ABL neddylation for the treatment of Ph+ leukemia.


Chronic myeloid leukemia (CML for short) accounts for about 15% of all blood cancers diagnosed in adults in the United States. The condition is characterized by the overproduction of immature immune cells that interfere with proper blood function. It is linked to a gene recombination (a type of mutation) that leads to white blood cells producing an abnormal 'BCR-ABL' enzyme which is always switched on. In turn, this overactive protein causes the cells to live longer and divide uncontrollably. Some of the most effective drugs available to control the disease today work by blocking the activity of BCR-ABL. Yet certain patients can become resistant to these treatments over time, causing them to relapse. Other approaches are therefore needed to manage this disease; in particular, a promising avenue of research consists in exploring whether it is possible to reduce the amount of the enzyme present in diseased cells. As part of this effort, Zhao, Dai, Li, Zhang et al. focused on RAPSYN, a scaffolding protein previously unknown in CML cells. In other tissues, it has recently been shown to participate in neddylation ­ a process by which proteins receive certain chemical 'tags' that change the way they behave. The experiments revealed that, compared to healthy volunteers, RAPSYN was present at much higher levels in the white blood cells of CML patients. Experimentally lowering the amount of RAPSYN in CML cells led these to divide less quickly ­ both in a dish and when injected in mice, while also being linked to decreased levels of BCR-ABL. Additional biochemical experiments indicated that RAPSYN sticks with BCR-ABL to add chemical 'tags' that protect the abnormal protein against degradation, therefore increasing its overall levels. Finally, the team showed that SRC, an enzyme often dysregulated in emerging cancers, can activate RAPSYN's ability to conduct neddylation; such mechanism could promote BCR-ABL stabilization and, in turn, disease progression. Taken together, these experiments indicate a new way by which BCR-ABL levels are controlled. Future studies should investigate whether RAPSYN also stabilizes BCR-ABL in patients whose leukemias have become resistant to existing drugs. Eventually, RAPSYN may offer a new target for overcoming drug-resistance in CML patients.


Subject(s)
Fusion Proteins, bcr-abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Muscle Proteins , Animals , Humans , Mice , Cell Line, Tumor , Fusion Proteins, bcr-abl/metabolism , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , NEDD8 Protein/metabolism , NEDD8 Protein/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Muscle Proteins/metabolism
15.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891908

ABSTRACT

Chronic inflammation causes muscle wasting. Because most inflammatory cytokine signals are mediated via TGF-ß-activated kinase-1 (TAK1) activation, inflammatory cytokine-induced muscle wasting may be ameliorated by the inhibition of TAK1 activity. The present study was undertaken to clarify whether TAK1 inhibition can ameliorate inflammation-induced muscle wasting. SKG/Jcl mice as an autoimmune arthritis animal model were treated with a small amount of mannan as an adjuvant to enhance the production of TNF-α and IL-1ß. The increase in these inflammatory cytokines caused a reduction in muscle mass and strength along with an induction of arthritis in SKG/Jcl mice. Those changes in muscle fibers were mediated via the phosphorylation of TAK1, which activated the downstream signaling cascade via NF-κB, p38 MAPK, and ERK pathways, resulting in an increase in myostatin expression. Myostatin then reduced the expression of muscle proteins not only via a reduction in MyoD1 expression but also via an enhancement of Atrogin-1 and Murf1 expression. TAK1 inhibitor, LL-Z1640-2, prevented all the cytokine-induced changes in muscle wasting. Thus, TAK1 inhibition can be a new therapeutic target of not only joint destruction but also muscle wasting induced by inflammatory cytokines.


Subject(s)
Cytokines , MAP Kinase Kinase Kinases , Muscular Atrophy , Animals , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/etiology , Muscular Atrophy/drug therapy , Mice , Cytokines/metabolism , Muscle Weakness/metabolism , Muscle Weakness/drug therapy , Myostatin/metabolism , Myostatin/antagonists & inhibitors , Muscle Proteins/metabolism , Tumor Necrosis Factor-alpha/metabolism , NF-kappa B/metabolism , Inflammation/metabolism , Inflammation/pathology , Inflammation/drug therapy , Signal Transduction/drug effects , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Disease Models, Animal , Interleukin-1beta/metabolism , Phosphorylation/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Zearalenone/pharmacology , Zearalenone/analogs & derivatives
16.
J Physiol Sci ; 74(1): 32, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849720

ABSTRACT

We investigated whether calorie restriction (CR) enhances metabolic adaptations to endurance training (ET). Ten-week-old male Institute of Cancer Research (ICR) mice were fed ad libitum or subjected to 30% CR. The mice were subdivided into sedentary and ET groups. The ET group performed treadmill running (20-25 m/min, 30 min, 5 days/week) for 5 weeks. We found that CR decreased glycolytic enzyme activity and monocarboxylate transporter (MCT) 4 protein content, while enhancing glucose transporter 4 protein content in the plantaris and soleus muscles. Although ET and CR individually increased citrate synthase activity in the plantaris muscle, the ET-induced increase in respiratory chain complex I protein content was counteracted by CR. In the soleus muscle, mitochondrial enzyme activity and protein levels were increased by ET, but decreased by CR. It has been suggested that CR partially interferes with skeletal muscle adaptation to ET.


Subject(s)
Caloric Restriction , Energy Metabolism , Liver , Monocarboxylic Acid Transporters , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Muscle, Skeletal/metabolism , Male , Mice , Caloric Restriction/methods , Liver/metabolism , Physical Conditioning, Animal/physiology , Energy Metabolism/physiology , Monocarboxylic Acid Transporters/metabolism , Mice, Inbred ICR , Endurance Training/methods , Glucose Transporter Type 4/metabolism , Adaptation, Physiological/physiology , Citrate (si)-Synthase/metabolism , Muscle Proteins
17.
Clin Sci (Lond) ; 138(12): 741-756, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895777

ABSTRACT

Periods of skeletal muscle disuse lead to rapid declines in muscle mass (atrophy), which is fundamentally underpinned by an imbalance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB). The complex interplay of molecular mechanisms contributing to the altered regulation of muscle protein balance during disuse have been investigated but rarely synthesised in the context of humans. This narrative review discusses human models of muscle disuse and the ensuing inversely exponential rate of muscle atrophy. The molecular processes contributing to altered protein balance are explored, with a particular focus on growth and breakdown signalling pathways, mitochondrial adaptations and neuromuscular dysfunction. Finally, key research gaps within the disuse atrophy literature are highlighted providing future avenues to enhance our mechanistic understanding of human disuse atrophy.


Subject(s)
Muscle Proteins , Muscle, Skeletal , Muscular Atrophy , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscle Proteins/metabolism , Signal Transduction , Immobilization/adverse effects , Muscular Disorders, Atrophic/metabolism , Muscular Disorders, Atrophic/pathology , Muscular Disorders, Atrophic/physiopathology
18.
BMJ Case Rep ; 17(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866581

ABSTRACT

Nemaline rod myopathy is an extremely rare muscle disease responsible for hypotonia and poor muscle strength in infants. The disease has variable phenotypic presentations across different ages, ranging from neonatal to the adult onset and from severe to asymptomatic varieties. Clinical features, muscle biopsy and genetic testing help in diagnosis. The histopathological examination shows the presence of rod-like structures or nemaline bodies in muscles. Management remains mainly supportive, and currently, there is no available curative treatment. This case report describes an infant presenting with gross hypotonia, poor handling of secretions and multiple extubation failures who was diagnosed by clinical exome sequencing. The patient harboured compound heterozygous variants in the NEB gene suggestive of nemaline rod myopathy. The newborn showed significant improvement in muscle strength after he was started on dietary L-tyrosine supplementation. This case highlights the emerging role of L-tyrosine in the supportive care of infants with nemaline rod myopathy.


Subject(s)
Myopathies, Nemaline , Tyrosine , Humans , Myopathies, Nemaline/genetics , Myopathies, Nemaline/drug therapy , Male , Tyrosine/therapeutic use , Infant, Newborn , Infant , Muscle Hypotonia/drug therapy , Muscle Proteins/genetics , Muscle, Skeletal/pathology , Treatment Outcome
19.
Meat Sci ; 215: 109554, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38838569

ABSTRACT

This study investigated the effect of ultrasound (US) combined with pre- and post-addition of κ-carrageenan (KC) on the gelling properties, structural characteristics and rheological behavior of myofibrillar proteins (MP) under low-salt conditions. The results showed that US combined with either pre- or post-addition of KC rendered higher gel strength and water holding capacity (WHC) of MP gels than those treated with US alone and added with KC alone (P < 0.05). US combined with pre-addition of KC facilitated the binding between MP and KC, which enhanced the gel strength and WHC of the mixed MP gels and significantly improved the rheological behavior of MP. This was also confirmed by the highest surface hydrophobicity, disulfide bonds and ß-sheet content of the MP gels with US combined with pre-addition of KC. Moreover, microstructural results reflected a denser structure for the pre-addition of KC in combination with US. However, US combined with post-addition of KC resulted in limited MP unfolding and relatively weak hydrophobic interactions in the composite gels, which were less effective in improving the gel properties of the MP gels. This study provides potential strategies for enhancing the gelling properties of low-salt meat products via application of US and KC.


Subject(s)
Carrageenan , Food Handling , Gels , Hydrophobic and Hydrophilic Interactions , Meat Products , Rheology , Carrageenan/chemistry , Animals , Gels/chemistry , Meat Products/analysis , Food Handling/methods , Muscle Proteins/chemistry , Swine , Myofibrils/chemistry
20.
Sci Rep ; 14(1): 12766, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834715

ABSTRACT

Metabolic reprogramming is widely recognized as a hallmark of malignant tumors, and the targeting of metabolism has emerged as an appealing approach for cancer treatment. Mitochondria, as pivotal organelles, play a crucial role in the metabolic regulation of tumor cells, and their morphological and functional alterations are intricately linked to the biological characteristics of tumors. As a key regulatory subunit of mitochondria, mitochondrial inner membrane protein (IMMT), plays a vital role in degenerative diseases, but its role in tumor is almost unknown. The objective of this research was to investigate the roles that IMMT play in the development and progression of breast cancer (BC), as well as to elucidate the underlying biological mechanisms that drive these effects. In this study, it was confirmed that the expression of IMMT in BC tissues was significantly higher than that in normal tissues. The analysis of The Cancer Genome Atlas (TCGA) database revealed that IMMT can serve as an independent prognostic factor for BC patients. Additionally, verification in clinical specimens of BC demonstrated a positive association between high IMMT expression and larger tumor size (> 2 cm), Ki-67 expression (> 15%), and HER-2 status. Furthermore, in vitro experiments have substantiated that the suppression of IMMT expression resulted in a reduction in cell proliferation and alterations in mitochondrial cristae, concomitant with the liberation of cytochrome c, but it did not elicit mitochondrial apoptosis. Through Gene Set Enrichment Analysis (GSEA) analysis, we have predicted the associated metabolic genes and discovered that IMMT potentially modulates the advancement of BC through its interaction with 16 metabolic-related genes, and the changes in glycolysis related pathways have been validated in BC cell lines after IMMT inhibition. Consequently, this investigation furnishes compelling evidence supporting the classification of IMMT as prognostic marker in BC, and underscoring its prospective utility as a novel target for metabolic therapy.


Subject(s)
Breast Neoplasms , Cell Proliferation , Mitochondria , Mitochondrial Proteins , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Middle Aged , Prognosis , Membrane Proteins/metabolism , Membrane Proteins/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , MCF-7 Cells , Muscle Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...